The State of DuckPGQ Daniel ten wolde

Peter Boncz (on sabbatical @ MotherDuck)
CWI Database Architectures group

Graph data management

Graph data management

>t

connected data

src | dst
4 7
5 I

o
a

p_id
1
2
3

ISy INY
: A

e o,
Plow N

tables often represent graphs

Graph data management

src | dst
4 1
5 1

o
a

: (2}

p_id| [c_id
1 1
2
3

connected data tables often represent graphs

Pl w (N

/) graph exploration

SELECT count(*)
FROM person
WHERE name LIKE 'E%’

pattern matching path-finding relational operators

Storing graphs in SQL

CREATE TABLE city ([:person]
id bigint PRIMARY KEY, name: Bob

name varchar
) . :Qerson IQGI’SOI’\
' name: Chloe name: Jack
CREATE TABLE person (

follows - —
id bigint PRIMARY KEY, et .city
name: Emily name: Utrecht
name varchar,

livesin
livesIn bigint,

CONSTRAINT c FOREIGN KEY (livesIn) REFERENCES city (id)
);

CREATE TABLE follows (
plid bigint,
p2id bigint,
CONSTRAINT p1 FOREIGN KEY (p1id) REFERENCES person (id),
CONSTRAINT p2 FOREIGN KEY (p2id) REFERENCES person (id)

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SQL:1999 query

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob’
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht’

Graph query languages

/ Most popular \ e P
graph system
Amazon
;neoélj E%! Neptune @ JanusGraph
\ Cypher / SPARQL/Gremlin Gremlin
Oracle Labs PGX @ TigerGraph @ NebulaGraph

PGQL GSQL nGQL

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)

SQL/PGQ (Property Graph Queries)

SQL/PGQ

e Extension inthe SQL:2023 standard, released in June 2023
e “Property Graphs” defined over existing tables
e Read-only operations for graph queries return “Graph Tables”

o Path-finding

o Pattern matching

Tabular schema SQL/PGQ graph tables

CREATE TABLE city (CREATE PROPERTY GRAPH socialNetwork
id bigint PRIMARY KEY, VERTEX TABLES (
name varchar city,
) person
)
CREATE TABLE person
id bigint PEIMARY &EY, EDGE TABLES (
name varchar livesIn SOURCE person DESTINATION city,
. oL follows SOURCE person DESTINATION person
livesIn bigint,)
CONSTRAINT c FOREIGN KEY ...)

);

CREATE TABLE Follows (|
plid bigint, livesin

p2id bigint,
CONSTRAINT p1 FOREIGN KEY ... follows
CONSTRAINT p2 FOREIGN KEY ...

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id)
FROM
GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
-[:1livesIn]->(c:city WHERE c.name='Utrecht")

COLUMNS (p2.id)
)

SQL/
PGQ

plain
SQL

SELECT count(id) AS cp2
FROM GRAPH_TABLE (socialNetwork,
MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
-[:1livesIn]->(c:city WHERE c.name='Utrecht')
COLUMNS (p2.id))

WITH RECURSIVE paths(startNode, endNode, path) AS (
SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
UNION ALL (
WITH paths AS (TABLE paths)
SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
FROM paths JOIN follows ON paths.endNode = follows.plid
WHERE NOT EXISTS (SELECT true FROM paths previous_paths
JOIN person p2 ON p2.id = follows.p2id
WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1

JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'’

The SQL/PGQ query Is 4x more concise

SQL/PGQ query

——[-person SELECT count(id)
name: Bob .
FROM GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*
=pElSON = gelieln] (p2:person)-[:livesIn]->
name: Chloe name: Jack

(c:city WHERE c.name='Utrecht')
follows __name: Emily J|jyesin _Lname: Utrecht

COLUMNS (p2.id))

pattern i : relational
matching path-finding operators

SQL/PGQ query

——[-person SELECT count(id)
name: Bob .
FROM GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*
=pElSON = gelieln] (p2:person)-[:livesIn]->
name: Chloe name: Jack

(c:city WHERE c.name='Utrecht')
follows __name: Emily J|jyesin _Lname: Utrecht

COLUMNS (p2.id))

pattern i : relational
matching path-finding operators

SQL/PGQ query

——[-person SELECT count(id)
name: Bob .
FROM GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*
=pElSON = gelieln] (p2:person)-[:livesIn]->
name: Chloe name: Jack

