
LDBC
Cooperative Project

FP7 – 317548

D4.4.2 Benchmark Design for
Reasoning

Coordinator: [Vassilis Papakonstantinou, Irini Fundulaki]
With contributions from: [Giorgos Flouris (FORTH),

Vladimir Alexiev (ONTO)]
1st Quality Reviewer: Peter Boncz (UvA)

2nd Quality Reviewer: Thomas Neumann (TUM)

Deliverable nature: Report (R)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: M24

Actual delivery date: M24

Version: 1.0

Total number of pages: 92

Keywords: Linked Open Data, RDF, RDFS, OWL reasoning

LDBC Deliverable D4.4.2

Abstract

Reasoning (mainly OWL reasoning) has received increasing attention by ontology designers for more accu-
rately representing the domain at hand. To reflect this importance, one of LDBC’s objectives is to identify a
set of interesting use cases that consider OWL reasoning constructs (beyond the usual RDFS constructs) that
can be used to challenge existing RDF engines or repositories. This Deliverable has two parts: in the first part,
we present four different sets of queries that can be used to determine whether RDF query engines take into
account OWL constructs during query plan construction or query execution; in the second part we consider how
a repository or query engine incorporates and considers business rules, i.e., domain-specific rules that follow
common templates, useful in practical applications.

Page 2 of (92)

Deliverable D4.4.2 LDBC

EXECUTIVE SUMMARY

Reasoning (mainly OWL reasoning) has received increasing attention by ontology designers for more accu-
rately representing the domain at hand. To reflect this importance, one of LDBC’s objectives is to identify
a set of interesting queries that consider OWL reasoning constructs (beyond the usual RDFS constructs) that
can be used to test the extent to which these can be used by existing SPARQL query engines for query plan
construction and query execution.

In the first part of this Deliverable we propose sets of tests that can be considered as the baseline for any
reasoning-aware query engine as they check whether the engine correctly takes into account the reasoning
constructs during query execution. Our main motivation behind this effort is the argument that query plans can
be optimized using heuristics based on OWL reasoning constructs and constraints, and that such optimizations
can be employed in a complementary fashion to traditional optimizations used by the query planners to further
improve their performance. The four different sets of such queries are:
• conformance tests that examine whether an RDF engine correctly implements the semantics of OWL

reasoning constructs; note that some of these tests have been included in LDBC Deliverable D4.4.1 [28]
as well.

• static tests that can be employed to check whether the engine is able at compile time to take advantage
of constraints such as class and property disjointness and equivalence, in addition to functional as well
as domain and range property constraints. For instance, a query looking for an instance of two disjoint
classes is certain to return no answers, so it should be answerable in constant time, without having the
engine to evaluate the query (under the assumption that the dataset satisfies the schema).
• selectivity tests that determine how well the query planner can guess the selectivity of certain joins. For

this task, query engines have traditionally used statistics or heuristics related to the form of the query that
guide them in building the optimal query plans. In this Deliverable, we argue that such heuristics could
be combined with schema information via reasoning; for instance, cardinality constraints may provide
hints for the cardinality of certain relations. Such tests can be viewed also as suggestions for possible
reasoning-based selectivity heuristics that a query planner could employ.
• advanced reasoning tests that comprise of various types of advanced tests that highlight cases where

reasoning can help the query engine determine the optimal query plan using schema information. These
tests are more sophisticated than the previous ones and focus on the incorporation of reasoning constructs
for the creation of the query plans.

For the aforementioned tests we discuss how each proposed construct can be used by forward and backward
reasoners since most benchmarks are suitable for both types; there is an explicit mention when this is not the
case. All queries are presented in an abstract form, showing the pattern being tested; subsequently, they are
grounded in the BBC ontology of the Semantic Publishing benchmark, so as to be directly applicable for use in
the said benchmark.

In the second part of this Deliverable we also present several cases that are interesting for practical applica-
tions, but for which using standard OWL2 constructs are not sufficient because OWL2 lacks either expressive
power (e.g. the ability to define conjunctive properties) or appropriate data structures. For such tasks we use
domain-specific business rules or vendor-specific extensions. In some instances the same functionality can be
captured with complex SPARQL queries, but most often this leads to very complex queries that do not have
reasonable execution times.

Page 3 of (92)

LDBC Deliverable D4.4.2

DOCUMENT INFORMATION

IST Project Number FP7 – 317548 Acronym LDBC
Full Title LDBC
Project URL http://www.ldbc.eu/
Document URL http://wiki.ldbcouncil.org/display/PROJECT/

Deliverables

EU Project Officer Carola Carstens

Deliverable Number D4.4.2 Title Benchmark Design for Reasoning
Work Package Number WP4 Title Semantic Choke Point Analysis

Date of Delivery Contractual M24 Actual M24
Status version 1.0 final �

Nature Report (R) � Prototype (P) � Demonstrator (D) � Other (O) �

Dissemination Level Public (PU) � Restricted to group (RE) � Restricted to programme (PP) � Consortium (CO) �

Authors (Partner) Irini Fundulaki, Giorgos Flouris (FORTH), Vladimir Alexiev (ONTO)

Responsible Author Name Irini Fundulaki,
Vassilis
Papakonstantinou

E-mail fundul@ics.forth.gr,
papv@ics.forth.gr

Partner FORTH Phone +302810391725

Abstract
(for dissemination)

Reasoning (mainly OWL reasoning) has received increasing attention by
ontology designers for more accurately representing the domain at hand. To
reflect this importance, one of LDBC’s objectives is to identify a set of
interesting use cases that consider OWL reasoning constructs (beyond the usual
RDFS constructs) that can be used to challenge existing RDF engines or
repositories. This Deliverable has two parts: in the first part, we present four
different sets of queries that can be used to determine whether RDF query
engines take into account OWL constructs during query plan construction or
query execution; in the second part we consider how a repository or query engine
incorporates and considers business rules, i.e., domain-specific rules that follow
common templates, useful in practical applications.

Keywords Linked Open Data, RDF, RDFS, OWL reasoning

Version Log
Issue Date Rev. No. Author Change
16/09/2014 0.1 Vassilis Papakonstantinou,

Irini Fundulaki
First version

26/09/2014 0.2 Irini Fundulaki Second version
30/09/2014 1.0 Irini Fundulaki Final version

Page 4 of (92)

Deliverable D4.4.2 LDBC

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

DOCUMENT INFORMATION 4

LIST OF FIGURES 7

LIST OF TABLES 8

1 INTRODUCTION 10

2 BENCHMARKING RDF DATABASES 12

3 PRELIMINARIES 15
3.1 Class and Property Subsumption . 16
3.2 Property Domain and Range . 16
3.3 Union and Intersection of Classes . 16
3.4 Enumeration . 17
3.5 Equality of Individuals . 17
3.6 Inverse of Properties . 18
3.7 Constraints on Properties . 18
3.8 Keys of Classes . 20
3.9 Property Chains . 20
3.10 Disjoint Classes and Properties . 20
3.11 Cardinalities . 21

4 REASONING BENCHMARK: CONFORMANCE TESTS 22
4.1 Class and Property Subsumption . 22
4.2 Property Domain and Range . 23
4.3 Union and Intersection of Classes . 25
4.4 Enumeration of Individuals . 26
4.5 Equality . 27
4.6 Inverse of Properties . 29
4.7 Constraints on Properties . 29
4.8 Class Keys . 31
4.9 Property Chains . 31
4.10 Disjoint Classes and Properties . 31
4.11 Cardinalities . 33

5 REASONING: STATIC TESTS 34
5.1 Equality of Classes (owl:equivalentClass) . 34
5.2 Disjointness of Classes (owl:disjointWith) . 34
5.3 Equality of Properties (owl:equivalentProperty, owl:FunctionalProperty) 35
5.4 Range of Properties (rdfs:range, owl:disjointWith) . 35
5.5 Domain of Properties (rdfs:domain, owl:disjointWith) 35
5.6 Uniqueness of Property Values (owl:FunctionalProperty) 36

Page 5 of (92)

LDBC Deliverable D4.4.2

6 REASONING: SELECTIVITY TESTS 37
6.1 Cardinality . 37
6.2 Intersection of Classes (owl:intersectionOf) . 38
6.3 Union of Classes (owl:unionOf) . 38
6.4 Hierarchy of Classes (rdfs:subClassOf) . 39
6.5 Hierarchy of Properties (rdfs:subPropertyOf) . 39

7 REASONING: ADVANCED REASONING TESTS 40
7.1 Optimized Inference (rdfs:subClassOf, owl:allValuesFrom) 40
7.2 Redundant Triple Pattern Elimination (owl:intersectionOf) 41
7.3 Search Space Pruning (rdfs:subClassOf) . 41
7.4 Star Query Transformation owl:SymmetricProperty . 42
7.5 Intermediate Results Reduction: owl:sameAs . 43
7.6 Cardinalities Estimation: owl:TransitiveProperty . 43

8 BENCHMARKS FOR REASONING WITH BUSINESS RULES 45
8.1 Motivating Example: Complex Reasoning with a Cultural Heritage ontology 45

8.1.1 Fundamental Relations . 45
8.2 Rule Languages . 49

8.2.1 OWLIM Rules . 49
8.2.2 SPIN Rules . 49

8.3 Scenarios of Business Rule . 50
8.3.1 Extended Property Constructs . 50
8.3.2 Implementing Extended Property Constructs . 51
8.3.3 Two-Place (2-Place) Chains . 52
8.3.4 Better Transitive Properties . 54
8.3.5 Interlinking Ambiguous Things in the Semantic Publishing Benchmark 55
8.3.6 Classifying CreativeWorks in the Semantic Publishing Benchmark 56
8.3.7 Validating Creative Works in the Semantic Publishing Benchmark 56
8.3.8 Faceting for Co-occurrence . 57
8.3.9 GeoSpatial Queries . 61

9 CONCLUSIONS 64

APPENDICES 65

A REASONING BENCHMARK: SPB TESTS 66
A.1 Semantic Publishing Benchmark Ontologies . 66
A.2 Conformance Tests . 70

A.2.1 Class and Property Subsumption . 70
A.2.2 Property Domain and Range . 71
A.2.3 Union and Intersection of Classes . 73
A.2.4 Enumeration of Individuals . 74
A.2.5 Equality . 75
A.2.6 Inverse of Properties . 76
A.2.7 Constraints on Properties . 77
A.2.8 Class Keys . 79
A.2.9 Property Chains . 79
A.2.10 Disjoint Classes and Properties . 80
A.2.11 Cardinalities . 81

A.3 Static Tests . 82
A.3.1 Equality of Classes (owl:equivalentClass) . 82

Page 6 of (92)

Deliverable D4.4.2 LDBC

A.3.2 Disjointness of Classes (owl:disjointWith) . 82
A.3.3 Equality of Properties (owl:equivalentProperty) 82
A.3.4 Range of Properties (rdfs:range, owl:disjointWith) 83
A.3.5 Domain of Properties (rdfs:domain, owl:disjointWith) 83
A.3.6 Uniqueness of Property Values (owl:FunctionalProperty) 83

A.4 Selectivity Tests . 84
A.4.1 Cardinality . 84
A.4.2 Intersection of Classes (owl:intersectionOf) . 84
A.4.3 Union of Classes (owl:unionOf) . 85
A.4.4 Hierarchy of Classes (rdfs:subClassOf) . 85
A.4.5 Hierarchy of Properties (rdfs:subPropertyOf) . 85

A.5 Advanced Tests . 86
A.5.1 Optimized Inference (rdfs:subClassOf owl:allValuesFrom) 86
A.5.2 Redundant Triple Pattern Elimination (owl:intersectionOf) 87
A.5.3 Star Query Transformation (owl:SymmetricProperty) 87
A.5.4 Intermediate Results Reduction (owl:sameAs) . 87
A.5.5 Cardinalities Estimation (owl:TransitiveProperty) 88

Page 7 of (92)

LDBC Deliverable D4.4.2

LIST OF FIGURES

8.1 FR: Thing from Place . 47
8.2 FR: Thing created by Actor . 48
8.3 Ontotext KIM Showcase: Latest News Faceted Search . 58
8.4 Customizing Facet Selections . 58
8.5 Narrowing Using Faceted Search: What’s the Connection Between Pixar and Hogs? 58

A.1 BBC Creative Works Ontology . 66
A.2 Enhancements to the SPB ontologies with class and property constraints (a) 68
A.3 Enhancements to the SPB ontologies with class and property constraints (b) 69
A.4 Dbpedia schema triples used in SPB tests . 69
A.5 Travel schema triples used in SPB tests . 70

Page 8 of (92)

Deliverable D4.4.2 LDBC

LIST OF TABLES

3.1 Class and Property Subsumption . 16
3.2 Property Domain and Range . 17
3.3 Union and Intersection of Classes . 17
3.4 Semantics of Enumerated Classes . 17
3.5 Semantics of Equality . 18
3.6 Inverse Constraints . 19
3.7 Constraints of Properties . 19
3.8 Keys . 20
3.9 Property Chains . 20
3.10 Disjoint Classes and Properties . 21
3.11 Cardinalities . 21

8.1 A subset of CIDOC CRM Fundamental Concepts and Relations 46
8.2 Standard OWL2 Property Constructs . 51
8.3 Extended Property Constructs . 52

Page 9 of (92)

LDBC Deliverable D4.4.2

1 INTRODUCTION

Ontologies are increasingly being used by ontology designers for providing a more accurate description of the
domain at hand. The de facto language for expressing rich ontologies is OWL [23], with its various “flavours”,
i.e., different fragments that take a different stance in the trade-off between high expressive power and low
computational complexity. OWL is a language built on top of RDF [25] and RDFS [12].

OWL constructs support the modeling of implicit along with explicit information obtained through rea-
soning which is a very important compoment of ontologies; those constructs support the modelling of schema
information such as typing (definition of classes, properties) as well as constraints at the schema and data level.

Despite the importance of reasoning, and the work performed at the theoretical level in defining languages
for reasoning, query engines have generally not followed at the same pace, and, in fact, many of them do not
fully support reasoning (see also LDBC Deliverable D4.4.1 [28]).

As a response to this fact, one of LDBC’s objectives is to propose a set of tests/queries that measure the
extent to which reasoning-aware SPARQL query engines consider reasoning constructs for query answering;
this Deliverable is the first attempt towards this goal which contains four different sets of queries, testing
different ways in which a forward or backward RDF reasoner can exploit these constructs.

Note that, unlike other benchmarks proposed in the literature, [11, 30, 40, 79], the objective of the queries
presented in this work is not to stress the reasoner of the query engine into performing complex forms of
reasoning with large amounts of data, i.e., our intention is not to provide standard workload benchmarks;
instead, our objective is to see how schema information could be exploited for query answering.

More specifically, our objective is two-fold: first, we want to determine whether reasoning-aware query
engines correctly consider the semantics of the various OWL constructs; second, we want to test whether the
query engine uses schema information expressed through OWL constructs to perform interesting optimizations
of possibly increasing complexity, in order to improve the query execution plans, and, consequently, the perfor-
mance of the engine. Our main motivation behind this effort is the argument that query plans can be optimized
using heuristics based on the schema, and the corresponding OWL reasoning rules, and that such optimizations
can be employed in a complementary fashion to traditional optimizations used in query planners to further
improve their performance.

Acknowledging the fact that forward and backward reasoners employ different strategies for performing
reasoning, our sets of test queries have been designed to consider both types of reasoners. In fact, most of the
queries are suitable for both types of reasoners. For the queries for which this is not the case, we explicitly
mention this. All the proposed queries are presented in an abstract form, showing the pattern being tested using
abstract URI constants.

The four different sets of queries that we propose are:
• conformance tests that examine whether an RDF engine correctly implements the semantics of OWL

reasoning constructs; note that some of these tests are also used in LDBC Deliverable D4.4.1 [28] as
well. These tests are necessary to verify that the reasoning engine is sound and complete with respect
to reasoning and inference, and are considered to be the baseline test for any reasoning-aware query
engine; for a query engine to pass this test, it should take into account both the explicit and the implicit
information while running a query.

• static tests that can be employed to check whether the engine is able, at compile time, to take advantage
of constraints such as class and property disjointness and equivalence, in addition to functional as well
as domain and range property constraints. For instance, a query looking for an instance of two disjoint
classes is certain to return no answers, so it should be answerable in constant time (under the assumption
that the dataset satisfies the schema).

• selectivity tests that determine how well the query planner can guess the selectivity of certain joins. For
this task, query engines have traditionally used statistics or heuristics related to the form of the query
that guide them in building optimal query plans. In this Deliverable, we argue that such heuristics could
be combined with schema information via reasoning; for instance, cardinality constraints may provide
hints for the cardinality of certain relations. Such tests can be viewed also as suggestions for possible
reasoning-based selectivity heuristics that a query planner could employ.

Page 10 of (92)

Deliverable D4.4.2 LDBC

• advanced reasoning tests that comprise of various types of advanced tests that highlight cases where
reasoning can help the query engine determine the optimal query plan using schema information. These
tests are more sophisticated than the previous ones and determine whether the query engine incorporates
advanced reasoning semantics while generating query execution plans.

Finally, in this Deliverable we consider how a repository or query engine incorporates and considers busi-
ness rules, i.e., domain-specific rules that follow common templates, useful in practical applications. We
present several cases that are interesting for practical applications, but for which using standard OWL2 [77]
constructs are not sufficient. OWL2 reasoning often has high complexity, which is the reason for defining
different profiles/dialects (Full, DL, RL, EL, QL) that trade off expressivity for tractability and speed of rea-
soning. Nevertheless, there are tasks for which OWL2 is not appropriate, because it lacks either expressive
power (e.g. the ability to define conjunctive properties) or appropriate data structures. For such tasks we use
domain-specific business rules or vendor-specific extensions. In some instances the same functionality can be
captured with complex SPARQL queries, but most often this leads to very complex queries that do not execute
in a reasonable time.

The cases that we consider include:
• compressing a complex network of relations by computing search index relations over them (so-called

Fundamental Relations), using custom rules
• extended property constructs for more efficient property chains and transitive properties, using custom

rules
• exposing ambiguous entities, classifying and validating works, using SPIN rules (similar to SPARQL

Update)
• faceted search, by connecting to external faceting engine (Solr)
• geospatial queries, using custom extensions

Structure Chapter 2 provides an overview of the related work; in Chapter 3 we discuss the main concepts of
the OWL language that we are going to use in this work. Chapters 4 discusses the conformance tests; static
tests are presented in Chapter 5. The selectivity and advanced tests are given in Chapters 6 and 7 respectively.
Chapter 8 discusses interesting use cases for which OWL2 constructs are not appropriate. The SPB specific
queries for the conformance, static, selectivity and advanced tests are given in the Appendix.

Page 11 of (92)

LDBC Deliverable D4.4.2

2 BENCHMARKING RDF DATABASES

Benchmarking RDF systems presents different challenges than the ones posed in relational database engines.
Consequently, existing relational benchmarks are not really suitable for RDF benchmarking. This is due to the
intricacies of RDF data, which are expressed in the simple RDF data model that is based on the representation
of information in the form of a triple (subject, predicate, object). Nowadays, a large number of ontologies have
been developed in order to represent information in various diverse domains of interest. The RDFS [12] and
OWL [23] Semantic Web languages have been used to represent the concepts, relationships and constraints in
the domain of study.

The recent increase in the number of real-world applications that use RDF data, is raising the need for
more interesting benchmarks that should test all aspects of RDF query processing. As a result, in the last
few years we have witnessed the development of a number of different RDF benchmarks. Existing, well-
established, relational benchmarks have been used for testing the performance of RDF engines. TPC-H [67]
can be translated into RDF, but the queries and especially the data still remain relational at heart. In this
type of benchmarks, schema information expressed in terms of rich OWL constructs is not considered, and
consequently OWL-based reasoning is basically absent. Reasoning is essential in benchmarking RDF query
engines due to the increasing number of rich schemas that are used in the Linked Data Cloud.

In this Chapter we will make an overview of existing benchmarks for RDF engines focusing more on the
aspect of the incorporation of OWL reasoning constructs for each of the benchmarks and how those have been
used for performing query answering. A detailed presentation of the state of the art RDF benchmarks has been
provided in LDBC Deliverable D1.1.1 [27].

A number of RDF benchmarks that use real datasets have been proposed over the last years [53, 59,
71, 64, 54]. DBPedia [63] extracts structured information from Wikipedia [69] to create a large dataset for
benchmarking. The DBPedia ontology is a shallow ontology that contains core and domain specific concepts;
the ontology contains also a small number of RDFS properties (rdfs:subClassOf, rdfs:label, rdf:type,
rdfs:comment) and the OWL property owl:sameAs that links resources which refer to the same object but
originate from different datasets. Although the DBPedia dataset is one of the reference datasets for Linked
Open Data, there is no clear set of representative queries for it. The University of Leipzig [44] developed
the DBPSB [64] (DBPedia SPARQL Benchmark) benchmark, which included a query workload derived from
the DBPedia query logs. The produced query workload consists of mostly simple lookups and does not con-
sider more complex OWL or RDFS constructs. UniProt KnowledgeBase (UniProtKB) [54] is a high-quality
dataset expressed in RDF, describing protein sequences and related functional information. It uses an OWL
ontology expressed in a sub-language of OWL-Lite (more expressive than OWL Horst), but still tractable. The
UniProt queries are mainly lookup queries [68] but some are also used to test the reasoning capabilities of RDF
databases (i.e., taxonomic queries along the RDFS subclass hierarchy). YAGO [71] is a vast knowledge base
that follows the steps of DBPedia and integrates statements from Wikipedia, Wordnet, WordNet Domains, Uni-
versal WordNet and GeoNames [65]. The original dataset is not accompanied by a set of queries (as in the case
of UniProtKB). However, Neumann et. al. provided eight queries for an earlier version of the YAGO ontology,
for benchmarking the RDF-3X engine [50]. These queries are mostly lookup and join queries but none of those
makes use of RDFS constructs.
In general, the aforementioned benchmarks do not take into account interesting reasoning constructs in the
proposed query workload, hence query engines that use those benchmarks focus mostly on testing how well the
engines perform for the proposed query mixes and for datasets of various sizes.

In addition to the previous benchmarks, a number of synthetic ones have been developed for testing RDF
engines. The Lehigh University Benchmark (LUBM) [66] is intended to evaluate the performance of Semantic
Web repositories over a large data set that adheres to a university domain ontology. The Univ-Bench ontology
used in LUBM is a relatively small ontology consisting of 43 classes and 32 properties, and is expressed
in OWL-Lite, the simplest language of OWL [43, 23]. In addition to the user-defined properties, the ontology
includes OWL specific properties such as owl:TransitiveProperty, owl:someValuesFrom restrictions, and
owl:intersectionOf.