(c:city WHERE c.name='Utrecht')
follows __name: Emily J|jyesin _Lname: Utrecht

COLUMNS (p2.id))

pattern i : relational
matching path-finding operators

SQL/PGQ query

__[-person SELECT count(id)
name: Bob .
FROM GRAPH_TABLE (socialNetwork,

MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*
U person (p2:person)-[:livesIn]->
name: Chloe name: Jack

(c:city WHERE c.name='Utrecht')
__{: ‘person] [ity }
follows __name: Emily J|jyesin _Lname: Utrecht

COLUMNS (p2.id))

pattern i : relational
matching path-finding operators

Implementation of SQL/PGQ in DuckDB

E Centrum Wiskunde & Informatica ‘ D U C k D B

DuckDB: in-process analytics

Created by Hannes Muhleisen and Mark Raasveldt
|Idea: analytical SQL system as a linkable library
From research on data systems support for data science:

o why don’t data scientists use database systems?

= make database technology better suited for data science

Active discord, blog, starting events, traction:

o 18K github stars, >2M downloads/month (5x increase YoY)

o DuckDB Labs spin-off (+MotherDuck)

Q@ https://duckdb.org/ @) https://shell.duckdb.org

DuckDB Extension Framework

Ve

_

DuckDB

Vs

DuckPGQ

4 N
Parse Bind + Optimize [—{ Execute Results
Y { -
Parse Bind Optimize Execute

2

SELECT count(id)
FROM
GRAPH_TABLE (socialNetwork,
MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
-[:1livesIn]->(c:city WHERE c.name='Utrecht')
COLUMNS (p2.id)

DuckDB Extension Framework

s

~N

2

o

DuckDB#2
(modified fork)

CIDR 2023

DuckDB#1 Parse Bind + Optimize [—| Execute Results
| A /
— — \
DuckPGQ Parse Bind Optimize Execute

DuckPGQ:
Efficient Property Graph Queries in an analytical RDBMS

Daniel ten Wolde Tavneet Singh Gabor Szarnyas Peter Boncz
CWI CWI CWI CWI

The Netherlands The Netherlands The Netherlands The Netherlands
dljtw@cwi.nl tavneet.singh@cwi.nl gabor.szarnyas@cwi.nl boncz@cwi.nl
ABSTRACT The upcoming SQL:2023 introduces the SQL/PGQ (Pr

In the past decade, property graph databases have emerged as a Graph Queries) sub-language [8], which allows (1) to define
. P .. . artavern: . mernn snlatsnnal - ahlarn and I9Y fa fasseveslakin

- . reaamalll o

E Centrum Wiskunde & Informatica

DuckPGQ: extension module for DuckDB

- Duck parser extension
rewrites queries + UDFs

@) SQL/PGQ read query

(3 5QL:1999 query 1 (sketch)

SELECT count(gt.p2id) AS p2count

FROM GRAPH_TABLE (sn,
MATCH (pl:Person WHERE pl.id = 59)
—[:knows*1..]->(p2:Person)
—[:likes]->(t:Tag WHERE t.name = 'Oasis')
COLUMNS (p2.id AS p2id)) gt

v

| Rewrite SQL/PGQ query to SQL:1999 queries —>

&%

Directed
graph

SELECT udf_create_edge('kn",
pl.rowid, p2.rowid, (
SELECT udf_create_vertex('kn
SELECT count(x) FROM t_pers
sub.denseid, sub.outdegree
FROM (SELECT p.rowid AS den

|’(
),

seid,

count(k.person2id) AS outdegree

) sub)))
FROM t_knows
JOIN t_pers pl ON personlid
JOIN t_pers p2 ON person2id

pl.id
p2.id

E Centrum Wiskunde & Informatica

DuckPGQ: extension module for DuckDB

Duck parser extension
rewrites queries + UDFs
CSR creation on-the-fly,
exploiting ROWIDs to get
dense node-IDs quickly
Scalar UDFs: multi-core
parallelism out of the box

@

SQL/PGQ read query

(3 5QL:1999 query 1 (sketch)

SE
FR

LECT count(gt.p2id) AS p2count
OM GRAPH_TABLE (sn,

MATCH (pl:Person WHERE pl.id = 59)

—[:knows*1..]->(p2:Person)

—[:likes]->(t:Tag WHERE t.name = 'Oasis')

COLUMNS (p2.id AS p2id)) gt

v

| Rewrite SQL/PGQ query to SQL:1999 queries [—>

o[O

1| [#er
2 IS
3[.5

I oy v

=W IO(WwIN

Directed
graph CSR

Vertex array Edge array

vi B W= O

SELECT Judf_create_edge({'kn",

pl.ro 3 . A

SELECT udf_create_vertexﬂ'kn', (

SELECT=TOUmC(R/" T =pers),
sub.denseid, sub.outdegree
FROM (SELECT p.rowid AS denseid,
count(k.person2id) AS outdegree
) sub)))

FROM t_knows

JOIN t_pers pl ON personlid

JOIN t_pers p2 ON person2id

pl.id
p2.id

E Centrum Wiskunde & Informatica

Compressed Sparse Row (CSR) data structure

e On-the-fly creation

vertex vertex edge edge

id array array index
e Two scalar UDFs R > 2] 1
2 3 4 2
o Initialize vertex array 3 5 > 5| 3
mo— -
o Initialize edge array 5 |8 N
_ 6 |9 » 1| 6
e Indexin the vertex array - o 51
corresponds to the s 6| 8
row identifier of the vertex > 3| 9
3 10
e \Vertex array contains 41 11
offsets for the edge arrays 9 | 1=

E Centrum Wiskunde & Informatica

DuckPGQ: extension module for DuckDB

Duck parser extension
rewrites queries + UDFs
CSR creation on-the-fly,
exploiting ROWIDs to get
dense node-IDs quickly
Scalar UDFs: multi-core
parallelism out of the box

@

SQL/PGQ read query

(3 5QL:1999 query 1 (sketch)

SE
FR

LECT count(gt.p2id) AS p2count

OM GRAPH_TABLE (sn,

MATCH (pl:Person WHERE pl.id = 59)
—[:knows*1..]->(p2:Person)

—[:likes]->(t:Tag WHERE t.name = 'Oasis')

COLUMNS (p2.id AS p2id)) gt

v

| Rewrite SQL/PGQ query to SQL:1999 queries [—>

0l 0 @ 2
1)}..:2 3
B
357»}1
3
1

Directed
graph CSR

Vertex array Edge array

vi B W= O

SELECT udf_create_edge('kn",
pl.rowid, p2.rowid, (
SELECT udf_create_vertex('kn', (
SELECT count(*) FROM t_pers),
sub.denseid, sub.outdegree
FROM (SELECT p.rowid AS denseid,
count(k.person2id) AS outdegree
) sub)))
FROM t_knows
JOIN t_pers pl ON personlid
JOIN t_pers p2 ON person2id

pl.id
p2.id

Inn

E Centrum Wiskunde & Informatica

DuckPGQ: extension module for DuckDB

. @) SQL/PGQ read query (3 sSQL:1999 query 1 (sketch)
B DUCk parser eXtenSIon SELECT count(gt.p2id) AS p2count SELECT udf_create_edge('kn",
. . FROM GRAPH_TABLE (sn, pl.rowid, p2.rowid, (
rewrites querIeS + UDFs MATCH (pl:Person WHERE pl.id = 59) SELECT udf_create_vertex('kn', (
. —[:knows*1..]->(p2:Person) SELECT count(x) FROM t_pers),
- CSR creation on-the-ﬂy -[:likes]->(t:Tag WHERE t.name = 'Oasis') sub.denseid, sub.outdegree
’ COLUMNS (p2.id AS p2id)) gt FROM (SELECT p.rowid AS denseid,
H count(k.person2id) AS outdegree
exploiting ROWIDs to get ¥ M
. : : ; FROM t_knows
dense node-IDs quickly | Rewrite SQL/PGQ query to SQL:1999 queries [—3 800 CTeere 51 o psrsanLid = pua
. \\\‘ JOIN t_pers p2 ON person2id = p2.id
- Scalar UDFs: multi-core Vertex array Edge array

6B (4) SQL:1999 query 2 (sketch)

parallelism out of the box
- SIMD-efficient
Multi-Source BFS JOIN t_tag ON t.id = l.tagid
WHER = 'Oasis'

(and pathfinding algos) b &R "

SELECT count(gt.p2id) AS p2count
FROM (SELECT p2.id AS p2id
FROM t_pers pl, t_pers p2
JOIN t_likes 1 ON l.personid = p2.id

| [#er
2 IS
3[.5

W IO(WwIN
vi B W N~ O

udf_ms_bfs(
kn', pl.rowid, p2.rowid))| gt

I 4y v

Centrum Wiskunde & Informatica

MS-BFS Algorithms

Multiple-Source (MS) graph algorithms

|dea:

Do many (512 or more) searches at-a-time
o ‘“vectorized”

Ol WN =

Initial State
R\

1st BFS Level

2nd BFS Level
77X

b1 by biby ! b1bo biby ' b1bo by by
X 1[X 1 1(x 1 X| 1(|X|X
[X] 2 X| 2 2 X| 21X 2 [XX
3 V3 XX 3 XX |3 3|X([X
4 L4 XX 4 | XIX] 4 4 [X]|X
5 5 5 V5 XX 5 XX
6 ' 6 6 Ce XIX] 6 [X]X
visit seen | wisit seen | wisit seen

Figure 3: An example showing the steps of MS-BF'S
when using bit operations. Each row represents the
bit field for a vertex, and each column corresponds
to one BFS. The symbol X indicates that the value
of the bit is 1.

Keep state for many (512 or more) searches
Store state in SIMD registers

Algorithm: sequential access Vertex & Edge arrays
o Random access in Vertex for destination state

o butitisshared for 512 searches

PVLDB 8 (2014)

The More the Merrier:

Efficient Multi-Source Graph Traversal

Manuel Then*
then@in.tum.de

Kien Pham'
kien.pham®@nyu.edu

Moritz Kaufmann*
kaufmanm@in.tum.de

Alfons Kemper*
kemper@in.tum.de

* Technische Universitat Miinchen

ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redund, mputation when d multiple times from
different start vertices. In this paper, we propose Multi-
Source BFS (MS-BFS), an algorithm that is designed to
run multiple concurrent BFSs over the same graph on a
sinele CPU core while scaline up as the number of cores

Tuan-Anh Hoang-Vu'
tuananh@nyu.edu

Huy T. Vol
huy.vo@nyu.edu

Fernando Chirigatit
fchirigati@nyu.edu

Thomas Neumann*
neumann@in.tum.de

 New York University

have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20].

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all reachable vertices and edges of the graph from a
given start vertex. Because of the volume and nature of the
data, BFS is a computationally expensive operation, lead-

Centrum Wiskunde & Informatica

DuckPGQ Extensions: weighted path

MATCH ANY SHORTEST PATHS p=(a:Person)-[e:know]->+ (b:Person)
COLUMNS (ELEMENT ID(a) aid, a.name src,

ELEMENT ID(b) bid, b.name dst, COST(p), p))

src
varchar

bid
inté64

dst
varchar

COoST
int32

Ana
Ana
Ed
Jo
Jo
Ana
Jo

Bo
Jo
Bo
Ana
Ed
Ed
Bo

the green numbers are ELEMENT IDs of edges

A

Centrum Wiskunde & Informatica

DuckPGQ Extensions: label masks

CREATE PROPERTY GRAPH pg

VERTEX TABLES (
College PROPERTIES (id, college) LABEL College,
Person PROPERTIES (id, name, birthDate) LABEL Person

EDGE TABLES (
know SOURCE KEY (src) REFERENCES Person (id)
DESTINATION KEY (dst) REFERENCES Person (id)
PROPERTIES (createDate, msgCount) LABEL know,

SOURCE KEY (studentID) REFERENCES Person (id)
DESTINATION KEY (collegeID) REFERENCES College (id)
PROPERTIES (classYear) LABEL studiesAt) ;

Ongoing work: GNN integration

e Analyze PGQ property graphs in DGL and Pytorch Geometric

e Export DGL and PyTorch Geometric graphs to PGQ property graphs

1 import dgl
2 import torch

3 import duckdb

5 # Setup DuckPGQ and collect necessary data

6 con = duckdb.connect ()

% csrv, csre, node_features, edge_features =

8 # Initialize a graph object

9 |g = dgl.graph(('csr', (csrv, csre, [1)))

10 # Set the node features, reshaping is necessary

14 for feature_name, feature in node_features:

12 g.ndata[feature_name] = feature.reshape((feature.shapel[0], 1))
13 # Set the edge features, reshaping is necessary

14 for feature_name, feature in edge_features:

15 g.edatal[feature_name] = feature.reshape((feature.shape[0], 1))

Ongoing work in DuckPGQ

s

_

DuckDB

Parse

Bind

Results

DuckPGQ

Optimize \’ﬁ Execute]