Page 12 of (92)

Deliverable D4.4.2 LDBC

The LUBM benchmark consists of fourteen mainly extensional lookup and join queries, that consider very sim-
ple reasoning focusing on rdfs:subClassOf, rdfs:subPropertyOf and owl:sameAs properties. As a stan-
dard benchmark, the LUBM itself has several limitations. First, it covers only part of the inference supported by
OWL Lite and OWL DL, so it cannot exactly and completely evaluate an ontology system in terms of inference
capability. Second, it only supports extensional queries, that is queries about instance data. Third, the ontolo-
gies used in LUBM are of moderate size, so they are not stressing the tested systems enough. The University
Ontology Benchmark (UOBM) [41] extends LUBM in order to tackle complex inference, as well as scalability
issues. In contrast with LUBM, UOBM uses both OWL Lite and OWL DL ontologies and covers most of the
constructs of these two sublanguages of OWL (namely, owl:sameAs from OWL Lite, and owl:disjointWith,
owl:oneOf and owl:equivalentClass from OWL DL). UOBM ontology contains more classes and proper-
ties than LUBM and can generate a larger number of instances. UOBM queries are designed based on two
principles: (a) queries should consider multiple lookups and complex joins, and (b) each query should support
at least one different type of OWL inference.
SP2Bench [56] and the Berlin SPARQL Benchmark (BSBM) [10, 60] are the benchmarks mostly used for
testing the performance of RDF engines but none includes queries that test the performance of RDFS or OWL
reasoning constructs. SP2Bench contains both a data generator and a set of queries. The data generator builds
upon DBLP [62] bibliographic schema, which is a simple schema using 8 classes and 22 properties; The
produced data is mostly relational-like and hence do not exhibit the intrinsic properties related to real-world
RDF data. The workload consists of fourteen queries with different characteristics such as selectivity, query and
output size, and different types of joins and employ the main SPARQL 1.0 operators. BSBM is built around
an e-commerce use case where the schema models the relationships between products and product reviews.
BSBM Version 3.1 [61] comes with a data generator and a test driver, as well as a set of queries that measure
the performance of RDF engines for very large datasets, but do not test the ability of the RDF engines to
perform complex reasoning tasks (i.e., RDFS and OWL inference).

A lot of work has been conducted on defining benchmarks for evaluating and comparing OWL reasoners;
most of the benchmarks focus on testing the performance, correctness and completeness of systems.
Weithöner et. al. [79] formulated a set of general benchmarking requirements that will be helpful when design-
ing OWL reasoners. These requirements mainly focused on the changes that happen to the schema (ABox) and
are directly related to the performance of a reasoner in performing inference.

A framework for an automated comparison of OWL-DL reasoners was presented in [30] that has been
developed for testing reasoners with real-life ontologies; this framework allows users to compare the ontologies
as well as to check their correctness and completeness. Their system evaluated on top of four reasoners:
FaCT++ [72], KAON2 [46], Pellet [58] and RacerPro [31]. The authors in [11] intend to provide guidance for
choosing the appropriate reasoner for a given application scenario; they defined different sets of tests for OWL
reasoners by first analyzing the ontology landscape and for each of the OWL ontology subfragments (RDFS,
OWL Lite, OWL DLP and OWL DL) a representative ontology (VICODI1, LUBM [66], SWRC2, Wine3) is
chosen. The authors reported on loading time (that also includes checking ontology consistency) as well as
response times to sets of predefined tasks. The reasoners evaluated with the above tests were grouped into
three categories according to their underlying reasoning techniques: tableau-based algorithms (HermiT [57],
RacerPro and Pellet), datalog engines (KAON2), standard rule engines (Sesame [13] and OWLIM [37]). In [40]
the authors report their experience and interesting findings in the course of selecting the optimal OWL reasoner
when developing a specific ontology-based application. They employ a benchmark suite for large schemas,
as well as a selection of small but difficult sets of instances and schemas. Through these tests they analyze
the correctness of the results of FaCT++, Pellet, RacerPro, KAON2 and HermiT reasoners. The performance
of several services and communication protocols compared in different computing environments leads to the
conclusion that these largely underrated components may have a high impact on the overall performance of the
systems.

1VICODI: http://www.vicodi.org/about.htm
2SWRC: http://ontoware.org/swrc/
3http://www.w3.org/TR/owl-guide/wine.rdf

Page 13 of (92)

LDBC Deliverable D4.4.2

It is obvious from the discussion above, that the existing benchmarks focus only on the OWL reasoners’
correctness, completeness and performance. Moreover, the benchmarks that have been developed for testing
the performance of RDF query engines so far consider a very limited, unexpressive set of OWL constructs
mostly limited to testing the efficiency of query engines for query answering. The benchmark queries are not
built for testing the capacity of the query engines regarding the incorporation of schema information expressed
by means of OWL constructs and constraints into producing close to optimal plans.

Existing RDF native query engines [32, 8, 48, 49, 50, 78, 76, 24] have proposed indexes for RDF triples
that are used during SPARQL query processing whereas SQL-based ones proposed different logical schemas
(triple and property tables) and rely on optimization techiques of the underlying DBMS to evaluate SPARQL
queries. Moreover, other works have discussed query graph models [33] and the use of algebraic rewritings
for SPARQL queries [70]. SQL-based SPARQL query engines [2, 3, 14, 39] use large triple tables as well
as standard indexes on the columns of the large triple table, or property tables. Query processing is done by
translating the SPARQL query into its equivalent SQL which is subsequently evaluated by the underlying query
engine.

Some native RDF as well as SQL-based query engines are based on cardinality estimation techniques [49,
47] for RDF data that can be used to enhance existing SQL optimizers for supporting efficient SPARQL pro-
cessing. Tsialiamanis et. al [73] discuss heuristics-based query optimisation techniques for SPARQL query
optimizers that explore the syntactic and the structural variations of the triple patterns in a SPARQL query in
order to choose an execution plan without the need of any cost model. Currently though, existing engines focus
on processing RDF queries by considering mainly statistics about the data and completely ignoring schema in-
formation that is expressed in terms of rich OWL ontologies that accompany, in an increasing number of cases,
the RDF data. An interesting line of research is the use of this type of information for query plan construction.
Towards this objective a first step is to understand how these constructs could be used by the query engines
for devising better query plans; the second step is to write a set of tests (in the form of queries) that could
help query optimisers into checking that the produced query plans take into consideration the aforementioned
constructs.

Page 14 of (92)

Deliverable D4.4.2 LDBC

3 PRELIMINARIES

The objective of the Semantic Web is to build an infrastructure of machine-readable semantics for data on the
Web. The Resource Description Framework (RDF) [25] enables the encoding, exchange, and reuse of structured
data, while providing the means for publishing both human-readable and machine-processable vocabularies.

The popularity of the RDF data model and RDF Schema language (RDFS) [12] is due to the flexible and
extensible representation of information, independently of the existence or absence of a schema, under the form
of triples. A triple is of the form (subject, predicate, object) where the predicate (also called property) denotes
the relationship between subject and object. An RDF triple asserts the fact that subject is associated with object
through property. An RDF graph is a set of triples that can be viewed as a node and edge labeled directed
graph with subjects and objects of triples being the nodes of the graph and predicates the edges. RDF data do
not necessarily come with a schema or semantics (expressed by constraints).

The RDF data model is simple, with a formal semantics and provable inference and with an extensible
URI-based vocabulary which allows anyone to make statements about any resource. The RDF Schema (RDFS)
language [12] provides a built-in vocabulary for asserting user-defined schemas in the RDF data model and is
designed to introduce useful semantics to RDF triples. RDFS names such as rdfs:Resource, rdfs:Class and
rdf:Property could be used as objects of triples describing class and property types. It also provides some
useful relationships (properties) between resources, like subsumption or instantiation.

The OWL Web Ontology Language [23] is designed for use by applications that need to process the content
of information instead of just presenting information to humans, and is used to (a) create an ontology, (b) state
facts about a domain and (c) reason about ontologies to determine consequences of what was named and stated.

It provides a much richer set of constructs and semantics than RDFS that allows more complicated reason-
ing. It has three increasingly-expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL,
in addition to RDFS distinguishes between object and datatype properties, complex class descriptions through
the intersection, union, enumeration and property restrictions of class descriptions. OWL contains constructs
that allow one to combine class descriptions into class axioms. Namely class subsumption (defined in RDF
Schema language), equivalence and disjointness. Property axioms define characteristics of properties. More
specifically, these are property subsumption, domain and range (defined by RDFS), relationships to other prop-
erties such as equivalence and inverse, global cardinality constraints such as functional and inverse functional
properties and finally logical property characteristics such as symmetry and transitivity. Last, OWL allows the
specification of axioms for individuals or instances, such as class membership, property values as well as facts
about the instance identity. More specifically, OWL allows one to specify that two instances refer to the same or
to a different real world individual. Most of the OWL constructs were initially defined in 2004, in what is now
known as OWL1 [43]. The semantics of some of the constructs were slightly refined in a subsequent version,
OWL2 [77], introduced in 2012. Both OWL1 and OWL2 define several sublanguages that allow a different set
of constructs, and thus adopt a different stance in the tradeoff between expressive power and reasoning com-
plexity. Our presentation and analysis below focus on the constructs used in a specific sublanguage of OWL 2,
namely OWL 2 RL [45], which is aimed at applications that require scalable reasoning without sacrificing too
much expressive power.

The interested reader can find a detailed description of the OWL constructs in [23, 42] and a detailed
description of its semantics in [52]. The OWL constructs along with a partial axiomatization in the form of
first order implications that we use in this work are discussed below. Each construct is associated with specific
semantics, which are formally encoded in the form of if-then rules. A rule means that if a dataset contains
triples that match the triple pattern in the ”if” part, then it should imply either (a) triples that match the triple
pattern in the “then” part or (b) when the “then” part contains the keyword “FALSE”, it means that an ontology
containing the triples in the ”if” part is inconsistent, i.e., it implies everything. The informal description of the
involved OWL constructs, as well as the intuition behind their semantics is given in the subsections below.

Page 15 of (92)

LDBC Deliverable D4.4.2

3.1 Class and Property Subsumption

Class and property subsumption is the most basic, useful and frequent reasoning-intensive relationship that
appears in semantic modeling. Subsumption is denoted using the RDFS constructs rdfs:subClassOf and
rdfs:subPropertyOf for classes and properties respectively.

According to [12, 34] if a class c1 is a subclass of c2 (triple (c1, rdfs:subClassOf, c2)), then the instances
of the former (x, rdf:type, c1) are also instances of the latter (x, rdf:type, c2). The same holds for subsump-
tion between properties. Rules CAX-SCO and PRP-SPO1 in Table 3.1 describe these semantics.

According to the Semantics of Schema Vocabulary [45], class and property subsumption are transitive (see
Rules SCM-SCO, SCM-SPO respectively in Table 3.1). More specifically, the existence of (c1, rdfs:subClassOf, c2)
and (c2,rdfs:subClassOf, c3) in a dataset should cause the inference of (c1, rdfs:subClassOf, c3).

If Then

CAX-SCO
(?c1, rdfs:subClassOf, ?c2) (?x, rdf:type, ?c2)
(?x, rdf:type, ?c1)

PRP-SPO1
(?p1, rdfs:subPropertyOf, ?p2) (?x, ?p2, y)(?x, ?p1, ?y)

SCM-SCO
(?c1, rdfs:subClassOf, ?c2) (?c1, rdfs:subClassOf, ?c3)(?c2, rdfs:subClassOf, ?c3)

SCM-SPO
(?p1, rdfs:subPropertyOf, ?p2) (?p1, rdfs:subPropertyOf, ?p3)(?p2, rdfs:subPropertyOf, ?p3)

Table 3.1: Class and Property Subsumption

3.2 Property Domain and Range

The constructs rdfs:domain and rdfs:range are used to denote the domain and range of properties respec-
tively. For example, (p, rdfs:domain, c1)/(p, rdfs:range, c1) indicate that c1 is the domain/range of property
p. Rules SCM-RNG1/SCM-DOM1 shown in Table 3.2 state that if a property p has as range/domain a class c1,
then it has as range/domain all superclasses c2 of c1. Range and domain of properties is also inherited along
the property subsumption hierarchy: rules SCM-RNG2/SCM-DOM2 (Table 3.2) state that if a property p2 has
as range/domain a class c, then its subproperty p1 have also as range/domain class c. In addition whenever a
subject s is connected via property p to some object o, s should be an instance of the domain of p, and o should
be an instance of the range of p (rules PRP-DOM and PRP-RNG resp.).

3.3 Union and Intersection of Classes

The owl:unionOf construct is used to construct a new class, that is the union of two (or more) other classes.
Dually, the owl:intersectionOf construct is used to construct a new class that is the intersection of two
(or more) other classes. As with all OWL constructs, the semantics of owl:unionOf are intentional, i.e., all
instances that are known to be instances of either of c1, c2 will be also instances of their union, and vice-versa,
i.e., known instances of the union will be instances of either c1 or c2 (or both). According to rules SCM-UNI and
SCM-INT shown in Table 3.3, a class c defined as union (respectively intersection) of a set of existing classes
c1, c2 . . . cn, then c is inferred as their superclass (respectively subclass).

Page 16 of (92)

Deliverable D4.4.2 LDBC

If Then

SCM-RNG1
(?p, rdfs:range, ?c1) (?p, rdfs:range, ?c2)(?c1, rdfs:subClassOf, ?c2)

SCM-RNG2
(?p2, rdfs:range, ?c) (?p1, rdfs:range, ?c)(?p1, rdfs:subPropertyOf, ?p2)

SCM-DOM1
(?p, rdfs:domain, ?c1) (?p, rdfs:domain, ?c2)(?c1, rdfs:subClassOf, ?c2)

SCM-DOM2
(?p2, rdfs:domain, ?c) (?p1, rdfs:domain, ?c)(?p1, rdfs:subPropertyOf, ?p2)

PRP-DOM
(?p, rdfs:domain, ?c)

(?x, rdf:type, ?c)
(?x, ?p, ?y)

PRP-RNG
(?p, rdfs:range, ?c)

(?y, rdf:type, c)
(?x, ?p, ?y)

Table 3.2: Property Domain and Range

SCM-INT

(?c, owl:intersectionOf, ?x)
(?c, rdfs:subClassOf, ?c1)
(?c, rdfs:subClassOf, ?c2)

LIST[?x, ?c1, . . ., cn]
. . .
(?c, rdfs:subClassOf, ?cn)

SCM-UNI

(?c, owl:unionOf, ?x)
(?c1, rdfs:subClassOf, ?c)
(?c1, rdfs:subClassOf, ?c)

LIST[?x, ?c1, . . ., cn]
. . .
(?cn, rdfs:subClassOf, ?c)

Table 3.3: Union and Intersection of Classes

3.4 Enumeration

The owl:oneOf construct is used to define a class via enumeration, i.e., by explicitly stating its instances. This
implies that all such individuals are instances of the defined class, as shown in CLS-OO in Table 3.4.

If Then

CLS-OO

(?c, owl:oneOf, ?x) (?y1, rdf:type, ?c)
LIST[?x, ?y1, . . ., ?yn] . . .

(?yn, rdf:type, ?c)

Table 3.4: Semantics of Enumerated Classes

3.5 Equality of Individuals

The uncontrolled nature of the Web of Data implies that there will be several cases where the same resource in
the real world (e.g., a human being, an object or an idea) may be described using different URIs in different or
even the same dataset. To address this problem, OWL2 proposes the use of the OWL construct owl:sameAs

Page 17 of (92)

LDBC Deliverable D4.4.2

to connect instances that represent the same real-world entity1. Hence OWL construct owl:sameAs denotes
equality. The opposite of owl:sameAs is owl:differentFrom, which explicitly states that two individuals
are different, i.e., they correspond to a different real-world entity. Table 3.5 presents all rules that hold for
owl:sameAs and owl:differentFrom constructs.

If Then

EQ-REF (?s, ?p, ?o)
(?s, owl:sameAs, ?s)
(?p, owl:sameAs, ?p)
(?o, owl:sameAs, ?o)

EQ-SYM (?x, owl:sameAs, ?y) (?y, owl:sameAs, ?x)

EQ-TRANS
(?x, owl:sameAs, ?y)

(?x, owl:sameAs, ?z)
(?y, owl:sameAs, ?z)

EQ-REP-S
(?s, owl:sameAs, ?s′)

(?s′, ?p, ?o)
(?s, ?p, ?o)

EQ-REP-P
(?p, owl:sameAs, ?p′)

(?s, ?p′, ?o)
(?s, ?p, ?o)

EQ-REP-O
(?o, owl:sameAs, ?o′)

(?s, ?p, ?o′)
(?s, ?p, ?o)

EQ-DIFF1
(?x, owl:sameAs, ?y)

FALSE
(?x, owl:differentFrom, ?y)

Table 3.5: Semantics of Equality

One observation is that whatever holds for one resource, holds for the other as well (rules EQ-REP-S, EQ-
REP-P, EQ-REP-O). Obviously, a pair of individuals cannot be the same and different at the same time, thus the
rule EQ-DIFF1. By its definition, owl:sameAs has the properties of equivalence relations, i.e., it is reflexive,
symmetric and transitive. Reflexivity implies that (x, owl:sameAs, x) for all resources x (rule EQ-REF). The
relation being symmetric means that (x, owl:sameAs, y) implies (y, owl:sameAs, x) (rule EQ-SYM). Finally,
transitivity implies that from (x, owl:sameAs, y) and (y, owl:sameAs, z) we should infer (x, owl:sameAs, z)
(rule EQ-TRANS).

3.6 Inverse of Properties

The inverse property construct (owl:inverseOf) allows one to define a property as the inverse of another. For
example, the property has_parent is the inverse of has_child. More formally, if p1 is the inverse of p2 then
a triple of the form (x, p1, y) implies (y, p2, x). Note that when p1 is the inverse of p2, then p2 is the inverse
of p1, so the above implication holds both ways. Rows PRP-INV1, PRP-INV2 of Table 3.6 expresses these
implications.

3.7 Constraints on Properties

Several OWL constructs are introduced to allow restricting the values that a property can have. In particular,
there are constructs that restrict a property to be:
• functional (owl:FunctionalProperty)
• inverse functional (owl:InverseFunctionalProperty)
• transitive (owl:TransitiveProperty)

1Although owl:sameAs construct must be used only to denote that two URIs denote the same real world entity, it is sometimes used
to express equality at the schema level.

Page 18 of (92)

Deliverable D4.4.2 LDBC

If then

PRP-INV1
(?p1, owl:inverseOf, ?p2) (?y, ?p2, ?x)

(?x, ?p1, ?y)

PRP-INV2
(?p1, owl:inverseOf, ?p2) (?y, ?p1, ?x)

(?x, ?p2, ?y)

Table 3.6: Inverse Constraints

• symmetric (owl:SymmetricProperty)
• asymmetric (owl:AsymmetricProperty) and finally
• irreflexive (owl:IrreflexiveProperty)

The intuitive semantics of such constraints are given below. The formal semantics can be found at Table 3.7.

If then

PRP-FP

(?p, rdf:type, owl:FunctionalProperty)
(?y1, owl:sameAs, ?y2)(?x, ?p, ?y1)

(?x, ?p, ?y2)

PRP-IFP

(?p, rdf:type, owl:InverseFunctionalProperty)
(?x1, owl:sameAs, ?x2)(?x1, ?p, ?y)

(?x2, ?p, ?y)

PRP-TRP

(?p, rdf:type, owl:TransitiveProperty)
(?x, ?p, ?z)(?x, ?p, ?y)

(?y, ?p, ?z)

PRP-SYM
(?p, rdf:type, owl:SymmetricProperty)

(?y, ?p, ?x)
(?x, ?p, ?y)

PRP-ASYP

(?P , rdf:type, owl:AsymmetricProperty)
FALSE(?x, ?p, ?y)

(?y, ?p, ?x)

PRP-IRP
(?P , rdf:type, owl:IrreflexiveProperty)

FALSE
(?x, ?P , ?x)

Table 3.7: Constraints of Properties

Inverse functional and functional properties are useful to denote values that uniquely identify an entity.
Note that, due to the fact that the semantics of OWL2 do not include the Unique Name Assumption (UNA),
functional and inverse functional properties should not be viewed as integrity constraints, because they cannot
directly (by themselves) lead to contradictions. Instead, they force us to assume (infer) that certain individuals
are the same, as indicated by rules PRP-FP and PRP-IFP. If a property p is defined as transitive, then the
existence of triples (x, p, y) and (y, p, z) should imply (x, p, z) (see also rule PRP-TRP). Transitive properties
appear quite often in user-defined properties (e.g., partOf), but also in built-in properties (e.g., subsumption).

If a property p is defined as asymmetric, then whenever x is connected to y via p, then y cannot be connected
to x via p. More formally, if p is asymmetric, then the existence of (x, p, y) and (y, p, x) violates the correctness
of the database (rule PRP-ASYP). If a property p is symmetric then, an instance x is connected to itself through
p (rule PRP-SYM). Finally, if a property p is defined as irreflexive then, no individual can be connected to itself
via p, i.e., a triple (x, p, x) cannot exist in the dataset (cf. rule PRP-IRP).

Page 19 of (92)

LDBC Deliverable D4.4.2

3.8 Keys of Classes

The owl:hasKey construct is used to specify a property (or a set of properties) as being the key for a given
class (in the sense of primary keys, as defined in relational tables). Thus, the values of said properties uniquely
identify a resource that is an instance of the class. For example, if property p is the key for class c, then the
triples (x, rdf:type, c), (y, rdf:type, c), (x, p, z) and (y, p, z) imply (x, owl:sameAs, y). A more general
form of this statement is shown by rule PRP-KEY of Table 3.8.

If then

PRP-KEY

(?c, owl:hasKey, ?u)

(?x, owl:sameAs, ?y)

LIST[?u, ?P1, . . ., ?P2]
(?x, rdf:type, ?c)
(?x, ?p1, ?z1)
. . .
(?x, ?pn, ?zn)
(?y, rdf:type, ?c)
(?y, ?p1, ?z1)
. . .
(?y, ?pn, ?zn)

Table 3.8: Keys

3.9 Property Chains

The construct owl:propertyChainAxiom allows one to define properties as a composition of others. As an
example, the property grandparent can be defined as the composition of parent with itself. More formally,
when a property p is defined as the composition of properties p1 and p2, then the triples (x, p1, y), (y, p2, z)
imply (x, p, z) (rule PRP-SPO2, Table 3.9).

If then

PRP-SPO2

(?p, owl:propertyChainAxiom, ?x)

(?u1, ?p, ?un+1)

LIST[?x, ?p1, . . ., pn]
(?u1, ?p1, ?u2)
(?u2, ?p2, ?u3)
. . .
(?un, ?pn, ?un+1)

Table 3.9: Property Chains

3.10 Disjoint Classes and Properties

Defining two classes c1, c2 as disjoint implies that they cannot share common instances. Disjointness is denoted
using the owl:disjointWith construct. Disjointness between classes is generalized to multiple ones using the
owl:AllDisjointClasses construct. The semantics of said constructs implemented by rules CAX-DW, CAX-
ADC are shown in Table 3.10. Similar constructs owl:propertyDisjointWith, owl:AllDisjointProperties
exist for specifying disjoint properties, i.e., properties that cannot share common instances. Rules PRP-ADP,
PRP-PDW of Table 3.10 show some consequences of the semantics of the above constructs.

Page 20 of (92)

Deliverable D4.4.2 LDBC

If Then

CAX-DW

(?c1, owl:disjointWith, ?c2)
FALSE(?x, rdf:type, ?c1)

(?x, rdf:type, ?c2)

CAX-ADC

(?x, rdf:type, owl:AllDisjointClasses)

FALSE

(?x, owl:members, ?y)
LIST[?y, ?c1, . . ., ?cn]
(?z, rdf:type, ?ci)
(?z, rdf:type, ?cj)

PRP-ADP

(?x, rdf:type, owl:AllDisjointProperties)

FALSE

(?x, owl:members, ?y)
LIST[?y, ?P1, ?P2, . . . ?Pn]
(?u, ?P1, ?z)
(?u, ?P2, ?z)

PRP-PDW

(?P1, owl:propertyDisjointWith, ?P2)
FALSE(?x, ?P1, ?y)

(?x, ?P2, ?y)

Table 3.10: Disjoint Classes and Properties

3.11 Cardinalities

Cardinality constraints appear quite often in practice, and are used to allow a specific maximum or minimum
number of values for any given property. Constraints owl:maxCardinality and owl:minCardinality link a
restriction class to a data value belonging to the value space of the XML Schema datatype xsd:nonNegativeInteger.

The most common type of cardinality constraints are for values 0 and 1, which are simpler to handle;
such cardinality constraints correspond to functional or required properties. Note that OWL 2 RL only supports
cardinality constraints of this type (i.e., with values 0 or 1), so our analysis in this deliverable will focus on
these types of cardinality constraints as well. Table 3.11 shows restrictions implied by owl:maxCardinality.

If Then

CLS-MAXC1

(?x,owl:maxCardinality "0"xsd:nonNegativeInteger)

FALSE

(?x, owl:onProperty, ?p)
(?u, rdf:type, ?x)
(?u, ?p, ?y)

CLS-MAXC2

(?x,owl:maxCardinality "1"xsd:nonNegativeInteger)

FALSE

(?x, owl:onProperty, ?p)
(?u, rdf:type, ?x)
(?u, ?p, ?y1)
(?u, ?p, ?y2)

Table 3.11: Cardinalities

Page 21 of (92)

LDBC Deliverable D4.4.2

4 REASONING BENCHMARK: CONFORMANCE TESTS

In this Chapter we discuss the conformance tests that determine whether a certain RDFS or OWL construct is
supported by an RDF engine as specified by the semantics associated with the said construct [52, 45]. This is of
crucial importance, because a limited number of reasoning constructs is supported by RDF query engines, and
are not yet supported “by default” in all existing systems. A test is proposed per rule following the semantics
specified in [45]. For each test we provide (a) the set of triples that should at least exist in the dataset (precon-
ditions)) (b) the ASK SPARQL query that implements the construct’s semantics and (c) the answer expected
from the RDF engine. Recall, that a SPARQL ASK query checks whether a specific pattern is implied by an
RDF graph.

4.1 Class and Property Subsumption

In this Section we propose the tests that can be used to check whether the semantics of subclass (rdfs:subClassOf)
and subproperty (rdfs:subPropertyOf) constructs are supported by an RDF engine. Sections 4.1.1 and 4.1.2
are aimed at testing the ability of the RDF engine to compute correctly the instances of classes (rdf:type) and
properties along the subclass (rdfs:subClassOf) and subproperty hierarchies (rdfs:subPropertyOf) re-
spectively. Sections 4.1.3 and 4.1.4 describe tests used to check the ability of the systems to compute correctly
the transitivity of subclass and subproperty relations.

4.1.1 Class Subsumption (CAX-SCO)
Preconditions

<C1> rdfs:subClassOf <C2> .
<x> rdf:type <C1> .

SPARQL Query

ASK { <x> rdf:type <C2> }

Expected behavior: The expected result is true, since according to the semantics of the CAX-SCO rule, all
instances of class C are also instances of its super-classes (classes C1 and C2 in our example).

4.1.2 Property Subsumption (PRP-SPO1)
Preconditions

<P1> rdfs:subPropertyOf <P2> .
<P2> rdfs:subPropertyOf <P3> .
<x> <P1> <y> .

SPARQL Query

ASK { <x> <P1> <y> .
FILTER NOT EXISTS { <x> <P3> <y> } }

Expected behavior: The expected result is false, since according to the semantics of the PRP-SPO1 rule, all
instances of property P are also instances of its super-properties (properties P1 and P3 in our test case).

Page 22 of (92)

Deliverable D4.4.2 LDBC

4.1.3 Class Subsumption (SCM-SCO)
Preconditions

<C1> rdfs:subClassOf <C2> .
<C2> rdfs:subClassOf <C3> .

SPARQL Query

ASK { <C1> rdfs:subClassOf <C3> }

Expected behavior: The expected result is true, as classes C1 and C3 are related with C2 through the transitive
relation rdfs:subClassOf.

4.1.4 Property Subsumption (SCM-SPO)
Preconditions

<P1> rdfs:subPropertyOf <P2> .
<P2> rdfs:subPropertyOf <P3> .

SPARQL Query

ASK { <P1> rdfs:subPropertyOf <P3> }

Expected behavior: The expected result is true, given that properties P1 and P3 are related with P2 through
the transitive relation rdfs:subPropertyOf.

4.2 Property Domain and Range

In this Section we discuss the tests that can be used to check whether the semantics of domain (rdfs:domain)
and range (rdfs:range) constructs are correctly implemented. Similar to the class and property subsump-
tion tests discussed in Section 4.1, the tests are ASK queries that return true if the semantics are correctly
implemented, false otherwise.

4.2.1 Property Range (SCM-RNG1)
Preconditions

<P> rdfs:range <C1> .
<C1> rdfs:subClassOf <C2> .
<C2> rdfs:subClassOf <C3> .

SPARQL Query

ASK { <P> rdfs:range <C2> .
FILTER NOT EXISTS { <P> rdfs:range <C3> } }

Expected behavior: According to the semantics of rdfs:range as specified in rule SCM-RNG1, if a property
has range a class C then the property has a range C’s superclasses. Hence, the expected result is false, since
class C3 is a superclass of C1 (through transitivity), the latter being the range of property P.

Page 23 of (92)

LDBC Deliverable D4.4.2

4.2.2 Property Range (SCM-RNG2)
Preconditions

<P2> rdfs:range <C> .
<P1> rdfs:subPropertyOf <P2> .

SPARQL Query

ASK { <P1> rdfs:range <C> }

Expected behavior: According to the semantics of rdfs:range as specified in rule SCM-RNG2, if a property
P has range a class C then its subproperties have the same range. Consequently, the expected result in this test
is true, as the property P1 is a subproperty of P2, and P2’s range is class C.

4.2.3 Property Domain (SCM-DOM1)
Preconditions

<P> rdfs:domain <C1> .
<C1> rdfs:subClassOf <C2> .

SPARQL Query

ASK { <P> rdfs:domain <C2> }

Expected behavior: According to the semantics of rdfs:domain as specified in rule SCM-DOM1, if a prop-
erty has domain a class C then the property has domain C’s superclasses. Hence, in this test the expected result
is true, since class C2 is a superclass of C1, the latter being the domain of property P.

4.2.4 Property Domain (SCM-DOM2)
Preconditions

<P2> rdfs:domain <C> .
<P1> rdfs:subPropertyOf <P2> .

SPARQL Query

ASK { <P1> rdfs:domain <C> }

Expected behavior: According to the semantics of rdfs:domain as given in rule SCM-DOM2, if a property
P has domain a class C then its subproperties have the same domain. Consequently, the expected result in this
test is true, as the property P1 is a subproperty of P2, and P2’s range is class C.

4.2.5 Property Domain (PRP-DOM)
Preconditions

<x> <P> <y> .
<P> rdfs:domain <C> .

Page 24 of (92)

Deliverable D4.4.2 LDBC

SPARQL Query

ASK { <x> rdf:type <C> }

Expected behavior: Rule PRP-DOM states that if a triple (x, P, y) exists in the dataset, and property P has
as domain class C, then x must be an instance of C. The test proposed here must return true since property P
has domain class C.

4.2.6 Property Range (PRP-RNG)
Preconditions

<x> <P> <y> .
<P> rdfs:range <C> .

SPARQL Query

ASK { <y> rdf:type <C> }

Expected behavior: Rule PRP-RNG states that if a triple (x, P, y) exists in the dataset, and property P has as
range class C, then y must be an instance of C. The test proposed here must return true since property P has
range class C according to the stated preconditions.

4.3 Union and Intersection of Classes

In this Section we discuss tests that can be used to check whether complex class definitions through union and
intersection are correctly implemented by RDF engines. The tests discussed here are also expressed in the form
of ASK queries.

4.3.1 Union of Classes (SCM-UNI)
Preconditions

<C> owl:unionOf (<C1> <C2> <C3>) .

SPARQL Query

ASK { <C1> rdfs:subClassOf <C> .
<C3> rdfs:subclassOf <C> .
<C2> rdfs:subclassOf <C> }

Expected behavior: Rule SCM-UNI states that if a class C is defined as a union of a classes C1, C2, . . .Ck,
then the RDF engine should imply that each such class is a subclass of C. The expected result in our test case
is true since class C is defined as a union of all classes C1, C2 and C3.

4.3.2 Union of Classes (SCM-UNI, CAX-SCO)
Preconditions

<x> rdf:type <C2> .
<C> owl:unionOf (<C1> <C2> <C3>) .

Page 25 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

ASK { <x> rdf:type <C> }

Expected behavior: The combination of rules SCM-UNI and CAX-SCO states that if a class C is defined as
a union of a set of classes C1, C2, . . . , Ck, then all instances of classes C1, C2, . . . , Ck are also instances of
class C. The result of this test is true given that class C is the union of classes C1, C2 and C3 implying that C1,
C2 and C3 are all sub-classes of C. So, instances of class C2 (resource x) are also instances of C.

4.3.3 Intersection of Classes (SCM-INT)
Preconditions

<C> owl:intersectionOf (<C1> <C2> <C3>) .

SPARQL Query

SELECT ?x
WHERE { <C> rdfs:subClassOf ?x }

Expected behavior Rule SCM-INT states that if a class C is defined as an intersection of classes C1, C2, . . . ,
Ck, then the RDF engine should imply that class C is a subclass of each class. The expected result in our test
case is the following set of bindings for variable ?x:

µ1(?x) = C1, µ2(?x) = C2, µ3(?x) = C3

since class C is defined as an intersection of all classes C1, C2 and C3.

4.3.4 Intersection of Classes (SCM-INT, CAX-SCO)
Preconditions

<x> rdf:type <C> .
<C> owl:intersectionOf (<C1> <C2> <C3>) .

SPARQL Query

ASK { ?x rdf:type <C1> .
?x rdf:type <C2>
?x rdf:type <C3> }

Expected behavior The combination of rules SCM-INT and CAX-SCO states that if a class C is defined as an
intersection of a set of classes C1, C2, . . . , Ck, then any instance of class C is also an instance of C1, C2, . . . ,
Ck. The result of this test is true: given that class C is defined as the intersection of classes C1, C2 and C3 then
the former is a subclass of C1, C2 and C3. So, instances of class C (resource x) are also instances of C1, C2 and
C3.

4.4 Enumeration of Individuals

In this section we discuss tests regarding the definition of complex classes using enumeration through construct
owl:oneOf. The test has the form of an ASK query that returns true if the requested pattern is implied by the
RDF engine.

Page 26 of (92)

Deliverable D4.4.2 LDBC

4.4.1 Enumeration of Individuals (CLS-OO)
Preconditions

<C> owl:oneOf (<y1> <y2>) .

SPARQL Query

ASK { <y1> rdf:type <C> .
<y2> rdf:type <C> }

Expected behavior: According to the semantics of CLS-OO rule, if a class C is defined as an enumeration of
a set of resources x1, x2, . . . , xn, then the RDF engine should infer that each xi is an instance of class C, i.e.,
infer triple (xi, rdf:type, C). The expected result is true if the RDF engine correctly implements the OWL
semantics.

4.5 Equality

4.5.1 Equality (EQ-REF)
Preconditions

<s> <p> <o> .

SPARQL Query

ASK { <s> owl:sameAs <s> .
<p> owl:sameAs <p> .
?o owl:sameAs ?o .
<s> <p> ?o }

Expected behavior: According to the semantics of EQ-REF rule, every known term is inferred to have the
owl:sameAs relation to itself. So, the expected result is true if the RDF engine correctly implements the OWL
semantics.

4.5.2 Equality (EQ-SYM)
Preconditions

<x> owl:sameAs <y> .

SPARQL Query

ASK { <y> owl:sameAs <x> }

Expected behavior: The expected result is true, since according to the semantics of the EQ-SYM rule, the
owl:sameAs relation is a symmetric one.

4.5.3 Equality (EQ-TRANS)
Preconditions

<x> owl:sameAs <y> .
<y> owl:sameAs <z>

Page 27 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

SELECT ?z
WHERE { <x> owl:sameAs ?z }

Expected behavior: According to the semantics of EQ-TRANS rule, the owl:sameAs relation is a transitive
relation. The test proposed here must return three bindings µ1(?z) = y, µ2(?z) = z, and µ3(?z) = x since x is
related to z and x through the transitive and symmetric relation owl:sameAs.

4.5.4 Equality (EQ-REP-S)
Preconditions

<s> owl:sameAs <s1> .
<s> <p> <o> .

SPARQL Query

ASK { <s1> <p> <o> }

Expected behavior: The expected result is true, since according to the semantics of the EQ-REP-S rule, every
term can be replaced by its equivalent one through property owl:sameAs.

4.5.5 Equality (EQ-REP-P)
Preconditions

<p> owl:sameAs <p1> .
<s> <p> <o> .

SPARQL Query

ASK { <s> <p1> <o> }

Expected behavior: Similarly to Section 4.5.4, the expected result of above query is true.

4.5.6 Equality (EQ-REP-O)
Preconditions

<o> owl:sameAs <o1> .
<s> <p> <o> .

SPARQL Query

ASK { <s> <p> <o1> }

Expected behavior: Similarly to Section 4.5.4, the expected result is true.

Page 28 of (92)

Deliverable D4.4.2 LDBC

4.6 Inverse of Properties

4.6.1 Inverse of Properties (PRP-INV1)
Preconditions

<P1> owl:inverseOf <P2> .
<x> <P1> <y> .

SPARQL Query

ASK { <y> <P2> <x> }

Expected behavior: The expected result should be true, since according to the semantics of the PRP-INV1
rule, given that property P1 is stated to be the inverse of a property P2 and x is related to y through P1, then y
is related to x through P2.

4.6.2 Inverse of Properties (PRP-INV2)
Preconditions

<P1> owl:inverseOf <P2> .
<x> <P2> <y> .

SPARQL Query

ASK { <y> <P1> <x> }

Expected behavior Similarly to Section 4.6.1, the expected result should be true.

4.7 Constraints on Properties

4.7.1 Constraints on Properties (PRP-FP)
Preconditions

<P> rdf:type owl:FunctionalProperty .
<x> <P> <y1> .
<x> <P> <y2> .

SPARQL Query

ASK { <y1> owl:sameAs <y2> . }

Expected behavior: The above query should return true, since P is a functional property, so there cannot
exist two triples (x, P, y1) and (x, P, y2) without y1 and y2 being related with the owl:sameAs property.

4.7.2 Constraints on Properties (PRP-IFP)
Preconditions

<P> rdf:type owl:InverseFunctionalProperty .
<x1> <P> <y> .
<x2> <P> <y> .

Page 29 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

ASK { <x1> owl:sameAs <x2> }

Expected behavior: The expected result is true, as according to the semantics of the PRP-IFP rule, given that
there are two triples in the ontology of the form (x1, P, y) and (x2, P, y) for an inverse functional property P,
then we can infer that x1 and x2 are the same individual.

4.7.3 Constraints on Properties (PRP-ASYP)
Preconditions

<P> rdf:type owl:AsymmetricProperty .

SPARQL Query

INSERT DATA { <x> <P> <y> .
<y> <P> <x> }

Expected behavior: If the engine supports checking the constraints on properties the above query should
fail, since P is an asymmetric property, so for every pair of instances (x,y) which is an instance of property P,
the pair (y,x) cannot be an instance of P.

4.7.4 Constraints on Properties (PRP-IRP)
Preconditions

<P> rdf:type owl:IrreflexiveProperty .

SPARQL Query

INSERT DATA { <x> <P> <x> }

Expected behavior: The above query should fail, as the property P is defined as an irreflexive property, so
no pair (x,x) can be defined as an instance of this property.

4.7.5 Constraints on Properties (PRP-TRP)
Preconditions

<P> rdf:type owl:TransitiveProperty .
<x> <P> <y> .
<y> <P> <z> .

SPARQL Query

ASK { <x> <P> <z> }

Expected behavior: The expected result is true, as the property P is a transitive property and there is a path
from x to z through P.

Page 30 of (92)

Deliverable D4.4.2 LDBC

4.8 Class Keys

4.8.1 Class Keys (PRP-KEY)
Preconditions

<C> owl:hasKey (<P1> <P2>) .
<x> rdf:type <C> .
<x> <P1> <z1> .
<x> <P2> <z2> .
<y> rdf:type <C> .
<y> <P1> <z1> .
<y> <P2> <z2> .

SPARQL Query

ASK { <x> owl:sameAs <y> }

Expected behavior: The expected result is true, since according to the key constraints of PRP-KEY rule the
two instances x and y are connected using an owl:sameAs link.

4.9 Property Chains

4.9.1 Property Chains (PRP-SPO2)
Preconditions

<P> owl:propertyChainAxiom (<P1> <P2>) .
<x> <P1> <y> .
<y> <P2> <z> .

SPARQL Query

ASK { <x> <P> <z> }

Expected behavior: The expected result is true, as according to the semantics of PRP-SPO2 rule, since prop-
erty P is defined as the composition of properties P1 and P2, then the triples (x, P1, y), (y, P2, z) imply (x, P, z).

4.10 Disjoint Classes and Properties

4.10.1 Disjoint Classes and Properties (PRP-PDW)
Preconditions

<P1> owl:propertyDisjointWith <P2> .

SPARQL Query

INSERT DATA { <x> <P1> <y> .
<x> <P2> <y> . }

Page 31 of (92)

LDBC Deliverable D4.4.2

Expected behavior: According to the semantics of PRP-PDW rule two disjoint properties cannot share com-
mon instances. So, if the engine supports checking the disjointness on properties the above query should fail.

4.10.2 Disjoint Classes and Properties (PRP-ADP)
Preconditions

_:bn1 rdf:type owl:AllDisjointProperties .
_:bn1 owl:members (<P1> <P2> <P3>) .

SPARQL Query

INSERT DATA { <x> <P1> <y> .
<x> <P2> <y> .
<x> <P3> <y> . }

Expected behavior: The above query should fail, since according to the semantics of PRP-ADP rule all dis-
joint properties cannot share common instances.

4.10.3 Disjoint Classes and Properties (CAX-DW)
Preconditions

<C1> owl:disjointWith <C2> .

SPARQL Query

INSERT DATA { <x> rdf:type <C1> .
<x> rdf:type <C2> }

Expected behavior: The above query should fail, as according to the semantics of CAX-DW an individual
cannot be an instance of two disjoint classes.

4.10.4 Disjoint Classes and Properties (CAX-ADC)
Preconditions

_:bn1 rdf:type owl:AllDisjointClasses .
_:bn1 owl:members (<C1> <C2> <C3>) .

SPARQL Query

INSERT DATA { <x> rdf:type <C1> .
<x> rdf:type <C2> .
<x> rdf:type <C3> }

Expected behavior: According to the semantics of CAX-ADC rule all disjoint classes cannot share common
instances. So the above query should fail.

Page 32 of (92)

Deliverable D4.4.2 LDBC

4.11 Cardinalities

4.11.1 Cardinalities (CLS-MAXC1)

Preconditions

<C> rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty <P> ;
owl:maxCardinality "0"^^xsd:NonNegativeInteger

] .

SPARQL Query

INSERT DATA { <x> rdf:type <C> .
<x> <P> <y> }

Expected behavior:

If the engine performs consistency checking the above query should fail, as the property P is defined in such a
way that cannot have any instances (triple (x, p, y)).

4.11.2 Cardinalities (CLS-MAXC2)

Preconditions

<C> rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty <P> ;
owl:maxCardinality "1"^^xsd:NonNegativeInteger

] .

SPARQL Query

INSERT DATA { <x> rdf:type <C> .
<x> <P> <y1> .
<x> <P> <y2> }

Expected behavior

If the engine performs consistency checking the above query would either be rejected, or the knowledge that
y1 and y2 are the same should be obtained (triple (y1, owl:sameAs, y2)).

Page 33 of (92)

LDBC Deliverable D4.4.2

5 REASONING: STATIC TESTS

In this Chapter we discuss a set of static tests that determine whether an underlying engine takes into account the
schema information in order to answer more efficiently queries that refer to constraints defined in the schema.
Such tests can also be defined in a similar manner for other constructs such as owl:AllDisjointClasses,
owl:AllDisjointProperties, owl:allValuesFrom etc.

5.1 Equality of Classes (owl:equivalentClass)

Preconditions

<A> owl:equivalentClass .

SPARQL Query

SELECT ?y
WHERE { ?y rdf:type <A> .

?y <P> ?y1 .
?y <P1> ?y2 .
?y <P2> ?y3 .
?y <P3> ?y4 .
?y <P4> ?y5 .
FILTER NOT EXISTS { ?y rdf:type } }

Expected behavior: This query requests instances of class A that are not instances of class B. Nevertheless,
according to the semantics of owl:equivalentClass any instance of class A is also an instance of class B (and
vice versa). Hence, a query engine should consider this information and return an empty answer in constant
time instead of evaluating a complex query.

5.2 Disjointness of Classes (owl:disjointWith)

Preconditions

<A> owl:disjointWith .

SPARQL Query

SELECT ?y1 ?y2 ?y3 ?y4 ?y5
WHERE { ?x rdf:type <A> .

?x rdf:type .
?x <P> ?y1 .
?x <P1> ?y2 .
?x <P2> ?y3 .
?x <P3> ?y4 .
?x <P4> ?y5 }

Expected behavior: This test is similar to the one discussed in Section 5.1 for class equivalence. According
to the semantics of owl:disjointWith, classes A and B cannot have common instances. Consequently, an
optimizer that takes into account schema information, should return in constant time no answers instead of
evaluating a complex query.

Page 34 of (92)

Deliverable D4.4.2 LDBC

5.3 Equality of Properties (owl:equivalentProperty, owl:FunctionalProperty)

Preconditions

<P1> owl:equivalentProperty <P2> .
<P2> rdf:type owl:FunctionalProperty .

SPARQL Query

SELECT ?y
WHERE { ?y rdf:type <A> .

?y <P> ?y1 .
?y <P1> ?y2 .
?y <P2> ?y3 .
?y <P3> ?y4 .
?y <P4> ?y5 .
?y2 owl:differentFrom ?y3

}

Expected behavior: Given that properties P1 and P2 are equivalent, then for every triple (x, P1, y) there
should exist a triple (x, P2, y). Since P2 is a functional property and the values bound to variables ?y2 and
?y3 are stated as different (i.e., triple pattern (?y2, owl:differentFrom, ?y3)) then the query should return no
answers in constant time.

5.4 Range of Properties (rdfs:range, owl:disjointWith)

Preconditions

<P> rdfs:range .
<A> owl:disjointWith .

SPARQL Query

SELECT ?v
WHERE { ?v rdf:type <A> .

?u <P> ?v .
?u <P> ?v1 .
?u <P1> ?v2 .
?u <P2> ?v3 .
?u <P3> ?v4 .
?u <P4> ?v5 }

Expected behavior: The query above asks for all instances (variable ?v) of class A that are also values of
property P whose range is class B. Note that we require that instances to which ?v is bound, to be also object
values for triple pattern (?u, P, ?v), hence instances of class B. An optimizer that takes into account schema
information should return an empty result in constant time instead of devising or even evaluating the large star
join.

5.5 Domain of Properties (rdfs:domain, owl:disjointWith)

<P> rdfs:domain <A> .
<A> owl:disjointWith .

Page 35 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

SELECT ?v
WHERE { ?u <P> ?v .

?u <P> ?v1 .
?u <P1> ?v2 .
?u <P2> ?v3 .
?u <P3> ?v4 .
?u <P4> ?v5 .
?u rdf:type }

Expected behavior: This test is similar to the one given in Section 5.4 where we use the rdfs:domain
instead of the rdfs:range property.

5.6 Uniqueness of Property Values (owl:FunctionalProperty)

Preconditions

<P> rdf:type owl:FunctionalProperty .

SPARQL Query

SELECT ?s
WHERE { ?s <P1> ?o1 .

?s <P2> ?o2 .
?s <P3> ?o3 .
?s <P4> ?o4 .
?s <P> ?o5 .
?s <P> ?o6.
?o5 owl:differentFrom ?o6 }

Expected behavior: The knowledge that one property is functional must be used from the query engine in
order to answer some queries in constant time. Considering the above complex query and taking into account
the schema information, (property P is functional) no answers should be returned at constant time, instead of
evaluating the large star query.

Page 36 of (92)

Deliverable D4.4.2 LDBC

6 REASONING: SELECTIVITY TESTS

In this Chapter we discuss the selectivity tests that determine whether an underlying engine takes advantage of
OWL constructs, in its effort to find the optimal join ordering in a query plan. For each class of tests, we give
(a) a set of triples that must exist in the dataset in order to be able to test if the semantics of the considered
constructs are correctly implemented (b) and a set of SPARQL SELECT queries.

6.1 Cardinality

In this Section we discuss the use of cardinality constraints in queries that can be used in a benchmark to test
if the query optimizer considers this specific schema information when selecting the order in which to perform
the joins in a query plan. The query we propose here uses the following set of constructs:
• owl:FunctionalProperty
• owl:maxCardinality
• owl:minCardinality
• owl:cardinality

Preconditions

<P3> rdf:type owl:FunctionalProperty .
<A> rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty <P4> ;
owl:maxCardinality "2"^^xsd:NonNegativeInteger

] ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty <P5> ;
owl:minCardinality "3"^^xsd:NonNegativeInteger
owl:maxCardinality "5"^^xsd:NonNegativeInteger

] ;
rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:onProperty <P2> ;
owl:cardinality "7"^^xsd:NonNegativeInteger

] .

SPARQL Query

SELECT ?y7
WHERE { ?x rdf:type <A> .

?x <P1> ?y1 .
?x <P2> ?y2 .
?x <P3> ?y3 .
?x <P4> ?y4 .
?x <P5> ?y5 .
?x <P6> ?y6 .
?x <P7> ?y7 }

Expected behavior: As shown in the above query, functional properties (owl:FunctionalProperty con-
struct) or restricted through cardinality constraints may appear in a large star query. In this case, the optimizer
should recognize this schema information and apply the appropriate optimizations. This information could

Page 37 of (92)

LDBC Deliverable D4.4.2

take precedence over available statistics or other heuristics that operate on the query form (i.e., number of triple
patterns, type of predicates used in the triple patterns).

More specifically, since property P3 is a functional property, it is most selective, so the triple pattern that
involves P3 should be considered first in the query plan (in order to reduce drastically the size of intermediate
results). In addition, since properties P2, P4 and P5 are restricted through cardinality constraints, their respec-
tive triple patterns should be evaluated in the correct order, meaning first the triple pattern that involves P4, then
P5 and last P2.

6.2 Intersection of Classes (owl:intersectionOf)

OWL construct owl:intersectionOf is used to define a class by applying set theoretic intersection on the
instances of user defined classes. Hence, if there is a triple pattern in a join query that requests instances of this
complex class, in conjunction with triple patterns that request instances of (possibly both) intersected class(es),
this should be considered first in the join plan, since this triple pattern will be more selective than the remaining
ones.

Preconditions

<C> owl:intersectionOf (<C1> <C2>) .

SPARQL Query

SELECT ?x
WHERE { ?x rdf:type <C> .

?x <P1> ?y .
?y rdf:type <C1> .
?y <P2> ?z .
?z rdf:type <C2> }

Expected behavior: The triple pattern (?x, rdf:type, C) has a higher selectivity than the triple patterns in-
volving variables ?y and ?z, as class C is the intersection of classes C1 and C2. Properties P1 and P2 have
low selectivity (in the sense that they are common to many instances of the dataset). Hence, the query plan
should be adapted accordingly. This should be understandable immediately by the optimizer, instead of having
to resort to cost estimations.

6.3 Union of Classes (owl:unionOf)

OWL construct owl:unionOf is used to define complex classes by unioning the instances of user defined
classes. The query that can be used to stress the optimizer is similar to the one that is specified for class
intersection. Here, triple patterns that request for istances of the class defined by union are less selective than
others hence, they should be the last considered in a query plan.

Preconditions

<C> owl:unionOf (<C1> <C2>) .

Page 38 of (92)

Deliverable D4.4.2 LDBC

SPARQL Query

SELECT ?x
WHERE { ?x rdf:type <C> .

?x <P1> ?y .
?y rdf:type <C1> .
?y <P2> ?z .
?z rdf:type <C2> }

Expected behavior: The triple patterns involving ?y and ?z have a higher selectivity than the one involving
variable ?x, as the class ?C is the union of classes C1 and C2; if properties P1 and P2 are less selective that
rdf:type property, then the optimizer should build a query plan where these triple patterns are executed first.

6.4 Hierarchy of Classes (rdfs:subClassOf)

Preconditions

<A> rdfs:subClassOf .

SPARQL Query

SELECT ?y1 ?y2 ?y3
WHERE { ?x rdf:type <A> .

?x rdf:type .
?x <P> ?y1 .
?x <P1> ?y2 .
?x <P2> ?y3 }

Expected behavior The triple pattern involving class A has higher selectivity than the one involving class B, as
A is a subclass of B and according to the semantics of the rdfs:subClassOf RDFS construct, the latter has less
instances than B. Hence, if the optimizer considers this schema information should construct a plan that evalu-
ates first the triple pattern (?x, rdf:type, A) and does not evaluate (eliminates) triple pattern (?x, rdf:type, B).
The planner could consider this information instead of resorting simply to the use of statistics.

6.5 Hierarchy of Properties (rdfs:subPropertyOf)

Preconditions

<P1> rdfs:subPropertyOf <P2> .

SPARQL Query

SELECT ?y ?z
WHERE { ?x <P1> ?y .

?x <P2> ?z }

Expected behavior This test is similar to the rdfs:subClassOf test discussed in Section 6.4. Triple pattern
(?x, P2, ?z) is less selective than (?x, P1, ?y) given the fact that P1 is a subproperty of P2. Hence, the query
plan should be such that the former triple pattern should be evaluated before the latter.

Page 39 of (92)

LDBC Deliverable D4.4.2

7 REASONING: ADVANCED REASONING TESTS

In this Chapter we discuss tests that determine how an underlying engine could take advantage of schema
information in order to make better choices on building the query plans. Each query addresses a certain class of
challenges in situations in which the schema is present; note that constructing appropriate datasets that exhibit
the necessary characteristics in order to prove the intended effect of the use of the constructs is a difficult and
open problem.

7.1 Optimized Inference (rdfs:subClassOf, owl:allValuesFrom)

In this Section we consider a combination of rdfs:subClassOf and owl:allValuesFrom constructs and
formulate a query that would test the optimizer’s ability to use the appropriate schema information in order to
find an interesting or non-trivial plan.

Preconditions

 rdfs:subClassOf <B1> .
<B1> rdfs:subClassOf <B2> .
<B2> rdfs:subClassOf <B3> .
<B3> rdfs:subClassOf <B4> .
<B4> rdfs:subClassOf <B5> .
<A> rdfs:subClassOf [

rdf:type owl:Restriction ;
owl:allValuesFrom <B5> ;
owl:onProperty <P>

] .

SPARQL Query

SELECT ?v
WHERE { ?u P ?v .

?u rdf:type <A> .
?v rdf:type <B5> .
?v rdf:type }

Expected behavior: The above query requests the instances of class B, bound to variable ?v. Note from
the set of triples that exist in the dataset, that there are two ways to infer in a backward reasoner the in-
stances of class B: one through the owl:allValuesFrom constraint and another through the transitivity of
rdfs:subClassOf. The triples that we consider in this test case, define a class hierarchy with its root being
class B5. We also define class A to be the set of instances, where all its instances, take all their values for
property P from class B5.

As B5 is sufficiently high in the hierarchy and B is sufficiently low, then it may be expensive to compute that
B is a subclass of B5, and therefore the optimizer should decide to compute the inference via owl:allValuesFrom.

The opposite may be true if B and B5 were sufficiently “close” in the hierarchy, especially given the fact
that subsumption-related inference is probably the most optimized type (due to its widespread use).

Note here, that this test is only relevant for backward reasoning systems, where the triple (?v, rdf:type, B5)
does not exist in the dataset.

Page 40 of (92)

Deliverable D4.4.2 LDBC

7.2 Redundant Triple Pattern Elimination (owl:intersectionOf)

In this Section we discuss an example of a query where the optimizer can take advantage the owl:intersectionOf
OWL construct in order to eliminate unecessary triple patterns from the query. This optimization is rather useful
since the optimizer will not perform uneccessary joins in order to evaluate a join query.

Preconditions

<C> owl:intersectionOf (<C1> <C2> <C3> <C4>).

SPARQL Query

SELECT ?x
WHERE { ?x rdf:type <C> .

?x rdf:type <C1> .
?x rdf:type <C2> .
?x rdf:type <C3> .
?x rdf:type <C4> }

Expected behavior: The query given above is a star join query that involves four triple patterns. The query
actually asks for all instances of class C. A forward reasoner, that is one that materializes beforehand the closure
of the dataset, should eliminate all triple patterns except (?x, rdf:type, C) in order to answer the query.

7.3 Search Space Pruning (rdfs:subClassOf)

Preconditions

<A1> rdfs:subClassOf <A> .
<A2> rdfs:subClassOf <A1> .
<A3> rdfs:subClassOf <A2> .
<A4> rdfs:subClassOf <A> .

Page 41 of (92)

LDBC Deliverable D4.4.2

<A5> rdfs:subClassOf <A4> .
<A6> rdfs:subClassOf <A5> .

SPARQL Query

SELECT ?c
WHERE { ?x rdf:type ?c .

?x <P> ?y .
FILTER NOT EXISTS { ?x rdf:type <A> } }

Expected behavior: The dataset considered contains a hierarchy of length 4, where A is the root of the class
hierarchy. The query requests for all classes in the dataset that have some instance that is not an instance of
class A. This test is mostly relevant for backward reasoning systems where the triples that potentially do not
belong to the result set have to be computed at query time. An optimizer for every non-solution class should
prune its subtree from the search space. So, as A is not a solution, the subtree of the class hierarchy rooted in
A should be pruned. Queries over ontologies with many classes and deep hierarchies can gain the maximum
advantage from this optimization.

7.4 Star Query Transformation owl:SymmetricProperty

Preconditions

<P5> rdf:type owl:SymmetricProperty .

SPARQL Query

SELECT ?y ?y1 ?y2 ?y3 ?y4
WHERE { ?x <P1> ?y .

?x <P2> ?y1 .
?x <P3> ?y2 .
?x <P4> ?y3 .
?y4 <P5> ?x }

Page 42 of (92)

Deliverable D4.4.2 LDBC

Expected behavior: A smart optimizer should take advantage of schema information that property P5 is
a symmetric one when constructing the query plan. Hence triple pattern (?x, P5, ?y4) should be considered
instead of (?y4, P5, ?x). As a result, a star-query should be executed along with the optimizations of such a
query.

This test is mostly relevant for systems that perform materialization (forward reasoning). Backward rea-
soning systems should also report some difference, but it depends on the reasoner’s performance.

7.5 Intermediate Results Reduction: owl:sameAs

Preconditions

<x1> owl:sameAs <x2> .
<x1> owl:sameAs <x3> .
<x3> owl:sameAs <x4> .
<x2> owl:sameAs <x5> .

SPARQL Query

SELECT ?y
WHERE { ?x <P> ?y .

?x rdf:type <C> .
?y rdf:type ?y2 .
?y2 rdfs:subClassOf ?y3 .
?y3 rdfs:subClassOf ?y4 .
?y4 rdfs:subClassOf }

Expected behavior: Suppose that x1, x2, x3, x4 and x5 are all related with the property P and their values
(variable ?y), among with few others, are all in the result set of the above query.

A smart optimizer should take the advantage of owl:sameAs properties for individuals x1,. . .,x5. So, in the
execution of the query, only one of the aforementioned instances should be considered.

This test, is mostly relevant for systems that perform materialization (forward reasoning). Backward rea-
soning systems should also report some difference, but it depends on the reasoner’s performance.

7.6 Cardinalities Estimation: owl:TransitiveProperty

Preconditions

<P> rdf:type owl:TransitiveProperty .

SPARQL Query

SELECT ?y ?y1 ?y2 ?y3
WHERE { ?x rdf:type <C> .

?x <P> ?y .
?x <P1> ?y1 .
?x <P2> ?y2 .
?x <P3> ?y3 }

Page 43 of (92)

LDBC Deliverable D4.4.2

Expected behavior The query proposed here considers a transitive property P. Suppose that P is more se-
lective than the properties P1, P2, and P3. If a backward reasoner, that makes use of statistics to produce a
query plan, does not consider the information that P is a transitive property, then it might produce a query plan
where the triple pattern containing property P is evaluated first. Given the fact that P is transitive, the result of
backward reasoning will be a large number of triples that would make P eventually less selective than the other
ones (since the property’s selectivity would be cancelled out). Hence, it would be best (especially in graphs
with large connected paths) to push the evaluation at the top of the query plan.

Page 44 of (92)

Deliverable D4.4.2 LDBC

8 BENCHMARKS FOR REASONING WITH BUSINESS RULES

In this chapter we discuss that standard powerful OWL [23] constructs such as class and individual cannot
model conjunctive properties [51] or other more complex business rules that are necessary in a number of
application domains. These can be expressed with custom rules or vendor-specific extensions. Some times the
same functionality can be captured with SPARQL queries, but most often this leads to very complex queries
that have bad performance. Authors in [55] show conditions under which conjunctive properties can be added
without increase in complexity. In particular, OWL2RL can be extended with role conjunctions without any
restrictions or increase in complexity, and [35] proposes extending OWL with such capabilities in OWL3. But
at present, such property constructs are not available in OWL.

The rest of the chapter is structured as follows: Section 8.1 provides a motivating example from the Cultural
Heritage Domain; we discuss and compare several rule languages in Section 8.2. Last Section 8.3 presents
several scenarios and the rules and queries that implement those.

8.1 Motivating Example: Complex Reasoning with a Cultural Heritage ontology

In this section we discuss an example from the cultural heritage (CH) domain that shows the use of rules that
go beyond OWL. CIDOC CRM (ISO 21127:2006) [1] is an ontology for describing entities, properties and
relationships appearing in CH documentation, art, history and archaeology. CIDOC CRM promotes shared
understanding by providing an extensible semantic framework that any CH information can be mapped to.

CIDOC CRM finds increasing use in the CH domain, including applications to archaeology (CRM-EH),
museum information (British Museum Ontology1), bibliographic data (FRBRoo), periodical publications (PRES-
Soo2), tracking the derivation of ancient sayings and wisdoms (SAWS), etc. Mappings to CIDOC CRM3 have
been developed for many metadata standards in these domains, including LIDO4 for museums, EAD5 for
archives, Europeana’s EDM6 for aggregation among others.

CIDOC CRM has been used in CLAROS7 which is an interdisciplinary research federation involving 401k
objects (19M triples), the British Museum collection8 that contains 2M objects (916M RDF triples), the Polish
Digital Library9 a national aggregation of museum and library objects using FRBRoo, and CRM that contains
3.1M objects (535M RDF triples). More information regarding the data statistics can be found in [7].

8.1.1 Fundamental Relations

An important question in the CH domain, is how a user can search through the complex node and edge labeled
data graphs of CIDOC CRM, since the number of possible combinations is staggering. Authors in [74] describe
an approach that "compresses" the semantic network by mapping many CIDOC CRM entity classes to a few
Fundamental Concepts (FC), and mapping whole networks of CRM properties to fewer Fundamental Relations
(FR); these fundamental concepts and relations can serve as a "search index" over the CIDOC CRM graphs and
allow the user to use simpler queries to retrieve information from these graphs.

Table 8.1 shows a subset of the FRs (out of total 114 FRs defined over all combinations of FCs); the
interested reader can find more information regarding fundamental concepts and relations in [75]. Example 1
discusses the Fundamental Relation “Thing from Place”.

1http://semanticweb.com/tag/british-museum
2http://www.issn.org/the-centre-and-the-network/our-partners-and-projects/pressoo/
3http://cidoc-crm.org/crm_mappings.html
4http://network.icom.museum/cidoc/working-groups/data-harvesting-and-interchange/

what-is-lido/
5http://www.loc.gov/ead/
6http://pro.europeana.eu/edm-documentation
7http://www.clarosnet.org/
8http://collection.britishmuseum.org
9http://dl.psnc.pl

Page 45 of (92)

LDBC Deliverable D4.4.2

Domain Range (query parameter)
Thing Actor Place Event Time

Thing

2.is part of 4.has met 4.from 4.from 4.from
3.is similar or 5.from 8.refers to 8.refers to
the same with 8.refers to 9.is referred
4.has met 9.is referred by to at
5.from
6.is origin of
8.refers to
9.is referred by

Actor

4.has met 2.is member of 4.has met 4.has met 8.refers to
6.is creator or 4.has met 5.from 8.refers to 6.has met
provider of 5.has parent or 8.refers to 6.has met 4.from
8.refers to founder 9.is referred
9.is referred by 6.is parent or to at

founder of
8.refers to
9.is referred by

Place

5.is origin of 5.is origin of 2.is part of 9.is 7.at
8.refers to or is 8.refers to or is 5.is origin of referred by
about about 5.is origin
9.is referred by 9.is referred by of

Event

5.is origin of 4.from 8.refers to or 8.refers to
9.is referred by 9.is referred by is about 8.refers to or is about
8.refers to or is 8.refers to or is 7.at or is about 7.at
about about 2.is part of

6.has met
Time 5.is origin of 5.is origin of 5.is origin of 5.is origin of 2.is part of

Table 8.1: A subset of CIDOC CRM Fundamental Concepts and Relations

Example 1 One of the considered FRs is “Thing from Place” used to capture how a Thing’s
origin can be related to Place. CIDOC CRM includes part of hierarchies for objects, events, actors
(groups), etc. The “Thing from Place” FR is defined as follows (where “*” indicates recursion over
the part of hierarchies):

Thing (part of another)* is considered to be from Place if it:

1. is formerly or currently located at Place (falling in another)*
2. OR was brought into existence (produced/created) by an Event (part of another)*

(a) that happened at Place (falling in another)*
(b) OR was carried out by an Actor (who is member of a Group)*

i. who formerly or currently has residence at Place (falling in another)*
ii. OR was brought into existence (born/formed) by an Event (part of another)* that

happened at Place (falling in another)*
3. OR was moved to/from a Place (falling in another)*
4. OR changed ownership through an Acquisition (part of another)*

(a) that happened at Place (falling in another)*

Using the CIDOC CRM ontology, the above definition is translated to a fundamental relation
shown in Listing 8.1 where Enn are classes, Pnn are properties, and FC70_Thing is a custom
class indicating a cataloged object. Figure 8.1 gives a graphical representation of the above Funda-
mental Relation. The SPARQL implementation of the previous fundamental relation in SPARQL
is straightfoward and shown in Listing 8.2. One can easily see that this query is very complex

Page 46 of (92)

Deliverable D4.4.2 LDBC

and expensive, especially when one needs to combine this FR with others to form more elaborate
queries.

Listing 8.1: ”FR: Thing from Place”
FC70_Thing -(P46i_forms_part_of* | P106i_forms_part_of* |

P148i_is_component_of*)-> FC70_Thing:
{FC70_Thing -(P53_has_former_or_current_location |

P54_has_current_permanent_location)-> E53_Place:
{E53_Place -P89_falls_within*-> E53_Place}

OR FC70_Thing -P92i_was_brought_into_existence_by-> E63_Beginning_of_Existence:
{E63_Beginning_of_Existence -P9i_forms_part_of*-> E5_Event:

{E5_Event -P7_took_place_at-> E53_Place:
{E53_Place -P89_falls_within*-> E53_Place}

OR E7_Activity -P14_carried_out_by-> E39_Actor:
{E39_Actor -P107i_is_current_or_former_member_of* -> E39_Actor:

{E39_Actor -P74_has_current_or_former_residence -> E53_Place:
{E53_Place -P89_falls_within*-> E53_Place}

OR E39_Actor -P92i_was_brought_into_existence_by-> E63_Beginning_of_Existence:
{E63_Beginning_of_Existence -P9i_forms_part_of*-> E5_Event:
{E5_Event -P7_took_place_at-> E53_Place:

{E53_Place -P89_falls_within* -> E53_Place}}}}}}}
OR E19_Physical_Thing -P25i_moved_by-> E9_Move:
{E9_Move -(P26_moved_to | P27_moved_from)-> E53_Place:

{E53_Place -P89_falls_within*-> E53_Place}}
OR E19_Physical_Object -P24i_changed_ownership_through-> E8_Acquisition:
{E8_Acquisition -P9i_forms_part_of*-> E5_Event:

{E5_Event -P7_took_place_at-> E53_Place:
{E53_Place -P89_falls_within*-> E53_Place}}}}

Figure 8.1: FR: Thing from Place

FRs can also be implemented as OWLIM Rules10; the details of the implementation are described in [4, 7].
and is based on the decomposition of the CIDOC CRM framework into growing fragments called sub-FRs that
can be reused by multiple FRs, an approach which provides some performance benefits to the query engine as
discussed in [7]. OWLIM Rules are used to overcome OWL2’s inability to define conjunctive properties;

Out of all defined FRs, authors in [7] discuss implementations for 19 FRs of Thing. These FRs involve 44
CIDOC CRM properties and 26 sub-FRs. If we consider CIDOC CRM properties as input relations, sub-FRs
as intermediate relations, and FRs as output relations, the intermediate relations constitute 29% of all relations.
Authors in [7] present a dependency diagram of these relations, showing the level of reuse. The proposed
implementation used 10 axioms and 86 rules; an improved implementation may refactor this to use fewer rules
and a lot more axioms, which will improve maintainability and flexibility.

10OWLIM was recently renamed to Ontotext GraphDB

Page 47 of (92)

LDBC Deliverable D4.4.2

Listing 8.2: ”SPARQL representation for FR “Thing from Place”
SELECT ?t ?p2 {
?t a FC70_Thing.
?t (P46i_forms_part_of* | P106i_forms_part_of* | P148i_is_component_of*) ?t1.
{?t1 (P53_has_former_or_current_location | P54_has_current_permanent_location) ?p1}
UNION
{?t1 P92i_was_brought_into_existence_by ?e1. ?e1 P9i_forms_part_of* ?e2.

{?e2 P7_took_place_at ?p1}
UNION
{?e2 P14_carried_out_by ?a1.

?a1 P107i_is_current_or_former_member_of* ?a2.
{?a2 P74_has_current_or_former_residence ?p1}
UNION
{?a2 P92i_was_brought_into_existence_by ?e3. ?e3 P9i_forms_part_of* ?e4.
?e4 P7_took_place_at ?p1}}}

UNION
{?t2 P25i_moved_by ?e5. ?e5 (P26_moved_to | P27_moved_from) ?p1}
UNION
{?t2 P24i_changed_ownership_through ?e6.

?e6 P9i_forms_part_of ?e7. ?e7 P7_took_place_at ?p1}.
?p1 P89_falls_within* ?p2}

Example 2
Figure 8.2 shows the graphical representation of FR "Thing created by Actor" (FR92i_created_by),
which we define as "Thing (or part/inscription thereof) was created or modified/repaired by Actor
(or a group it is a member of)". This FR involves the following CIDOC CRM source properties:

• P46_is_composed_of, P106_is_composed_of, P148_has_component that nav-
igate the object part hierarchy;
• P128_carries that support the transition from object to the inscription that it carries;
• P31i_was_modified_by (includes P108i_was_produced_by), P94i_was_created_by

that refer to the modification or production of some physical thing, the creation of conceptual
thing as given by its inscription
• P9_consists_of that allows one to navigate the hierarchy of events
• P14_carried_out_by, P107i_is_current_or_former_member_of that refer

to the agent that performs an event and the groups she is member of.

It uses sub-FR FRT_46_106_148_128 (the first loop in Figure 8.2).

FRX92i_created := (FC70_Thing) FRT_46_106_148_128* / (P31i | P94i) / P9*

We first define a sub-FR FRX92i_created that extends to the second node (Modification/Creation)
and includes the P9 loop; it is used in the implementation of FR “Thing created by Actor”.

Figure 8.2: FR: Thing created by Actor

Listing 8.3 shows the implementation of sub-FR FRX92i_created used in the implementation
of FR “Thing created by Actor” implemented with the 5 OWLIM Rules 5 shown in Listing 8.3.

Listing 8.3: sub-FR FRX92i_created

x <rdf:type> <rso:FC70_Thing>; x <crm:P31i_was_modified_by> y => x <rso:FRX92i_created> y
x <rdf:type> <rso:FC70_Thing>; x <crm:P94i_was_created_by> y => x <rso:FRX92i_created> y
x <rso:FRT_46_106_148_128> y; y <crm:P31i_was_modified_by> z => x <rso:FRX92i_created> z
x <rso:FRT_46_106_148_128> y; y <crm:P94i_was_created_by> z => x <rso:FRX92i_created> z
x <rso:FRX92i_created> y; y <crm:P9_consists_of> z => x <rso:FRX92i_created> z

Page 48 of (92)

Deliverable D4.4.2 LDBC

8.2 Rule Languages

In this section we describe briefly some existing rule languages11.

8.2.1 OWLIM Rules

OWLIM Rules [19] are the simplest variety of rules discussed in this Section. They use simple unifica-
tion: a set of premise triple patterns is checked against the repository, and if it matches, a set of consequent
triples is inferred and stored in the repository, where variables in the consequents are instantited from the
premises (or emitted as blank nodes if not present in the premises). Nevertheless, OWLIM rules are pow-
erful enough to implement OWL2 RL and OWL2 QL [9] (e.g., see Section 8.3.3 for the implementation of
owl:propertyChainAxiom). Custom rules can be used for various purposes (see Section 8.1 for an example).
The OWLIM Rules syntax is verbose (one line per premise/conclusion), so we use a simpler syntax (one line
per rule, see Listing 8.3) that we expand to the verbose syntax with a simple script.

A benefit of OWLIM Rules is that they are "reversible": when a triple is deleted, all relevant rules are
checked. If an inferred triple matches the consequences and there are no other triples to support it, the triple
is retracted as well (see Section Retraction of assertions in [19] for details). This limited form of backtracking
supports incremental deletion and is extremely important for use cases with high update rate. OWLIM Rules
are simple by design, in order to support this feature. Some disadvantages of OWLIM Rules include:
• Rules are not very flexible: if a rule is changed, consequences are not recomputed automatically. In

contrast, if the schema changes, then the consequences of rules are recomputed.
• These rules are proprietary to OWLIM and are not portable to other systems.
• These rules do not support arithmetics or real negation. A rule may pose variable inequalities (eg. that

a rule variable is not bound to a specific class), but cannot check for lack of certain triples (eg. that a
resource does belong to a specific class).

8.2.2 SPIN Rules

SPARQL Inferencing Notation (SPIN12) is an approach for representing SPARQL rules and constraints on
Semantic Web models. SPIN also provides meta-modeling capabilities that allow users to define their own
SPARQL functions and query templates. SPIN can be used to:
• calculate the value of a property based on other properties - for example, area of a geometric figure as

a product of its height and width, age of a person as a difference between today’s date and person’s
birthday, a display name as a concatenation of the first and last names
• define functions through SPARQL queries, which can be used in other queries, just like the standard

SPARQL and XPath functions
• isolate a set of rules to be executed under certain conditions - for example, to support incremental rea-

soning, to initialize certain values when a resource is first created, or to drive interactive applications
• perform constraint checking with closed world semantics and automatically raise inconsistency flags

when currently available information does not fit the specified integrity constraints
Rules are implemented with SPARQL CONSTRUCT or UPDATE queries, and constraints are implemented

with ASK or CONSTRUCT queries. SPIN Templates also make it possible to define such rules and constraints
in higher-level domain specific languages, so that rule designers do not need to work with SPARQL directly.

The benefits of SPIN include:
• an extensive library of common functions. These include SPIN Standard Modules Library (SP, SPIF,

SPL), SPIN JavaScript Functions (SPINx), and SPIN Result Sets, Tables and Spreadsheets Vocabulary
(SPR and SPRA).
• an open source implementation, the SPIN API13. It is built on top of the Jena API and provides i) convert-

ers between textual SPARQL syntax and the SPIN RDF Vocabulary ii) SPIN-based constraint checking
11Missing from this overview are SWRL and RIF, as we are not aware of practical examples using these languages.
12http://spinrdf.org/
13http://topbraid.org/spin/api/

Page 49 of (92)

LDBC Deliverable D4.4.2

engine iii) SPIN-based inferencing engine iv) user-defined SPIN functions using Jena/ARQ and v) user-
defined SPIN templates.

SPIN underpins a significant part of TopQuadrant’s technologies, including (a) SPARQLMotion (transforma-
tions) (b) SWP (Semantic Web pages for making UIs) and (c) SWA (Semantic Web applications, made from
components and widgets). These are integrated and used extensively in TopBraid (Semantic Web IDE) and
TopBraid Live (Server Platform). Therefore the SPIN functions and SPIN API are regularly updated and main-
tained. Possible disadvantages of SPIN rules are related to performance over large (disk-based) databases and
include the following:
• evaluation of SPIN functions: when SPIN functions are evaluated, a lot of SPARQL queries are executed

(not only the original queries and templates, but also all user functions defined with SPARQL). These can
be executed efficiently in in-memory databases, but may be a problem for large disk-based databases. In
particular, smart caching strategies and the locality of data needs to be exploited.

• efficient updates: SPIN API cannot incrementally delete inferred triples when a premise is removed.
Authors in [38] explain “The inferred triples usually go into a dedicated inferences graph that can have
its own life cycle, eg. to reset and re-run inferences when new information comes in that contradicts prior
knowledge” (see 8.2.1 for an example of such capability).

• recursion: if the SPIN ruleset (or axioms) involve recursion (eg transitive closure and similar rules), the
ruleset needs to be run repeatedly, until no new triples are inferred. But the SPIN API does not use
RETE or a similar algorithm to exploit locality and incrementality of added triples [38]: “We do not have
a (RETE-like) rule chaining implemented but this could be achieved, at least for a subset of the SPIN
expressivity”. It also explains the reason why: “Complex WHERE clauses with difficult patterns are
likely not implementable [in a RETE like fashion] - that’s why most other rule languages have a limited
expressivity”.

8.3 Scenarios of Business Rule

This section provides specific business scenarios, involving specific rule sets, queries, and in some cases vendor
extensions.

8.3.1 Extended Property Constructs

As explained in the Introduction of Chapter 8, OWL2 has certain limitations when it comes to defining proper-
ties. In order to present this claim, we will give a short introduction (notations and semantics) for the property
constructs that we consider in this work. Below and in Table 8.2, pN indicates premises, q a conclusion.
• prop path is a SPARQL 1.1 property path: ’^’ is inverse, ’|’ is disjunction (parallel composition),
’/’ is chain (sequential composition), ’+’ is recursion (Kleene closure).
• := means equivalentProperty, => means subPropertyOf (correspondingly ’<=’ means super-property).

Table 8.2 provides illustrations of the property paths where the conclusions of the corresponding prop path’s
are shown in red. The Turtle representation of these OWL constructs is shown in Listing 8.4. Note that the
semantics thereof are given in Chapter 3.

Listing 8.4: Turtle representation of OWL constructs in Table 8.2
q a owl:SymmetricProperty.
q owl:inverseOf p.
p1 rdfs:subPropertyOf q. p2 rdfs:subPropertyOf q.
q owl:propertyChainAxiom (p1..pN).
p rdfs:subPropertyOf q. q a owl:TransitiveProperty.

OWL constructs owl:FunctionalProperty (respectively owl:InverseFunctionalProperty) are not
used for defining new properties, but to restrict the cardinality of property instances with the same subject
(respectively object).
Table 8.3 introduces some new extensions. Authors in [5] discuss additional potentially useful property con-
structs, illustrated with cases from the semantic representation of the British Museum collection and the Getty

Page 50 of (92)

Deliverable D4.4.2 LDBC

Construct prop path illustration

Symmetric q := ˆq

Inverse q := ˆp

Disjunction q <= p1 | p2

Chain q <= p1/../pN

Transitive q <= p+

Table 8.2: Standard OWL2 Property Constructs

Research Institute Vocabularies. [6] describes in detail the implementation of a few of these constructs, and
their application to inferencing for the Getty Vocabularies.
• r indicates a restriction property (which is just another premise), tN is a type
• p & r is a conjunction (property restriction): holds between two nodes when both properties connect

the same nodes
• [t1] p [t2] is type restriction: holds when the subject has type t1 and the object has type t2

(shown inside the node).
A possible representation of these constructs as Turtle axioms is shown in Listing 8.5. It uses the prefix

ptop: that stands for Ontotext’s PROTON ontology. ptop:transitiveOver has been part of PROTON
since 2008, the other constructs are new; x stands for a node holding the structure together (a blank node can be
used). Of course, the same data can be captured in other structures, so many other representations are possible.

Listing 8.5: Property Extensions
q ptop:transitiveOver p.
x a ptop:PropChain; ptop:premise1 p1; ptop:premise2 p2; ptop:conclusion q.
x a ptop:PropRestr; ptop:premise p; ptop:restricton r; ptop:conclusion q.
x a ptop:TypeRestr; ptop:premise p; ptop:type1 t1; ptop:type2 t2; ptop:conclusion q.

8.3.2 Implementing Extended Property Constructs

The implementation of most of the above constructs as OWLIM rules is shown in [6]. We provide below
examples of these implementations. For instance, PropChain is implemented as shown in Listing 8.6.
transitiveOver can be implemented using owl:propertyChainAxiom, PropChain, or a dedicated rule
as shown in Listing 8.7. We prefer the PropChain implementation for the reasons that will be explained in
Section 8.3.3. For illustration purposes only, we show the implementation of PropChain as a SPIN rule.
It closely follows the OWLIM rule as given in Listing 8.8. The other constructs can be implemented with
OWLIM-Rules or SPIN in a similar fashion.

Page 51 of (92)

LDBC Deliverable D4.4.2

Construct prop path illustration

transitiveOver q <= q / p

PropChain q <= p1 / p2

PropRestr q <= p & r

TypeRestr q <= [t1] p [t2]

Table 8.3: Extended Property Constructs

Listing 8.6: Implementation of PropChain using OWLIM Rules
Id: ptop_PropChain
t <ptop:premise1> p1
t <ptop:premise2> p2
t <ptop:conclusion> q
t <rdf:type> <ptop:PropChain>
x p1 y
y p2 z

x q z

Listing 8.7: transitiveOver Implementation
q owl:propertyChainAxiom (q p). # This is better:
[a ptop:PropChain; ptop:premise1 q; ptop:premise2 p; ptop:conclusion q].

Listing 8.8: Implementation of PropChain in SPIN
ptop:PropChain
spin:rule [

a sp:Construct;
sp:text """

CONSTRUCT {?x ?q ?z}
WHERE {

"?this a ptop:PropChain" implied by the binding above
?this ptop:premise1 ?p1.
?this ptop:premise2 ?p2.
?this ptop:conclusion ?q.
?x ?p1 ?y.
?y ?p2 ?z}"""].

8.3.3 Two-Place (2-Place) Chains

In this Section we are going to discuss the implementation of chains of length 2 using 2-Place chain PropChain.
Recall that owl:propertyChainAxiom allows one to define properties as a composition of others (see Sec-
tion 3.9). The advantage of a 2-Place chain PropChain over the general owl:propertyChainAxiom is as
follows:

Page 52 of (92)

Deliverable D4.4.2 LDBC

1. a fixed-arity chain is easier to implement. A general chain is represented as an rdf:List, and the inferencer
needs to unroll this list. A forward inferencer like OWLIM needs to make intermediate nodes and edges
(see below)

2. most chains used in practice are two-place chains
3. any specific general chain can be implemented as a sequence of two-place chains. Eg q <= p1/p2/p3

can be implemented as q1 <= p1/p2. q <= q1/p3 as shown in Listing 8.9.

Listing 8.9: Implementing Three-Place Chain with Two-Place Chains
q owl:propertyChainAxiom (p1 p2 p3).
Can be implemented as
[a ptop:PropChain; ptop:premise1 p1; ptop:premise2 p2; ptop:conclusion q1].
[a ptop:PropChain; ptop:premise1 q1; ptop:premise2 p3; ptop:conclusion q].

Regarding the first point above, the OWLIM rules implementing owl:propertyChainAxiom are as fol-
lows: The [Context] annotation matches, respectively inserts quads with a specific context (graph). The
one used below is an internal graph that is not exposed to queries unless explicitly asked for.

prp_spo2_1
p <owl:propertyChainAxiom> pc
start pc last [Context <onto:_checkChain>]

start p last

Id: prp_spo2_2
pc <rdf:first> p
pc <rdf:rest> t [Constraint t != <rdf:nil>]
start p next
next t last [Context <onto:_checkChain>]

start pc last [Context <onto:_checkChain>]

Id: prp_spo2_3
pc <rdf:first> p
pc <rdf:rest> <rdf:nil>
start p last

start pc last [Context <onto:_checkChain>]

The correctness of this implementation is not obvious, so we give an example below. Q <= P1/P2 is
represented as a general chain in this way (the lists PC and PC1 are usually blank nodes):

Q owl:propertyChainAxiom PC.
PC a rdf:List; rdf:first P1; rdf:rest PC1.
PC1 a rdf:List; rdf:first P2; rdf:rest rdf:nil.

The rules fire in the following sequence (we show variable substitutions after the rule ID):

prp_spo2_3: pc=PC1, p=P2
start1 P2 last1

start1 PC1 last1 [Context <onto:_checkChain>]

prp_spo2_2: next=start1, t=PC1, last=last1, pc=PC, p=P1
start P1 start1

start PC last1 [Context <onto:_checkChain>]

prp_spo2_1: start=start, pc=PC, last=last1, p=Q

start Q last1

So overall we get:

start P1 start1
start1 P2 last1

start Q last1
start PC last1 [Context <onto:_checkChain>]
start1 PC1 last1 [Context <onto:_checkChain>]

Page 53 of (92)

LDBC Deliverable D4.4.2

The first conclusion is what we want, and the other two conclusions represent intermediate nodes and edges
used for the inferencing. PC and PC1 are blank-node properties.

In contrast, a two-place chain is easy to implement and does not make such intermediate edges as shown
below:

Id: ptop_PropChain
t <ptop:premise1> p1
t <ptop:premise2> p2
t <ptop:conclusion> q
t <rdf:type> <ptop:PropChain>
x p1 y
y p2 z

x q z

Customized for BBC ontologies

Here we present an implementation of Two-Place Chains for the BBC use case scenario. For this purpose, we
use the following axiom:

[a ptop:PropChain; ptop:premise1 cwork:thumbnail; ptop:premise2 cwork:altText;
ptop:conclusion ldbc:cworkThumbnailAltText].

Expected behavior

The new axiom should produce fewer triples, and/or run faster than the old one. Please note that we do not need
to rewrite our axioms to use PropChain. If only two-place chains are used, owl:propertyChainAxiom can
be converted to PropChain automatically with a simple rule like the following one:

Id: ptop_PropChainByPropertyChainAxiom
p <owl:propertyChainAxiom> l1
l1 <rdf:first> p1
l1 <rdf:rest> l2
l2 <rdf:first> p2
l2 <rdf:rest> <rdf:nil>

t <rdf:type> <ptop:PropChain>
t <ptop:premise1> p1
t <ptop:premise2> p2
t <ptop:conclusion> p

8.3.4 Better Transitive Properties
In this Section we discuss the ptop:transitiveOver construct that was introduced in Table 8.3;
q ptop:transitiveOver p means that property q can be extended with another property p (on the
right). For example, the inferencing of types along the class hierarchy can be expressed with a single axiom:

rdf:type ptop:transitiveOver rdfs:subClassOf.

Most often owl:TransitiveProperty is implemented as a self-chain using owl:propertyChainAxiom,
following the rule PRP-TRP discussed in Table 3.7.

q owl:propertyChainAxiom (q q)

Therefore transitiveOver is a generalization of owl:TransitiveProperty as shown below:

q a owl:TransitiveProperty <=> q ptop:transitiveOver q

Note that this idea is analogous to owl:inverseOf being a generalization of owl:SymmetricProperty
(which is a self-inverse):

q a owl:SymmetricProperty <=> q owl:inverseOf q

Page 54 of (92)

Deliverable D4.4.2 LDBC

When implementing transitive closure, it is a good practice to keep the basic (step) property. As an example,
SKOS [36] defines skos:broader as the step, and skos:broaderTransitive as its closure. As a
counter-example, RDFS does not have step properties for rdfs:subClassOf and rdfs:subPropertyOf, both
defined as reflexive and transitive properties. But it is often necessary to find the direct subclasses of a class, so
one needs to use complex and expensive queries like the one listed below:

SELECT ?sub {
?sub rdfs:subClassOf pz:Pizza.
FILTER NOT EXISTS {

?sub rdfs:subClassOf ?x .
?x rdfs:subClassOf pz:Pizza .
FILTER (?x != ?sub && ?x != pz:Pizza)}}

For this reason, some frameworks support step properties for RDFS, such as sesame:directSubClassOf,
sesame:directSubPropertyOf and sesame:directType in Sesame14 if a
DirectTypeHierarchyInferencer SAIL is deployed; those properties are also supported by OWLIM.
These built-in predicates allow direct and more efficient querying in this case.

Not only transitiveOver is a generalization of owl:TransitiveProperty, but using it together with
step properties potentially allows more efficient inferencing. Consider for instance the following example: the
standard implementation of broaderTransitive in the SKOS ontology is:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive a owl:TransitiveProperty.

Now consider a chain of N skos:broader between nodes A and B. The same closure between A and
B can be inferred from every split of the chain (there are N − 1). So an inferencer may have to consider every
split, although they all lead to the same conclusion.

The following axioms allow more efficient inferencing, since they seek to extend the chain only at the
(right) end:

skos:broader rdfs:subPropertyOf skos:broaderTransitive.
skos:broaderTransitive ptop:transitiveOver skos:broader.

Customized for BBC ontologies

We illustrate here an implementation of transitiveOver for the BBC scenario. Consider the axiom

sport:directSubDisciplineOf rdfs:subPropertyOf sport:subDisciplineOf.
sport:subDisciplineOf ptop:transitiveOver sport:directSubDisciplineOf.

Expected behavior

Although the new axioms produce more triples (sport:directSubDisciplineOf is also repeated as
sport:subDisciplineOf), they will potentially run faster than the ones shown in Table 3.7.

8.3.5 Interlinking Ambiguous Things in the Semantic Publishing Benchmark

The names of real-world things are often ambiguous. For example, the Wikipedia disambiguation page for
Michael Jackson lists at least 30 people of that name, plus songs, movies, etc. In general, there are cases in the
Semantic Publishing Domain which
• we want to interlink ambiguous things (with a property ldbc:ambiguousWith), to facilitate editorial

actions to disambiguate them
• since the universe of things is very large, we should do this only for things that are tagged in a creative

work.
• when a thing is disambiguated by an editor, he should check and eventually correct taggings of that

thing in CreativeWorks, then add a core:disambiguationHint, at which point ldbc:ambiguousWith
is deleted.

14Sesame User Guide: http://openrdf.callimachus.net/sesame/2.7/docs/users.docbook?view

Page 55 of (92)

LDBC Deliverable D4.4.2

This complex logic can be implemented as a mix of axioms and SPIN rules as shown below:

Capture all labels of a thing. rdfs:label is also a good candidate to add.
core:shortLabel rdfs:subPropertyOf ldbc:anyLabel.
core:preferredLabel rdfs:subPropertyOf ldbc:anyLabel.

We want it both ways
ldbc:ambiguousWith a owl:SymmetricProperty.

core:Thing spin:rule
[# Interlink ambiguous things

a sp:Construct;
sp:text """

CONSTRUCT {?this ldbc:ambiguousWith ?that}
WHERE {

FILTER EXISTS {?cwork cwork:tag ?this}
?this ldbc:anyLabel ?label.
?that ldbc:anyLabel ?label.
FILTER NOT EXISTS {?this core:disambiguationHint ?hint}

"""],
[# Disambiguate interlinked ambiguous things

a sp:Modify;
sp:text """

DELETE {?this ldbc:ambiguousWith ?that}
WHERE {?this ldbc:ambiguousWith ?that.

FILTER EXISTS {?this core:disambiguationHint ?hint}}
"""].

8.3.6 Classifying CreativeWorks in the Semantic Publishing Benchmark
A business-meaningful notion such as "International music video programme" can be computed based on at-
tributes of creative works (see Figure A.1). We first define some shortcut properties as owl:propertyChainAxiom
(or PropChain, see Section 8.3.3) as given below:

ldbc:primaryContentProduct owl:propertyChainAxiom (bbc:primaryContentOf bbc:product).
ldbc:primaryContentTopic owl:propertyChainAxiom (bbc:primaryContentOf core:primaryTopic).

The above can be implemented in SPARQL as follows:

CONSTRUCT {?cwork a ldbc:InternationalMusicVideoProgramme}
WHERE {?cwork
a cwork:Programme;
cwork:audience cwork:InternationalAudience;
cwork:primaryFormat cwork:VideoFormat;
ldbc:primaryContentProduct bbc:Music.

}

Their implementation with OWL2 restrictions is the following:

ldbc:InternationalMusicVideoProgramme a owl:Class;
rdfs:subClassOf cwork:CreativeWork;
owl:intersectionOf (

cwork:Programme
[a owl:Restriction;

owl:onProperty cwork:audience; owl:hasValue cwork:InternationalAudience]
[a owl:Restriction;

owl:onProperty cwork:primaryFormat; owl:hasValue cwork:VideoFormat]
[a owl:Restriction;

owl:onProperty ldbc:primaryContentProduct; owl:hasValue bbc:Music]
)

8.3.7 Validating Creative Works in the Semantic Publishing Benchmark

A similar approach to the one presented in Section 8.3.6 could be used to check for valid combinations of char-
acteristics. For example, if a creative work has a Sports-Stats cms:locator (i.e. a representation of the
work can be found in BBC’s sports-stats system) and bbc:primaryContent, then the content’s bbc:product
must be Sports.

Page 56 of (92)

Deliverable D4.4.2 LDBC

This constraint can be implemented in SPIN, using a constraint that constructs a ConstraintViolation
with a useful description of the problem. We can even define a suggested fix (which is to insert the missing
bbc:product triple) with the SPIN rule below:

cwork:CreativeWork
spin:constraint [a sp:Construct ;

sp:text """
CONSTRUCT {[a spin:ConstraintViolation ;
spin:violationRoot ?this ;
spin:violationPath [a sp:SeqPath;

sp:path1 bbc:primaryContentOf; sp:path2 bbc:product];
rdfs:label "Sports-Stats locator implies that

primaryContentOf/product must be Sport";
spin:fix [a sp:Modify; sp:insertPattern

([rdf:subject ?doc; rdf:predicate bbc:product; rdf:object bbc:Sport])]]}
WHERE {
?this cms:locator/rdf:type cms:Sports-Stats;

bbc:primaryContentOf ?doc.
FILTER NOT EXISTS {?doc bbc:product bbc:Sport}}"""]

Here we do not use ldbc:primaryContentProduct because we need to check the existence of the inter-
mediate node ?doc.

8.3.8 Faceting for Co-occurrence

Faceted Search is a commonly used user interface paradigm for exploring a large dataset of entities:
• the user is presented with a set of facets, which are characteristics shared by the entities and can be type,

model, country, price, etc.
• facets are sorted by popularity, i.e. by number of occurrences in the dataset in descending order displayed

together with the number of occurrences.
• the user can select several facet values, upon which the occurrence counts of the other facet values are

updated
• at the same time, the set of matching entities (or a part of it) is displayed as a list
The main benefit of faceted search is that the user can quickly explore the structure of an unfamiliar dataset

and see how adding facet values (restrictions) decreases the size of the remaining subset. This avoids the
common problem of formulating queries that either return no results, or return too many results to be useful.

The Ontotext KIM showcase "Latest News" [17] presents an interesting variant of the faceted search idea
that is very relevant to the BBC dataset (see Figure 8.3): one uses faceting to explore the co-occurrence of
semantic things in documents. More specifically:
• entities are news articles from several news feeds or crawled from the web. This corresponds to class
cwork:CreativeWork.

• facets are specific people, organizations, locations mentioned in the document. This corresponds to
tagging BBC creative works with real-world things i.e., instances of class owl:Thing using property
cwork:tag.

In addition, Latest News facets also include any other Related Concepts (i.e. free keywords), and allow the
user to select the semantic entities to be used as facets (see Figure 8.4). However, we limit the queries in this
section to only fixed things (no free keywords). Facet values can be selected directly or using auto-completion;
and can be deselected (removed). After facet values are selected, the matching set of documents is shown in a
list below the facets. The user can drill down and explore interesting co-occurrences. Eg what is the relation
between the Pixar animation company and Hogs (see Figure 8.5)? It turns out that a single document mentions
"Toy Story maker Pixar" (a studio that was bought by Disney) and the movie "Wild Hogs 2" whose making was
canceled.

Implementing facets in a repository is hard, because we need to calculate or store recursive counts of
occurrences, and the queries touch a large fraction of the data.

Page 57 of (92)

LDBC Deliverable D4.4.2

Figure 8.3: Ontotext KIM Showcase: Latest News Faceted Search

Figure 8.4: Customizing Facet Selections

Figure 8.5: Narrowing Using Faceted Search: What’s the Connection Between Pixar and Hogs?

Page 58 of (92)

Deliverable D4.4.2 LDBC

Naive Implementation with Counting

We present in this Section a naive implementation approach that counts the occurrences of every facet value,
and refreshes the counts when the facet selection changes.
Initially the facet selection is empty (there are no bound facets). Since the number of facet values may be very
large (in the order of 10,000), we return only a limited number of facet values per type (for instance, Person,
Organization, Place) limited to, for instance 10 (limit 10). This is reasonable even after some facets are
bound, because the number of facet values co-occurring with a popular entity such as "The United Kingdom"
may still be very large. The user may request further facets, which can be accomplished by specifying an
offset (offset 20)15. Alternatively, the user may add facet values through auto-completion, which can be
accomplished with appropriate full-text search. Below we show the SPARQL query that can be used for facet
counting.

select ?type ?facet ?count where {
filter (?type in (core:Organisation, core:Person, core:Place))
{select ?type ?facet (count(*) as ?count)
where {

?facet a ?type.
?work cwork:tag ?facet}

group by ?facet
order by desc(?count)
limit 10
}

}

When the user changes the selection to t1...tn, we need to re-count by filtering to only works tagged
with the selected facets. Let $TAGS be the comma-separated concatenation of t1...tn represented as URLs,
i.e. <t1>,...,<tn>. The query we need can be made by substituting $TAGS in the following template:

select ?type ?facet ?count where {
filter (?type in (core:Organisation, core:Person, core:Place))
{select ?type ?facet (count(*) as ?count)
where {

?facet a ?type.
filter (?facet not in ($TAGS))
?work cwork:tag ?facet, $TAGS}

group by ?facet
order by desc(?count)
limit 10
}

}

This re-count needs to happen on both addition and removal of facet values. So the first query is really
a special case where the selection $TAGS is empty. Such approach is too slow to be practical because the
repository needs to count all facet occurrences and sort the counts before picking the top 10. Below we describe
an implementation using a custom extension.

Implementation with Lucene Faceting

For a long time the de-facto industry standard for implementing faceted search was Solr, an Apache open
source project based on Lucene (since 2010, the two projects are developed together). It uses efficient data
structures that are tuned to storing facets, and supports returning a small set of high-popularity facets quickly,
facet pagination, etc. Since release 4 (Aug 2012), Lucene also has support for facets. Another widely used
open-source product with strong faceting support is ElasticSearch, also based on Lucene.

The recently released Ontotext GraphDB 6 (the new name of the OWLIM repository) includes two features
that facilitate faceting:
• GraphDB Connectors [20] provide extremely fast keyword search, hit highlighting and faceted search

through integration with externally installed search servers (Solr, ElasticSearch, and Lucene are sup-
15To have reasonable paging, the offset is a multiple of the limit

Page 59 of (92)

LDBC Deliverable D4.4.2

ported). The search indexes stay automatically up-to-date with the GraphDB repository data. The rest of
this section uses the Solr GraphDB connector [22], which provides sorting by facet popularity.

• Lucene4 Plugin [21] has provided similar functionality for a year, but is limited to Lucene and is now
deprecated.

First we need to setup a Solr connector. This is done with an update query where the parameters are
specified in a JSON string. We index only the facet fields (cwork:tag); GraphDB notices the values are URLs,
so it maps them to an appropriate Solr type that is not passed through text analysis. We also "split" the property
into "sub-properties" that are separated by the type of the connected Thing (a very similar example is provided
in [22] section "Advanced entity filter example").

PREFIX : <http://www.ontotext.com/connectors/solr#>
PREFIX inst: <http://www.ontotext.com/connectors/solr/instance#>

INSERT DATA {
inst:my_index :createConnector ’’’ {

"solrUrl": "http://localhost:8983/solr",
"types": ["http://www.bbc.co.uk/ontologies/creativework/CreativeWork"],
"fields": [

{"fieldName": "tagWithPerson",
"propertyChain": ["http://www.bbc.co.uk/ontologies/creativework/tag"]},

{"fieldName": "tagWithOrg",
"propertyChain": ["http://www.bbc.co.uk/ontologies/creativework/tag"]},

{"fieldName": "tagWithPlace",
"propertyChain": ["http://www.bbc.co.uk/ontologies/creativework/tag"]}],

"entityFilter":
"?tagWithPerson type in (<http://www.bbc.co.uk/ontologies/coreconcepts/Person>) &&
?tagWithOrg type in (<http://www.bbc.co.uk/ontologies/coreconcepts/Organisation>) &&
?tagWithPlace type in (<http://www.bbc.co.uk/ontologies/coreconcepts/Place>)"

} ’’’ .
}

Now assume that the user has selected these facet values: http://dbpedia.org/resource/Mozart
for Person and http://dbpedia.org/resource/Salzburg for Place.

First, we need to create a relatively complex Solr $QUERY. See [26] for a description of the query facet
parameters. The query is a concatenation of the following:
• wt=json: return the result in JSON rather than the default XML format
• &facet=true: enable faceting
• &facet.field=tagWithPerson&facet.field=tagWithOrg&facet.field=tagWithPlace:

enumerate the faceted Solr fields
• &facet.mincount=1&facet.limit=10: return only non-empty facet values, and 10 values per

type
• &facet.sort=count: sort by descending count (this is the default for non-zero limit)
• &q=tagWithPerson:http\:\/\/dbpedia.org\/resource\/Mozart: query by first facet

value. The ugly escaping of : and / is required by Lucene query syntax. This is explained in [21] section
"Additional joins"
• +AND+tagWithPlace:http\:\/\/dbpedia.org\/resource\/Salzburg: add the second

facet value using AND
Then we substitute $QUERY in this SPARQL query template.

PREFIX : <http://www.ontotext.com/connectors/solr#>
PREFIX inst: <http://www.ontotext.com/connectors/solr/instance#>

SELECT ?type ?facetValue ?facetCount ?facetLabel {
?search a inst:my_index ;

:query "$QUERY";
:facetFields "tagWithPerson,tagWithOrg,tagWithPlace" ;
:facets [
#:facetName ?type; # instead, we use "a ?type" below
:facetValue ?facetValue ;
:facetCount ?facetCount].

?facetValue a ?type; rdfs:label ?facetLabel
}

Page 60 of (92)

Deliverable D4.4.2 LDBC

where i) ?type corresponds to one of the :facetFields. The :facetName property returns it, but
we prefer to get it with a normal triple pattern using a (i.e. rdf:type) ii) ?facetValue is the facet URL,
i.e. the Thing (resource) that a creative work is tagged with and iii) ?facetLabel is the label of the facet
resource.

8.3.9 GeoSpatial Queries

Geospatial queries are quite important for some Semantic Publishing scenarios. For example, the UK Press
Association sells most of its assets through a combined temporal and geospatial search. A lot of its clients
purchase journalistic content based on specific time and geographic locality.

Successful geospatial search depends on several factors:
1. Accurate geospatial tagging. The most important concern here is smart place name disambiguaton, since

place names are highly ambiguous. The following can be used:
(a) Various contextual hints (eg super-places mentioned in the text)
(b) Place type information
(c) Additional place features, such as population (we may assume that bigger cities occur more often

than smaller cities)
2. Accurate geographic coordinates for semantic entities (core:Place).
3. Geospatial indexing and querying extensions in the repository.
Here we focus on points 2 and 3 above:
• Coordinates, place types and some additional features are provided by the additional datasets in SPB

[15], which include GeoNames info.
• Geospatial extensions to RDF and SPARQL are standardized to a good degree, see [16]. But in this

section we consider OWLIM’s geospatial extensions (see [18]), which are quite simpler yet sufficient for
the use cases (involving point geometries only).

For example, GeoNames contains the following information about Leicester (given in RDF Turtle format):

@prefix gn: <http://www.geonames.org/ontology#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix wgs: <http://www.w3.org/2003/01/geo/wgs#> .

<http://sws.geonames.org/2644668/> a gn:Feature ;
rdfs:isDefinedBy <http://sws.geonames.org/2644668/about.rdf> ;
gn:name "Leicester" ;
gn:alternateName "Leicester"@en , "Lestera"@lv , "Lesteris"@lt...;
gn:featureClass gn:P ;
gn:featureCode gn:P.PPLA2 ;
gn:countryCode "GB" ;
gn:population "339239" ;
wgs:lat "52.6386" ;
wgs:long "-1.13169" ;
gn:parentFeature <http://sws.geonames.org/3333165/> ;
gn:parentCountry <http://sws.geonames.org/2635167/> ;
gn:parentADM1 <http://sws.geonames.org/6269131/> ;
gn:parentADM2 <http://sws.geonames.org/3333165/> ;
gn:nearbyFeatures <http://sws.geonames.org/2644668/nearby.rdf> ;
gn:locationMap <http://www.geonames.org/2644668/leicester.html> ;
gn:wikipediaArticle <http://en.wikipedia.org/wiki/Leicester> ;
rdfs:seeAlso <http://dbpedia.org/resource/Leicester> .

This RDF snippet contains the following16:
• useful properties: gn:name, gn:alternateName (name in many languages), gn:featureClass

("P" means "places") and gn:featureCode ("P.PPLA2" means "seat of a second-order administrative
division"), gn:population.

• coordinate information by means of WGS84 point (centroid) (properties wgs:lat and wgs:long) and
lists of nearby features through gn:nearbyFeatures.

16We assume that GeoNames is loaded in the repository, and CreativeWorks are tagged with GeoNames resources, or with resources
coreferenced to GeoNames.

Page 61 of (92)

LDBC Deliverable D4.4.2

• parent features using properties gn:parentCountry (as resource) and gn:countryCode (as lit-
eral), first-level administrative region gn:parentADM1 (England), second-level administrative region
gn:parentADM2 (City of Leicester region) and immediate parent gn:parentFeature (coincides
with gn:parentADM2)
• useful links through rdfs:isDefinedBy, list of nearby places gn:nearbyFeatures, interactive lo-

cation map (gn:locationMap) and corresponding Wikipedia page and DBPedia resource (corefer-
encing) through the gn:wikipediaArticle and rdfs:seeAlso.

To implement this functionality in OWLIM, a geospatial index must be initially created as follows:
prefix omgeo: <http://www.ontotext.com/owlim/geo#>
INSERT DATA {[] omgeo:createIndex []}

This puts all resources with fields wgs:lat, wgs:long (i.e. points or wgs:SpatialThing) in a
spatial index. OWLIM provides several geospatial functions, of which we use the following ones:
• ?point omgeo:nearby(?lat ?long ?distance) (predicate): finds points that are close to

the given coordinates, i.e. within a given distance. The distance is measured in "km" by default, but a
suffix "mi" (miles) can be provided

• omgeo:distance(?lat1, ?long1, ?lat2, ?long2) (function): calculates distance between
two points, measured in "km"

• ?point omgeo:within(?lat1 ?long1 ?lat2 ?long2) (predicate): finds points that fall
within the given bounding box

While omgeo:within is a predicate and takes a rdf:List of arguments, omgeo:distance is a
function and takes a comma-separated list of arguments. One may be tempted to rewrite omgeo:within to
the query clause shown below:
?point wgs:lat ?lat; wgs:long ?long.
filter (?lat1 <= ?lat && ?lat <= ?lat2 && ?long1 <= ?long && ?long <= long2)

However, omgeo:within has the following advantages compared to a query that compares literals :
• each conjunction of the comparison query may return many results, since the literal index includes all

kinds of numbers not only coordinates, and each conjunction limits the numbers only to one side. In
contrast, omgeo:within uses a geospatial index which provides a fast 2D search structure

• the comparison query may be problematic if the bounding box spans the +-180 degree meridian
In the following sections we are going to consider three use case scenarios using geospatial functionality.

Local News

In this use case, we want to find works tagged with places nearby a given place (within 50 km) e.g., Leicester.
We could either use the GeoNames URL of Leicester directly (as shown above), or retrieve it by name and
featureCode (as in the query below)17:
prefix gn: <http://www.geonames.org/ontology#>
prefix wgs: <http://www.w3.org/2003/01/geo/wgs#>
prefix ontogeo: <http://www.ontotext.com/owlim/geo#>
prefix cwork: <http://www.bbc.co.uk/ontologies/creativework/>

select distinct ?work {
[gn:name "Leicester"; gn:featureCode gn:P.PPLA2; wgs:lat ?lat; wgs:long ?long].
?work cwork:tag ?place.
?place omgeo:nearby(?lat ?long "50")

}

News About Colocated Places

We want to find works tagged with nearby places (within 10 km) of two specified types (eg Castles near
Mountains). (Note: this query is inspired by a sample query in [6]). For this query, we need to know the
featureCodes of:

17Note: don’t get confused by appearances: the last line is a triple pattern where the object is an rdf:List.

Page 62 of (92)

Deliverable D4.4.2 LDBC

• Castles: S.CSTL
• Mountains: there is a wider choice: T.MT (mountain), T.RDGE (ridge/s), T.MTS (mountains = a moun-

tain range or a group of mountains or high ridges), T.PK (peak). We could even consider T.NTK (nunatak
= a rock or mountain peak protruding through glacial ice; though there are hardly any castles located on
ice), T.VLC (volcano), etc

It also helps to know the cardinalities: Castles are 10x fewer than Mountains (about 3.8k vs 380k). The
SPARQL query below first finds Castles (the smaller cardinality), then finds nearby Mountains.

select * {
?work cwork:tag ?castle, ?mountain.
?castle gn:featureCode S.CSTL;

wgs:lat ?castle_lat; wgs:long ?castle_long; gn:name ?castle_name.
?mountain omgeo:nearby(?castle_lat ?castle_long "10");

wgs:lat ?mountain_lat; wgs:long ?mountain_long; wgs:alt ?mountain_alt;
gn:name ?mountain_name; gn:featureCode ?mountain_feat.

filter (?mountain_feat in (gn:T.MT, gn:T.RDGE, gn:T.MTS, gn:T.PK))
bind (omgeo:distance(?castle_lat, ?castle_long, ?mountain_lat, ?mountain_long) as ?dist)

}

In contrast to the previous query, we also return the names and coordinates of the matched places and the
distance between them (using a geospatial function) in addition to the work.

Country Popularity

In this use case, we want to find the number of works tagged with places in each country. Naturally, this may
count a work towards several countries. But we don’t want to count a work several times if it mentions several
places in a country. This is implemented with the SPARQL query below:

select ?country_name ?country (count(distinct ?work) as ?count) {
{?work cwork:tag ?country}
UNION
{?work cwork:tag ?place. ?place gn:parentCountry ?country}
?country gn:name ?country_name ;

gn:featureCode gn:A.PCLI.
independent political entity
} group by ?country ?country_name

An interesting modification would be to calculate “popularity density” the ratio ?count/?population
(inverse).

Page 63 of (92)

LDBC Deliverable D4.4.2

9 CONCLUSIONS

In this deliverable we defined four different sets of queries, testing different ways in which a forward or back-
ward reasoner can be exploited in a reasoning-aware RDF query engine. These different sets are: conformance,
static tests, selectivity and advanced reasoning tests.

Note that, unlike other benchmarks proposed in the literature [11, 30, 40, 79], the objective of the bench-
marks presented in this work is not to stress the reasoner of the query engine into performing complex forms
of reasoning with large amounts of data, i.e., our intention is not to provide standard workload benchmarks;
instead, our objective is to see how schema information could be exploited for query answering, i.e., whether
it performs sound and complete reasoning, and, second, whether the query engine uses information provided
by reasoning (schema) to perform interesting optimizations of increasing complexity, in order to improve the
query execution plans, and, consequently, the performance of the engine. Our focus was mainly on the second
point, where we showed that there is lots of room for optimizations and heuristics for the query planner, when
the schema information is considered, and provided a series of tests that explores whether such optimizations
are considered.

Page 64 of (92)

Appendices

65

LDBC Deliverable D4.4.2

A REASONING BENCHMARK: SPB TESTS

In this Chapter we present the tests discussed in each of the Chapters 4, 5, 6 and 7 using the SPB schema. For
each test we provide (a) the set of triples that should at least exist in the dataset (preconditions) needed to run
the test. There are cases in which additional triples should be added in the dataset to attain this objective (these
triples are shown in bold); (b) the SPARQL query that implements the semantics of the examined construct
using the SPB ontologies.

We also present the SPB ontologies as those have been provided by BBC, along with additions that we
included to cover the OWL constructs that we study in our work.

A.1 Semantic Publishing Benchmark Ontologies

The Semantic Publishing Benchmark (SPB) uses seven core and three domain RDF ontologies provided by
BBC. The former define the main entities and their properties, required to describe essential concepts of the
benchmark namely, creative works, persons, documents, BBC products (news, music, sport, education, blogs),
annotations (tags), provenance of resources and content management system information. The latter are used
to express concepts from a domain of interest such as football, politics, entertainment among others. The
employed ontologies have 74 classes, 88 and 28 data type and object properties respectively. They con-
tain 60 rdfs:subClassOf, 17 rdfs:subPropertyOf, 105 rdfs:domain and 115 rdfs:range RDFS [12]
properties. On the other hand the ontologies contain a limited number of OWL [43] constructs: they con-
tain 8 owl:oneOf class axioms that allow one to define a class by enumeration of its instances and one
owl:TransitiveProperty property. The ontologies consider few classes, properties and shallow class and
property hierarchies. More specifically, the class hierarchy has a maximum depth of 3 whereas the property
hierarchy has a depth of 1 . A detailed presentation of the ontologies employed by SPB can be found in [29].

In this section we discuss briefly a fragment of the Creative Works core ontology shown in Figure A.1.
Ontologies are represented as node and edge labeled directed graphs where classes and their instances are
depicted by an oval, and properties as edges between nodes, where the name of the property is the label of the
edge.

core:Thing cwork:CreativeWork

String

cwork:title
owl:Thing

core:Theme core:Organisation

core:Event core:Placecore:Person cwork:Programme

cwork:NewsItemcwork:BlogPost

cwork:tag

cwork:shortTitle

String

cwork:category
xsd:Any

cwork:description

String

cwork:Audience

cwork:
International Audience

cwork:
National Audience

cwork:audience

cwork:Format

Textual
Format

cwork:
Video Format

cwork:Interactive Format

Image Format
cwork:

Audio Format

cwork:
PictureGallery Format

cwork:primaryFormat

xsd:dateTime

xsd:dateTime

cwork:dateModified
cwork:dateCreated

cwork:Thumbnail

cwork:thumbnail
p

rdfs:subClassOf
 rdfs:subPropertyOf

rdf:type

cwork:tag

cwork:about cwork:mentions

Figure A.1: BBC Creative Works Ontology

The main class is cwork:CreativeWork (shown in Figure A.1) that collects all RDF descriptions of cre-
ative works (also called journalistic assets) created by the publisher’s editorial team. This class is defined

Page 66 of (92)

Deliverable D4.4.2 LDBC

as a subclass of core:Thing (subclass of owl:Thing), allowing in this way the creation of complex in-
formation graphs. A creative work has a number of properties such as cwork:title, cwork:shortTitle,
cwork:description, cwork:dateModified, cwork:dateCreated, cwork:audience, cwork:format and
cwork:thumbnail among others; it has a category (property cwork:category) and can be tagged (prop-
erty cwork:tag) with anything (i.e., instances of class owl:Thing). The latter property is further specialized
(through the rdfs:subPropertyOf relation) to properties cwork:about and cwork:mentions that are heav-
ily used during the creation of creative works. Creative works can be instances of classes cwork:NewsItem,
cwork:Programme and cwork:BlogPost, all defined as subclasses of class cwork:CreativeWork. The
BBC ontologies also use classes such as core:Place, core:Event, core:Organisation, core:Person, and
core:Theme, all defined as subclasses of class core:Thing.

We extended the provided BBC ontologies with additional constructs such as property and class constraints
shown in Figures A.2 and A.3.

In order to incorporate more OWL constructs, we extended the BBC ontologies as follows with concepts
from DBPedia1 and FOAF2 ontologies. More specifically, we used the FOAF class foaf:Person, and the
DBPedia classes dbpedia:Place, dbpedia:Event, dbpedia:Organisation, dbpedia:Sport all defined as
equivalent to the classes with the same name in the BBC ontologies using the owl:equivalentClass property;
all classes were defined as subclasses of core:Thing. We do not include all their properties as those are defined
in the ontologies, but focus only on the ones that are useful in the context of the semantic publishing benchmark.
Moreover, we used a set of properties from those classes and declared them as equivalent to properties with
the same label defined in their equivalent DBPedia and FOAF classes; equivalence was defined through the
owl:equivalentProperty property. We have also included classes from the Travel Ontology that defines
travel-related entities3, all defined as subclasses of BBC class core:Thing.

As mentioned above, we did not include all classes of the aforementioned ontologies but a subset thereof;
in addition, we included only a subset of their properties. More specifically, for dbpedia:Event, we fo-
cused on properties rdfs:label, rdfs:comment, dbpedia−owl:country and dcterms:subject; for class
dbpedia:Organisation we included data properties rdfs:label and rdfs:comment as well as the ob-
ject properties dbpprop:manager, dbpprop:name, dbpprop:nickname and dbpprop:website. For class
dbpedia:Sport we keep data properties rdfs:comment and dbpprop:caption, and object properties
dbpprop:olympic, dbpprop:team and dbpprop:equipment. Last in the case of class dbpedia:Place we
used data properties foaf:name, rdfs:comment and object properties dbpedia−owl:country and geo:geometry.

Regarding the FOAF ontology we focused our attention on the foaf:Person class; we considered its data
type properties foaf:name, foaf:surname, foaf:givenName, dc:description, dbpedia−owl:birthDate,
dbpedia−owl:deathDate and object properties dbpedia−owl:birthPlace and dbpedia−owl:deathPlace.

From the Travel ontology we included classes travel:AdministrativeDivision, travel:bodyOfLand,
travel:City, travel:TierOneAdministrativeDivision, travel:Coastline, travel:Continent,
travel:Country, travel:Island, travel:EuropeanIsland, travel:River to create a class hierarchy of
length 3 with its root being class owl:Thing. Finally, we also considered classes travel:Recognised defined
as a subclass of owl:Thing.

The enhanced SPB schema contains 31 classes, 38 and 98 data type and object properties respectively;
it contains 83 rdfs:subClassOf, 19 rdfs:subPropertyOf, 134 rdfs:domain and 145 rdfs:range, 18
owl:equivalentProperty, 8 owl:equivalentClass, 3 owl:FunctionalProperty, 8 owl:disjointWith,
1 owl:AsymmetricProperty, 1 owl:IrreflexiveProperty, 1 owl:propertyChainAxiom,
1 owl:InverseFunctionalProperty, , 4 owl:intersectionOf, 1 owl:unionOf properties.

Figures A.4 and A.5 show a part of the triples considered from the DBPedia, FOAF and Travel ontologies
and their relationship with the core BBC ontologies.

1DBPedia: dbpedia.org
2The Friend of a Friend (FOAF) project: http://www.foaf-project.org/
3Travel Ontology: http://swatproject.org/travelOntology.asp

Page 67 of (92)

LDBC Deliverable D4.4.2

ldbc:partOf
rdf:type rdf:Property ;
rdfs:domain bbc:WebDocument ;
rdfs:range bbc:WebDocument ;
rdf:type owl:AsymmetricProperty ;
rdf:type owl:TransitiveProperty ;
rdf:type owl:IrreflexiveProperty .

ldbc:cworkThumbnailAltText
rdf:type rdf:Property ;
rdfs:domain cwork:CreativeWork ;
rdfs:range xsd:string ;
owl:propertyChainAxiom (cwork:thumbnail cwork:altText) .

news:Theme
owl:unionOf (ldbc:Sport ldbc:Politics ldbc:Music ldbc:Art) .

news:Event
owl:intersectionOf (news:Person news:Organisation) .

bbc:Platform
owl:oneOf (bbc:HighWeb bbc:Mobile) .

bbc:primaryContentOf
rdf:type owl:ObjectProperty ;
rdfs:comment "Inverse of bbc:primaryContent"^^xsd:string ;
rdfs:domain cwork:CreativeWork ;
rdfs:isDefinedBy bbc: ;
rdfs:range bbc:WebDocument ;
owl:inverseOf bbc:primaryContent .

bbc:primaryContent
rdf:type owl:FunctionalProperty .

core:disambiguationHint
rdf:type owl:InverseFunctionalProperty ;
rdf:type owl:FunctionalProperty .

core:facebook
owl:propertyDisjointWith core:twitter .

core:twitter
owl:propertyDisjointWith core:facebook .

_:node1 a owl:AllDisjointProperties ;
owl:members (cwork:tag cwork:audience cwork:primaryFormat
cwork:thumbnail) .

_:node2 a owl:AllDisjointClasses ;
owl:members (cwork:NewsItem cwork:BlogPost cwork:Programme) .

ldbc:dateDestroyed
rdf:type owl:DatatypeProperty ;

rdfs:domain cwork:CreativeWork ;
rdfs:range xsd:string .

ldbc:Event_Place_Theme
owl:intersectionOf (dbpedia-owl:Event dbpedia-owl:Place core:Theme).

Figure A.2: Enhancements to the SPB ontologies with class and property constraints (a)

Page 68 of (92)

Deliverable D4.4.2 LDBC

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty ldbc:dateDestroyed ;
owl:maxCardinality "0"^^xsd:NonNegativeInteger

] .

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty cwork:thumbnail ;
owl:cardinality "1"^^xsd:NonNegativeInteger

] .

cwork:NewsItem
owl:disjointWith cwork:Programme, cwork:BlogPost .

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty cwork:audience ;
owl:minCardinality "0"^^xsd:NonNegativeInteger ;
owl:maxCardinality "2"^^xsd:NonNegativeInteger ;

] .

core:Thing
owl:hasKey (core:shortLabel core:preferredLabel

core:disambiguationHint core:primaryTopicOf) .

cwork:dateModified
rdf:type owl:FunctionalProperty .

Figure A.3: Enhancements to the SPB ontologies with class and property constraints (b)

dbpedia-owl:Event
rdf:type owl:Class ;
owl:equivalentClass core:Event ;
owl:disjointWith dbpedia-owl:Person .

dbpedia-owl:chairperson
rdf:type owl:ObjectProperty ;
rdfs:range dbpedia-owl:Person .

dbpedia-owl:hometown
rdf:type owl:ObjectProperty;
rdfs:domain dbpedia-owl:Person ;
rdfs:label "hometown"^^xsd:string ;
rdfs:range dbpedia-owl:Settlement .

dbpedia-owl:birthDate
owl:equivalentProperty core:birthDate .

Figure A.4: Dbpedia schema triples used in SPB tests

Page 69 of (92)

LDBC Deliverable D4.4.2

travel:SaltLake
rdfs:subClassOf travel:BodyOfSeaWater .

travel:BodyOfSeaWater
rdfs:subClassOf travel:BodyOfWater .

travel:BodyOfWater
rdfs:subClassOf travel:GeographicalFeature .

travel:GeographicalFeature
rdfs:subClassOf travel:Natural_physical_thing .

travel:Natural_physical_thing
rdfs:subClassOf travel:Natural_entity .

travel:Natural_entity
rdfs:subClassOf travel:Physical_entity .

travel:nextTo
rdf:type owl:SymmetricProperty, owl:ObjectProperty .

travel:hasMemberIsland
owl:inverseOf travel:isMemberIslandOf .

Figure A.5: Travel schema triples used in SPB tests

A.2 Conformance Tests

A.2.1 Class and Property Subsumption

Class Subsumption (CAX-SCO)

Preconditions

cwork:BlogPost
rdfs:subClassOf cwork:CreativeWork .

things:cw-cax-sco-1#id
rdf:type cwork:BlogPost .

SPARQL Query

ASK { things:cw-cax-sco-1#id rdf:type cwork:CreativeWork }

Property Subsumption (PRP-SPO1)

Preconditions

cwork:about
rdf:type owl:ObjectProperty ;
rdfs:subPropertyOf cwork:tag .

things:pr-scm-spo-1#id
rdf:type rdf:Property ;
rdfs:subPropertyOf cwork:about .

things:cw-cax-sco-1#id
things:pr-scm-spo-1#id tags:tag-cax-sco-spo-1#id .

Page 70 of (92)

Deliverable D4.4.2 LDBC

SPARQL Query

ASK { things:cw-cax-sco-1#id cwork:about tags:tag-cax-sco-spo-1#id .
FILTER NOT EXISTS{ things:cw-cax-sco-1#id cwork:tag tags:tag-cax-sco-spo-1#id}}

Class Subsumption (SCM-SCO)

Preconditions

cwork:BlogPost
rdf:type owl:Class ;
rdfs:subClassOf cwork:CreativeWork .

cwork:CreativeWork
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing .

SPARQL Query

ASK { cwork:BlogPost rdfs:subClassOf owl:Thing }

Property Subsumption (SCM-SPO)

Preconditions

things:pr-scm-spo-1#id
rdf:type rdf:Property ;
rdfs:subPropertyOf cwork:about .

cwork:about
rdf:type owl:ObjectProperty ;
rdfs:subPropertyOf cwork:tag .

SPARQL Query

ASK { things:pr-scm-spo-1#id rdfs:subPropertyOf cwork:tag }

A.2.2 Property Domain and Range

Property Range (SCM-RNG1)

Preconditions

news:person
rdf:type owl:ObjectProperty ;
rdfs:range news:Person .

news:Person
rdf:type owl:Class ;
rdfs:subClassOf core:Person .

core:Person
rdf:type owl:Class ;
rdfs:subClassOf core:Thing .

Page 71 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

ASK { news:person rdfs:range core:Person .
FILTER NOT EXISTS { news:person rdfs:range core:Thing } }

Property Range (SCM-RNG2)

Preconditions

cwork:tag
rdf:type owl:ObjectProperty ;
rdfs:range core:Thing .

things:dr-scm-rng2-1#id
rdf:type rdf:Property ;
rdfs:subPropertyOf cwork:tag .

SPARQL Query

ASK { things:dr-scm-rng2-1#id rdfs:range core:Thing }

Property Domain (SCM-DOM1)

Preconditions

news:person
rdf:type owl:ObjectProperty ;
rdfs:domain news:Event .

news:Event
rdf:type owl:Class ;
rdfs:subClassOf core:Event .

SPARQL Query

ASK { news:person rdfs:domain core:Event }

Property Domain (SCM-DOM2)

Preconditions

cwork:about
rdf:type owl:ObjectProperty ;
rdfs:domain cwork:CreativeWork .

events:cw-prp-scm-dom2-1#id
rdf:type rdf:Property ;
rdfs:subPropertyOf cwork:about .

SPARQL Query

ASK { events:cw-prp-scm-dom2-1#id rdfs:domain cwork:CreativeWork }

Page 72 of (92)

Deliverable D4.4.2 LDBC

Property Domain (PRP-DOM)

Preconditions

events:event-prp-dom-rng-1#id
news:person org:org-prp-dom-rng-1#id .

news:person
rdf:type owl:ObjectProperty ;
rdfs:domain news:Event .

SPARQL Query

ASK { events:event-prp-dom-rng-1#id rdf:type news:Event .
events:event-prp-dom-rng-1#id news:person ?org }

Property Range (PRP-RNG)

Preconditions

news:person
rdf:type owl:ObjectProperty ;
rdfs:range news:Person .

news:Person
rdfs:subClassOf core:Person .

core:Person
rdfs:subClassOf core:Thing .

core:Thing
rdfs:subClassOf owl:Thing .

events:event-prp-dom-rng-1#id
news:person org:org-prp-dom-rng-1#id .

SPARQL Query

ASK { org:org-prp-dom-rng-1#id rdf:type owl:Thing .
?event news:person org:org-prp-dom-rng-1#id }

A.2.3 Union and Intersection of Classes

Union of Classes (SCM-UNI)

Preconditions

news:Theme
owl:unionOf (ldbc:Sport ldbc:Politics ldbc:Music ldbc:Art) .

SPARQL Query

ASK { ldbc:Sport rdfs:subClassOf news:Theme .
ldbc:Politics rdfs:subClassOf news:Theme .
ldbc:Music rdfs:subClassOf news:Theme .
ldbc:Art rdfs:subClassOf news:Theme }

Page 73 of (92)

LDBC Deliverable D4.4.2

Union of Classes (SCM-UNI, CAX-SCO)

Preconditions

news:Theme
owl:unionOf (ldbc:Sport ldbc:Politics ldbc:Music ldbc:Art) .

things:sport-scm-uni-1#id
rdf:type ldbc:Sport .

SPARQL Query

ASK { things:sport-scm-uni-1#id rdf:type news:Theme}

Intersection of Classes (SCM-INT)

Preconditions

news:Event
owl:intersectionOf (news:Person news:Organisation) .

things:sport-scm-int-1#id
rdf:type news:Event .

SPARQL Query

SELECT ?x
WHERE { news:Event rdfs:subClassOf ?x }

Intersection of Classes (SCM-INT, CAX-SCO)

Preconditions

things:sport-scm-int-1#id
rdf:type news:Event .

news:Event
owl:intersectionOf (news:Person news:Organisation) .

SPARQL Query

ASK { things:sport-scm-int-1#id rdf:type news:Person .
things:sport-scm-int-1#id rdf:type news:Organisation }

A.2.4 Enumeration of Individuals

Enumeration of Individuals (CLS-OO)

Preconditions

bbc:Platform
owl:oneOf (bbc:HighWeb bbc:Mobile) ;

Page 74 of (92)

Deliverable D4.4.2 LDBC

SPARQL Query

ASK { bbc:HighWeb rdf:type bbc:Platform .
bbc:Mobile rdf:type bbc:Platform }

A.2.5 Equality

Equality (EQ-REF)

Preconditions
things:cw-eq-ref-1#id

bbc:primaryContentOf things:webdoc-eq-ref-1#id .

SPARQL Query

ASK { things:cw-eq-ref-1#id owl:sameAs things:cw-eq-ref-1#id .
bbc:primaryContentOf owl:sameAs bbc:primaryContentOf .
?o owl:sameAs ?o .
things:cw-eq-ref-1#id bbc:primaryContentOf ?o }

Equality (EQ-SYM)

Preconditions
things:cw-eq-sym-1#id

bbc:primaryContentOf things:webdoc-eq-sym-1#id ;
owl:sameAs things:cw-eq-sym-2#id .

SPARQL Query

ASK { things:cw-eq-sym-2#id owl:sameAs things:cw-eq-sym-1#id }

Equality (EQ-TRANS)

Preconditions
things:cw-eq-trans-1#id

owl:sameAs things:cw-eq-trans-2#id .

things:cw-eq-trans-2#id
owl:sameAs things:cw-eq-trans-3#id .

SPARQL Query

SELECT ?z
WHERE { things:cw-eq-trans-1#id owl:sameAs ?z }

Equality (EQ-REP-S)

Preconditions
things:cw-eq-trans-1#id

owl:sameAs things:cw-eq-trans-2#id .

things:cw-eq-trans-1#id
bbc:primaryContentOf things:webdoc-eq-trans-1#id .

Page 75 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

ASK { things:cw-eq-trans-2#id bbc:primaryContentOf things:webdoc-eq-trans-1#id }

Equality (EQ-REP-P)

Preconditions

ldbc:referTo
owl:sameAs ldbc:refersTo .

things:cw-eq-trans-2#id
ldbc:referTo things:bbc-product-eq-trans-1#id .

SPARQL Query

ASK { things:cw-eq-trans-2#id ldbc:refersTo things:bbc-product-eq-trans-1#id }

Equality (EQ-REP-O)

Preconditions

things:webdoc-eq-trans-1#id
owl:sameAs things:webdoc-eq-trans-2#id .

things:cw-eq-trans-1#id
bbc:primaryContentOf things:webdoc-eq-trans-1#id .

SPARQL Query

ASK { things:cw-eq-trans-1#id bbc:primaryContentOf things:webdoc-eq-trans-2#id }

A.2.6 Inverse of Properties

Inverse of Properties (PRP-INV1)

Preconditions

bbc:primaryContent
owl:inverseOf bbc:primaryContentOf .

things:cw-prp-inv1-webdocument-1
bbc:primaryContent things:cw-prp-inv1#id .

SPARQL Query

ASK {things:cw-prp-inv1#id bbc:primaryContentOf things:cw-prp-inv1-webdocument-1}

Page 76 of (92)

Deliverable D4.4.2 LDBC

Inverse of Properties (PRP-INV2)

Preconditions

bbc:primaryContent
owl:inverseOf bbc:primaryContentOf .

things:cw-prp-inv1#id
bbc:primaryContentOf things:cw-prp-inv1-webdocument-1 .

SPARQL Query

ASK { things:cw-prp-inv1-webdocument-1 bbc:primaryContent things:cw-prp-inv1#id }

A.2.7 Constraints on Properties

Constraints on Properties (PRP-FP)

Preconditions

core:disambiguationHint
rdf:type owl:InverseFunctionalProperty, owl:FunctionalProperty .

things:thing-prp-ifp-1#id
core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id" .

things:thing-prp-ifp-2#id
core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id".

SPARQL Query

ASK { "hint for things:thing-prp-ifp-1-2#id"
owl:sameAs "hint for things:thing-prp-ifp-1-2#id" }

Constraints on Properties (PRP-IFP)

Preconditions

core:disambiguationHint
rdf:type owl:InverseFunctionalProperty, owl:FunctionalProperty .

things:thing-prp-ifp-1#id
core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id" .

things:thing-prp-ifp-2#id
core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id".

SPARQL Query

ASK { things:thing-prp-ifp-1#id owl:sameAs things:thing-prp-ifp-2#id }

Constraints on Properties (PRP-ASYP)

Preconditions

ldbc:partOf
rdf:type rdf:Property, owl:AsymmetricProperty .

Page 77 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

INSERT DATA {
things:cw-prp-asyp-constr-1#id

bbc:primaryContentOf things:prp-asyp-webdocument-1#id .

things:cw-prp-asyp-constr-2#id
bbc:primaryContentOf things:prp-asyp-webdocument-2#id .

things:prp-asyp-webdocument-1#id
ldbc:partOf things:prp-asyp-webdocument-2#id .

things:prp-asyp-webdocument#2
ldbc:partOf things:prp-asyp-webdocument-1#id }

Constraints on Properties (PRP-IRP)

Preconditions

ldbc:partOf
rdf:type rdf:Property, owl:IrreflexiveProperty .

SPARQL Query

INSERT DATA {
things:cw-prp-irp-constr#id

bbc:primaryContentOf things:cw-prp-irp-webdocument-1 .

things:cw-prp-irp-webdocument-1
ldbc:partOf things:cw-prp-irp-webdocument-1 }

Constraints on Properties (PRP-TRP)

Preconditions

sport:subDisciplineOf
rdf:type owl:TransitiveProperty, owl:ObjectProperty ;

sports:sportsdiscipline-prp-trp-1#id
sport:subDiscipline sports:sportsdiscipline-prp-trp-2#id .

sports:sportsdiscipline-prp-trp-2#id
sport:subDiscipline sports:sportsdiscipline-prp-trp-3#id .

SPARQL Query

ASK { sports:sportsdiscipline-prp-trp-1#id
sport:subDiscipline sports:sportsdiscipline-prp-trp-3#id }

Page 78 of (92)

Deliverable D4.4.2 LDBC

A.2.8 Class Keys

Class Keys (PRP-KEY)

Preconditions

core:Thing
owl:hasKey (core:shortLabel core:preferredLabel

core:disambiguationHint core:primaryTopicOf) .

cwork:BlogPost
rdf:type owl:Class ;
rdfs:subClassOf cwork:CreativeWork .

cwork:CreativeWork
rdf:type owl:Class ;
rdfs:subClassOf owl:Thing .

things:cw-prp-key-1-constr#id
rdf:type cwork:BlogPost ;
core:shortLabel "label1" ;
core:primaryTopicOf things:cw-prp-key-webdocument-1 .

things:cw-prp-key-2-constr#id
rdf:type cwork:CreativeWork;
core:shortLabel "label1" ;
core:primaryTopicOf things:cw-prp-key-webdocument-1 .

SPARQL Query

ASK { things:cw-prp-key-1-constr#id owl:sameAs things:cw-prp-key-2-constr#id }

A.2.9 Property Chains

Property Chains (PRP-SPO2)

Preconditions

ldbc:cworkThumbnailAltText
rdf:type rdf:Property ;
owl:propertyChainAxiom (cwork:thumbnail cwork:altText) .

things:cw-prp-spo2#id
rdf:type cwork:CreativeWork ;
cwork:thumbnail thumbnail:cw-prp-spo2-thumbnail .

thumbnail:cw-prp-spo2-thumbnail
cwork:altText "AltText for CW: things:cw-prp-spo2#id" .

SPARQL Query

ASK {
things:cw-prp-spo2#id

ldbc:cworkThumbnailAltText "AltText for CW: things:cw-prp-spo2#id" }

Page 79 of (92)

LDBC Deliverable D4.4.2

A.2.10 Disjoint Classes and Properties

Disjoint Classes and Properties (PRP-PDW)

Preconditions

core:facebook
owl:propertyDisjointWith core:twitter .

core:twitter
owl:propertyDisjointWith core:facebook .

SPARQL Query

INSERT DATA {
things:cw-prp-pdw-constr#id

cwork:title
"Constraint Violation test for owl:propertyDisjointWith" ;

rdf:type cwork:CreativeWork ;
core:facebook things:cw-prp-pdw-webdocument-1 ;
core:twitter things:cw-prp-pdw-webdocument-1 }

Disjoint Classes and Properties (PRP-ADP)

Preconditions

_:node1
rdf:type owl:AllDisjointProperties ;
owl:members (cwork:tag cwork:audience

cwork:primaryFormat cwork:thumbnail) .

SPARQL Query

INSERT DATA {
things:cw-prp-adp-constr#id a cwork:NewsItem ;

cwork:title
"Constraint Violation test for owl:AllDisjointProperties" ;

cwork:about things:value-1#id;
cwork:primaryFormat things:value-1#id;
cwork:audience things:value-1#id;
cwork:thumbnail things:value-1#id }

Disjoint Classes and Properties (CAX-DW)

Preconditions

cwork:NewsItem owl:disjointWith cwork:Programme .

SPARQL Query

INSERT DATA {
things:cw-cax-dw-const#id

rdf:type cwork:NewsItem, cwork:Programme . }

Page 80 of (92)

Deliverable D4.4.2 LDBC

Disjoint Classes and Properties (CAX-ADC)

Preconditions

_:node2
rdf:type owl:AllDisjointClasses ;
owl:members (cwork:NewsItem cwork:BlogPost cwork:Programme) .

SPARQL Query

INSERT DATA {
things:cw-cax-adc-constr#id

rdf:type cwork:NewsItem, cwork:BlogPost, cwork:Programme .}

A.2.11 Cardinalities

Cardinalities (CLS-MAXC1)

Preconditions

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty ldbc:dateDestroyed ;
owl:maxCardinality "0"^^xsd:NonNegativeInteger

] .

SPARQL Query

INSERT DATA {
things:cw-cls-maxc1-constr#id

rdf:type cwork:CreativeWork ;
ldbc:dateDestroyed "1.1.1990" . }

Cardinalities (CLS-MAXC2)

Preconditions

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty cwork:thumbnail ;
owl:cardinality "1"^^xsd:NonNegativeInteger

] .

SPARQL Query

INSERT DATA {
things:cw-cls-maxc2-constr#cwork-id1

rdf:type cwork:CreativeWork ;
cwork:thumbnail things:cw-cls-maxc2-constr#thumbnail-id1 ;
cwork:thumbnail things:cw-cls-maxc2-constr#thumbnail-id2 .}

Page 81 of (92)

LDBC Deliverable D4.4.2

A.3 Static Tests

A.3.1 Equality of Classes (owl:equivalentClass)
Preconditions

dbpedia-owl:Event owl:equivalentClass core:Event .

SPARQL Query

SELECT ?plc
WHERE {

?plc rdf:type dbpedia-owl:Place .
?plc foaf:name ?name .
?plc rdfs:comment ?comm .
?plc dbpedia-owl:country ?cntr .
?plc geo:geometry ?geo .
FILTER NOT EXISTS { ?plc rdf:type core:Event } }

A.3.2 Disjointness of Classes (owl:disjointWith)
Preconditions

cwork:NewsItem
owl:disjointWith cwork:BlogPost .

SPARQL Query

SELECT ?datec ?datem ?descr ?title
WHERE {

?ent rdf:type cwork:NewsItem .
?ent rdf:type cwork:BlogPost .
?ent cwork:dateCreated ?datec .
?ent cwork:dateModified ?datem .
?ent cwork:description ?descr .
?ent cwork:title ?title }

A.3.3 Equality of Properties (owl:equivalentProperty)
Preconditions

dbpedia-owl:birthDate owl:equivalentProperty core:birthDate .
core:birthDate rdf:type owl:FunctionalProperty .

SPARQL Query

SELECT ?mart
WHERE {

?mart rdf:type dbpedia-owl:musicalArtist .
?mart dbpprop:name ?name .
?mart dbpedia-owl:birthDate ?bdate1 .
?mart core:birthDate ?bdate2
?mart dbpedia-owl:birthPlace ?place .
?mart dbpedia-owl:genre ?genre .
?mart dbpedia-owl:hometown ?htown .
?bdate1 owl:differentFrom ?bdate2 }

Page 82 of (92)

Deliverable D4.4.2 LDBC

A.3.4 Range of Properties (rdfs:range, owl:disjointWith)
Preconditions
dbpedia-owl:Event

rdf:type owl:Class;
owl:disjointWith dbpedia-owl:Person;

dbpedia-owl:chairperson
rdf:type owl:ObjectProperty ;
rdfs:range dbpedia-owl:Person .

SPARQL Query

SELECT ?ev
WHERE {

?ev rdf:type dbpedia-owl:Event .
?u dbpedia-owl:chairperson ?ev .
?u dbpprop:country ?cntr .
?u dcterms:subject ?sub .
?u dbpedia-owl:result ?res .
?u dbpedia-owl:place ?plc }

A.3.5 Domain of Properties (rdfs:domain, owl:disjointWith)
Preconditions
dbpedia-owl:Event

rdf:type owl:Class ;
owl:disjointWith dbpedia-owl:Person .

dbpedia-owl:hometown
rdf:type owl:ObjectProperty ;
rdfs:domain dbpedia-owl:Person .

SPARQL Query

SELECT ?ev
WHERE {

?ev rdf:type dbpedia-owl:Event .
?ev dbpedia-owl:hometown ?htown .
?ev dcterms:subject ?sub .
?ev dbpprop:country ?cntry .
?ev rdfs:label ?label .
?ev rdfs:comment ?comm }

A.3.6 Uniqueness of Property Values (owl:FunctionalProperty)
Preconditions
bbc:primaryContent

rdf:type owl:FunctionalProperty .

things:contr-1#id
rdf:type cwork:CreativeWork .

things:contr-2#id
rdf:type cwork:CreativeWork ;
owl:differentFrom things:contr-1#id .

Page 83 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

SELECT ?webdoc
WHERE {

?webdoc rdf:type bbc:WebDocument .
?webdoc cwork:dateCreated ?dateC .
?webdoc cwork:dateModified ?dateM .
?webdoc cwork:description ?descr .
?webdoc bbc:primaryContent things:contr-1#id .
?webdoc bbc:primaryContent things:contr-2#id }

A.4 Selectivity Tests

A.4.1 Cardinality

Preconditions

cwork:dateModified
rdf:type owl:FunctionalProperty .

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty cwork:thumbnail ;
owl:cardinality "1"^^xsd:NonNegativeInteger

] .

cwork:CreativeWork rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty cwork:audience ;
owl:minCardinality "0"^^xsd:NonNegativeInteger ;
owl:maxCardinality "2"^^xsd:NonNegativeInteger ;

] .

SPARQL Query

SELECT ?cw
WHERE {

?cw rdf:type cwork:CreativeWork .
?cw cwork:mentions ?ment .
?cw cwork:tag ?tag .
?cw cwork:thumbnail ?thumb .
?cw cwork:audience ?aud .
?cw cwork:dateModified ?dt }

A.4.2 Intersection of Classes (owl:intersectionOf)

Preconditions

news:Event
owl:intersectionOf (news:Person news:Organisation) .

SPARQL Query

Page 84 of (92)

Deliverable D4.4.2 LDBC

SELECT ?ev
WHERE {

?ev rdf:type news:Event .
?ev news:person ?per .
?per rdf:type news:Person .
?ev news:organisation ?org .
?org rdf:type news:Organisation }

A.4.3 Union of Classes (owl:unionOf)

Preconditions

news:Theme
owl:unionOf (ldbc:Sport ldbc:Politics ldbc:Music ldbc:Art) .

SPARQL Query

SELECT ?theme
WHERE {

?theme rdf:type news:Theme .
?theme news:notablyAssociatedWith ?sport .
?sport rdf:type ldbc:Sport .
?sport news:notablyAssociatedWith ?mus .
?mus rdf:type ldbc:Music }

A.4.4 Hierarchy of Classes (rdfs:subClassOf)

Preconditions

news:Event
rdfs:subClassOf core:Event .

core:Event
rdfs:subClassOf core:Thing .

SPARQL Query

SELECT ?time ?place ?theme
WHERE {

?ev rdf:type news:Event .
?ev rdf:type core:Thing .
?ev news:time ?time .
?ev news:place ?place .
?ev news:theme ?theme }

A.4.5 Hierarchy of Properties (rdfs:subPropertyOf)

Preconditions

cwork:mentions
rdfs:subPropertyOf cwork:tag .

Page 85 of (92)

LDBC Deliverable D4.4.2

SPARQL Query

SELECT ?ment
WHERE {

?cw rdf:type cwork:CreativeWork .
?cw cwork:mentions ?ment.
?cw cwork:tag ?ment }

A.5 Advanced Tests

A.5.1 Optimized Inference (rdfs:subClassOf owl:allValuesFrom)

Preconditions

@prefix travel: <http://www.co-ode.org/roberts/travel.owl#> .

travel:SaltLake
rdfs:subClassOf travel:BodyOfSeaWater .

travel:BodyOfSeaWater
rdfs:subClassOf travel:BodyOfWater .

travel:BodyOfWater
rdfs:subClassOf travel:GeographicalFeature .

travel:GeographicalFeature
rdfs:subClassOf travel:Natural_physical_thing .

travel:Natural_physical_thing
rdfs:subClassOf travel:Natural_entity .

travel:Natural_entity
rdfs:subClassOf travel:Physical_entity .

travel:Harbour rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:allValuesFrom travel:Physical_entity ;
owl:onProperty [

travel:locatedIn rdf:type owl:DatatypeProperty ;
rdfs:comment "A custom property defined for checking advanced test 1"

]
] .

SPARQL Query

SELECT ?harb
WHERE {

?harb travel:locatedIn ?slake .
?harb rdf:type travel:Harbour .
?slake rdf:type travel:Physical_entity .
?slake rdf:type travel:SaltLake }

Page 86 of (92)

Deliverable D4.4.2 LDBC

A.5.2 Redundant Triple Pattern Elimination (owl:intersectionOf)

Preconditions

ldbc:Event_Place_Theme
owl:intersectionOf (dbpedia-owl:Event dbpedia-owl:Place core:Theme) .

SPARQL Query

SELECT ?ev
WHERE {

?ev rdf:type ldbc:Event_Place_Theme
?ev rdf:type dbpedia-owl:Event .
?ev rdf:type dbpedia-owl:Place .
?ev rdf:type core:Theme }

A.5.3 Star Query Transformation (owl:SymmetricProperty)

Preconditions

@prefix travel: <http://www.co-ode.org/roberts/travel.owl#> .

travel:nextTo
rdf:type owl:SymmetricProperty, owl:ObjectProperty .

SPARQL Query

SELECT ?st ?rs ?do
WHERE {

?cntry rdf:type travel:Country .
?cntry travel:hasHeadOfState ?st .
?cntry travel:hasRecognitionStatus ?rs .
?cntry travel:dependencyOf ?do .
?cntry1 travel:nextTo ?cntry }

A.5.4 Intermediate Results Reduction (owl:sameAs)

Preconditions

bbc:sameAs
owl:equivalentProperty owl:sameAs .

<http://www.bbc.co.uk/things/g3947cd18-59c0-45e7-aa00-4252b335a111#id>
a news:Person ;
bbc:preferredLabel "Diane Abbott" ;
bbc:sameAs <http://dbpedia.org/resource/Diane_Abbott>,

<http://www.wikidata.org/wiki/Q153454>,
<http://rdf.freebase.com/ns/m.0kmws> .

SPARQL Query

SELECT ?bdate
WHERE {

<http://www.bbc.co.uk/things/g3947cd18-59c0-45e7-aa00-4252b335a111#id>
dbpedia-owl:birthDate ?bdate ;

Page 87 of (92)

LDBC Deliverable D4.4.2

rdf:type ?class .
?y rdf:type xsd:date .
?class rdfs:subClassOf ?class2 .
?class2 rdfs:subClassOf core:Thing }

A.5.5 Cardinalities Estimation (owl:TransitiveProperty)

Preconditions

ldbc:partOf
rdf:type rdf:Property, owl:TransitiveProperty .

things:webdocument-1#id
ldbc:partOf things:webdocument-2#id .

things:webdocument-2id
ldbc:partOf things:webdocument-3#id .

things:webdocument-3#id
ldbc:partOf things:webdocument-4#id .

things:webdocument-4#id
ldbc:partOf things:webdocument-5#id .

things:webdocument-5#id
ldbc:partOf things:webdocument-6#id .

things:webdocument-6#id
ldbc:partOf things:webdocument-7#id .

things:webdocument-7#id
ldbc:partOf things:webdocument-8#id .

SPARQL Query

SELECT ?wd2 ?pcont ?prod ?plat
WHERE {

?wd rdf:type bbc:WebDocument .
?wd ldbc:partOf ?wd2 .
?wd bbc:primaryContent ?pcont .
?wd bbc:product ?prod .
?wd bbc:platform ?plat }

Page 88 of (92)

Deliverable D4.4.2 LDBC

REFERENCES

[1] The CIDOC-CRM Conceptual Reference Model. http://www.cidoc-crm.org/.

[2] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB, 2007.

[3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. SW-Store: A Vertically Partitioned DBMS for
Semantic Web Data Management. VLDB Journal, 18(2), April 2009.

[4] V. Alexiev. Implementing CIDOC CRM search based on fundamental relations and OWLIM rules. In
SDA, 2012. In conjunction with TPDL.

[5] V. Alexiev. Extending OWL2 Property Constructs with OWLIM Rules. Draft, http://
vladimiralexiev.github.io/pres/extending-owl2/index.html, August 2014.

[6] V. Alexiev, J. Cobb, G. Garcia, and P. Harpring. Getty Vocabularies Linked Open Data: Semantic Repre-
sentation. http://vocab.getty.edu/doc/, 2014.

[7] V. Alexiev, D. Manov, J. Parvanova, and S. Petrov. Large-scale Reasoning with a Complex Cultural
Heritage Ontology (CIDOC CRM). In Workshop on Practical Experiences with CIDOC CRM and its
Extensions (CRMEX), 2013. In conjunction with TPDL.

[8] L. Baolin and H. Bo. HPRD: A High Performance RDF Database. In Network and Parallel Computing,
pages 364–374, 2007.

[9] B. Bishop and S. Bojanov. Implementing OWL 2 RL and OWL 2 QL Rule-Sets for OWLIM. In M. Du-
montier and M. Courtot, editors, OWL: Experiences and Directions (OWLED), volume 796 of CEUR
Workshop Proceedings. CEUR-WS.org, 2011.

[10] C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic Web and Inf. Sy., 5(2), 2009.

[11] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking owl reasoners. In ARea2008 Workshop, 2008.

[12] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. www.w3.org/
TR/2004/REC-rdf-schema-20040210, 2004.

[13] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic architecture for storing and querying
RDF and RDF Schema. In ISWC. Springer, 2002.

[14] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient SQL-based RDF querying scheme. In
VLDB, 2005.

[15] LDBC Consortium. Semantic Publishing Benchmark: Additional Datasets. https://github.com/
ldbc/ldbc_spb_optional_datasets, 2014.

[16] Open Geospatial Consortium. GeoSPARQL - A Geographic Query Language for RDF Data. http:
//www.opengeospatial.org/standards/geosparql, September 2012.

[17] Ontotext Corp. KIM Showcase: LatestNews Faceted Search. http://ln.ontotext.com/KIM/
screen/CoreSearch.jsp, 2006-2011.

[18] Ontotext Corp. GraphDB-SE Geo-spatial Extensions. http://owlim.ontotext.com/display/
GraphDB6/GraphDB-SE+Geo-spatial+Extensions, 2012.

[19] Ontotext Corp. OWLIM-SE Reasoner. http://owlim.ontotext.com/display/OWLIMv54/
OWLIM-SE+Reasoner, 2013.

Page 89 of (92)

LDBC Deliverable D4.4.2

[20] Ontotext Corp. GraphDB Connectors. http://owlim.ontotext.com/display/GraphDB6/
GraphDB+Connectors, 2014.

[21] Ontotext Corp. GraphDB Lucene4 Plug in (deprecated). http://owlim.ontotext.com/
display/GraphDB6/Lucene4+Plug-in+%28deprecated%29, 2014.

[22] Ontotext Corp. Solr GraphDB Connector. http://owlim.ontotext.com/display/
GraphDB6/Solr+GraphDB+Connector, 2014.

[23] M. Dean and G. Schreiber. OWL Web Ontology Language Reference. http://www.w3.org/TR/
owl-ref, 2004.

[24] O. Erling and I. Mikhailov. RDF Support in Virtuoso DBMS. In Networked Knowledge - Networked
Media, SCI, 2009.

[25] B. McBride F. Manola, E. Miller. RDF Primer. www.w3.org/TR/rdf-primer, February 2004.

[26] Apache Software Foundation. Solr Wiki: Simple Facet Parameters. https://wiki.apache.org/
solr/SimpleFacetParameters, 2013.

[27] I. Fundulaki. D1.1.1: Overview and Analysis of Existing Benchmark Frameworks. LDBC Deliverable
D1.1.1, 2013.

[28] I. Fundulaki. D4.4.1: Use case analysis and classification of choke points. LDBC Deliverable D4.4.1,
2013.

[29] I. Fundulaki, N. Martinez, R. Angles, B. Bishop, and V. Kotsev. D2.2.2 Data Generator. Tech-
nical report, Linked Data Benchmark Council, 2013. Available at http://ldbc.eu/results/
deliverables.

[30] T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison of description logic
reasoners. In ISWC. Springer, 2006.

[31] V. Haarslev and R. Müller. Racer system description. In Automated Reasoning. Springer, 2001.

[32] A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A Federated Repository for Querying Graph
Structured Data from the Web. In ISWC, 2007.

[33] O. Hartig and R. Heese. The SPARQL Query Graph Model for Query Optimization. In ESWC, 2007.

[34] P. Hayes. RDF semantics. http://www.w3.org/TR/rdf-mt/, 2004. W3C Recommendation, 10
February 2004.

[35] P. Hitzler. Suggestions for OWL 3. In Rinke Hoekstra and Peter F. Patel-Schneider, editors, OWL:
Experiences and Directions (OWLED), volume 529 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[36] A. Isaac and E. Summers. SKOS Simple Knowledge Organization System Primer. W3C Working Group
Note, urlhttp://www.w3.org/TR/skos-primer/, 2008.

[37] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM–a pragmatic semantic repository for OWL. In WISE
2005 Workshops. Springer, 2005.

[38] H. Knublauch. Google group "topbraid suite users". https://groups.google.com/forum/#!
topic/topbraid-users/f0iUMQCPsDc, May 2014.

[39] J. Lu, F. Cao, L. Ma, Y. Yu, and Y. Pan. An Effective SPARQL Support over Relational Databases. In
SWDB-ODBIS, 2007.

Page 90 of (92)

Deliverable D4.4.2 LDBC

[40] M. Luther, T. Liebig, S. Böhm, and O. Noppens. Who the heck is the father of bob? In The Semantic
Web: Research and Applications. Springer, 2009.

[41] L. Ma, Y. Yang, Z. Qiu, G, Xie, Y. Pan, and S. Liu. Towards a Complete OWL Ontology Benchmark. In
ESWC, 2006.

[42] D. McGuiness and F. v. Harmelen. OWL Web Ontology Language Overview. http://www.w3.org/
TR/owl-features, 2004.

[43] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language. http://www.w3.org/TR/
owl-features/, 2004.

[44] M. Morsey, J. Lehmann, S. Auer, and A-C. N. Ngomo. DBpedia SPARQL Benchmark - Performance
assessment with real queries on real data. In ISWC, 2011.

[45] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology Language
Profiles (Second Edition). http://www.w3.org/TR/owl2-profiles/. W3C Recommendation 11 December
2012.

[46] B. Motik and R. Studer. KAON2–A scalable reasoning tool for the semantic web. In ESWC, 2005.

[47] T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality Estimation for RDF Queries
with Multiple Joins. In ICDE, 2011.

[48] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. PVLDB, 1(1), 2008.

[49] T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs. In SIGMOD, June
2009.

[50] T. Neumann and G. Weikum. The RDF-3X engine for scalable management of RDF data. The VLDB
Journal, 19(1), 2010.

[51] Answer on semanticweb.com. Property intersection (im)possible in OWL
2 Full? http://answers.semanticweb.com/questions/11602/
property-intersection-impossible-in-owl-2-full, September 2011.

[52] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics and Abstract
Syntax. http://www.w3.org/TR/owl-semantics/, 2004.

[53] H. Patni, C. Henson, and A. Sheth. Linked sensor data. In CTS, 2010.

[54] N. Redaschi and UniProt Consortium. UniProt in RDF: Tackling Data Integration and Distributed Anno-
tation with the Semantic Web. In Biocuration Conference, 2009.

[55] S. Rudolph, M. Krötzsch, and P. Hitzler. Cheap Boolean Role Constructors for Description Logics. In
JELIA. Springer, 2008.

[56] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMARK: A benchmark for xml
data management. In VLDB, 2002.

[57] R. Shearer, B. Motik, and I. Horrocks. Hermit: A highly-efficient owl reasoner. In OWLED, volume 432,
2008.

[58] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner. Web
Semantics: science, services and agents on the World Wide Web, 5(2):51–53, 2007.

[59] Barton Dataset. http://simile.mit.edu/wiki/Dataset:_Barton.

Page 91 of (92)

LDBC Deliverable D4.4.2

[60] Berlin SPARQL Benchmark (BSBM). http://wifo5-03.informatik.uni-mannheim.de/
bizer/berlinsparqlbenchmark/.

[61] Berlin SPARQL Benchmark (BSBM) Specification - V3.1. http://wifo5-03.informatik.
unimannheim.de/bizer/berlinsparqlbenchmark/spec/index.html.

[62] The DBLP Computer Science Bibliography. http://www.informatik.uni-trier.de/~ley/
db/.

[63] DBPedia. http://dbpedia.org/sparql.

[64] DBPSB. http://aksw.org/Projects/DBPSB.

[65] Geonames. http://www.geonames.org/.

[66] LUBM. http://swat.cse.lehigh.edu/projects/lubm.

[67] TPC-H. http://www.tpc.org/tpch/default.asp.

[68] UniProtKB Queries. urlhttp://www.uniprot.org/help/query-fields.

[69] Wikipedia. The Free Encyclopedia. http://en.wikipedia.org/wiki/Wikipedia.

[70] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL basic graph pattern opti-
mization using selectivity estimation. In WWW, 2008.

[71] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, 2007.

[72] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System description. In Automated rea-
soning, pages 292–297. Springer, 2006.

[73] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, P. Boncz, and V. Christophides. Heuristics-based Query
Optimisation for SPARQL. In EDBT, 2012.

[74] K. Tzompanaki and M. Doerr. A New Framework for Querying Semantic Networks. Technical Report
TR-419, ICS-FORTH, May 2011.

[75] K. Tzompanaki and M. Doerr. Fundamental Categories and Relationships for intuitive querying of
CIDOC-CRM based repositories. Technical Report TR-429, ICS-FORTH, April 2012.

[76] M.-E. Vidal, E. Ruckhaus, T. Lampo, A. Martinez, J. Sierra, and A. Polleres. Efficiently Joining Group
Patterns in SPARQL Queries. In ESWC, 2010.

[77] W3C OWL Working Group. OWL 2 Web Ontology Language. http://www.w3.org/TR/
owl2-overview/, 2012.

[78] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data management.
PVLDB, 1(1), 2008.

[79] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. Von Henke, and O. Noppens. Real-world reasoning with
owl. In The Semantic Web: Research and Applications, pages 296–310. Springer, 2007.

Page 92 of (92)