Parse

Bind

Optimize

Execute

N

2

N\

)

AN

)

Ongoing work: Parallel Pathfinding

Scalar function find_path(src,dst) has limitations

©)
©)

Morsel-driven parallelism on [src,dst] table
morsel=120K tuples - that’s a lot of searches!

thread 1

vertex vertex edge edge
id array array index
— —
vertex vertex thread 2 ¢qge edge
id array array index
1 1 > 2 1
2 3 4| 2
3 5 L 5(3
o [
5 8 » 6| 5
6 9 > 1 6
7 10 31 7
> 6| 8
> 3| 9
3| 10
4| 11
120K searches 5| 12

Ongoing work: Parallel Pathfinding

Scalar function find_path(src,dst) has limitations
Morsel-driven parallelism on [src,dst] table
morsel=120K tuples - that’s a lot of searches!

O
O

New project: DuckDB pathfinding operator

©)
O
©)

O

Every BFS frontier advance is a DuckDB event
Threads are scheduled to work on vertex-ranges
Source starts with [src,dst] materialization

deduplication of src, dst, [src,dst])

Sink re-creates the found paths

proper order and duplicity

thread 1

thread 2

thread 2

Fine-grained Parallelism

vertex vertex edge edge
id arra array index

Ongoing work: Factorized Query Processing

e DuckDB forjoins uses a bucket-chained hash-table
o Mixes hash-conflicts with duplicates in a chain

e We changed the hash-table to only have chains for duplicates
o Linear hashing on the buckets

o Its’ faster onjoins!

Ongoing work: Factorized Query Processing

e DuckDB forjoins uses a bucket-chained hash-table
o Mixes hash-conflicts with duplicates in a chain
e We changed the hash-table to only have chains for duplicates

o Linear hashing on the buckets

CIDR 2022

o Its’ faster on joins!

The 3D Hash Join: Building On Non-Unique Join Attributes

Daniel Flachs Magnus Miiller Guido Moerkotte
flachs@uni-mannheim.de magnus@uni-mannheim.de moerkotte@uni-mannheim.de
University of Mannheim University of Mannheim University of Mannheim
Mannheim, Germany Mannheim, Germany Mannheim, Germany
ABSTRACT when traversing the collision chains, resulting in high processing
One of the most prominent ways to evaluate an equi-join is based costs for probing.)) o)
on hashing. We consider the problem of non-unique join attributes A related problem occurs if the uniqueness of the join attributes
on the build side. In conventional hash tables where collisions are in the build relation is not known at query compilation time. This

happens if the known functional dependencies specified in the SQL

resolved by chaining, duplicates inevitably lead to long collision
standard do not allow to derive uniqueness.

chains. This causes a high number of expensive main memory

Ongoing work: Factorized Query Processing

e Joins can now return a hit-list
o A hit-list points to a hash-table chain = factorized n:m join
e Exploiting these:
o Factorized Aggregation: Embedding (sub-)aggregates in hit-lists
o Factorized Joins: Embedding hit-lists in hit-lists (“graph construction”)

o Worst-Case Optimal Joins (WCQJ): Cyclical joins using hit-list intersection

Ongoing work: Factorized Query Processing

e Joins can now return a hit-list

o Ahit-list points to a hash-table chain = factorized n:m join
Adaptive Query
e Exploiting these: execution

o Factorized Aggregation: Embedding (sub-)aggregates in hit-list
o Factorized Joins: Embedding hit-lists in hit-lists (“graph construction”)

o Worst-Case Optimal Joins (WCQJ): Cyclical joins using hit-list intersection

Conclusion

e SQL/PGQ (skipped)
e DuckPGQ lastyear

o Parser support + scalar UDF MS-BFS pathfinding

o Extensions: weighted shortest path-ding, flexible labels
e DuckPGQ ongoing work

o GNN library integrations

o MS-BFS operator (better parallelism)
o Factorized query processing

Try DuckPGQ out in DuckDB v1.0.0

duckdb -unsigned
v1.0.0 1f98600c2c
Enter ".help" for usage hints.

2 2N
-
e

Dén@l&&ﬂNoHe

DuckPGQ
on GitHub

D set custom_extension_repository = 'http://duckpgq.s3.eu-north-1.amazonaws.com’;

D force install 'duckpgq';
D load 'duckpaa’:

