
The State of DuckPGQ

Peter Boncz (on sabbatical @)
CWI Database Architectures group

Daniël ten Wolde

Graph data management

tables often represent graphs

connected data

Graph data management
src dst

1 2
2 3
2 5
⋯ ⋯

src dst
4 7
5 7

p_id
1
2
3
⋯

c_id
1
2
3
⋯

connected data

 🔎 graph exploration

Graph data management

 SELECT count(*)
 FROM person
 WHERE name LIKE 'E%'

relational operatorspattern matching path-finding

tables often represent graphs

src dst
1 2
2 3
2 5
⋯ ⋯

src dst
4 1
5 1

p_id
1
2
3
⋯

c_id
1

Storing graphs in SQL
CREATE TABLE city (
 id bigint PRIMARY KEY,
 name varchar
);

CREATE TABLE person (
 id bigint PRIMARY KEY,
 name varchar,
 livesIn bigint,
 CONSTRAINT c FOREIGN KEY (livesIn) REFERENCES city (id)
);

CREATE TABLE follows (
 p1id bigint,
 p2id bigint,
 CONSTRAINT p1 FOREIGN KEY (p1id) REFERENCES person (id),
 CONSTRAINT p2 FOREIGN KEY (p2id) REFERENCES person (id)
);

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: Utrecht

follows

livesIn

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

Most popular
graph system

Graph query languages

Cypher

GSQLPGQL nGQL

GremlinSPARQL/Gremlin

https://en.wikipedia.org/wiki/The_Tower_of_Babel_(Bruegel)

SQL/PGQ (Property Graph Queries)

SQL/PGQ
● Extension in the SQL:2023 standard, released in June 2023

● “Property Graphs” defined over existing tables

● Read-only operations for graph queries return “Graph Tables”

○ Path-finding

○ Pattern matching

Tabular schema
CREATE PROPERTY GRAPH socialNetwork
 VERTEX TABLES (
 city,
 person
)
 EDGE TABLES (
 livesIn SOURCE person DESTINATION city,
 follows SOURCE person DESTINATION person
);

CREATE TABLE city (
 id bigint PRIMARY KEY,
 name varchar
);

CREATE TABLE person (
 id bigint PRIMARY KEY,
 name varchar,
 livesIn bigint,
 CONSTRAINT c FOREIGN KEY ...
);

CREATE TABLE follows (
 p1id bigint,
 p2id bigint,
 CONSTRAINT p1 FOREIGN KEY ...
 CONSTRAINT p2 FOREIGN KEY ...
);

SQL/PGQ graph tables

:person :city

follows

livesIn

SELECT count(id)
FROM
 GRAPH_TABLE (socialNetwork,

 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
 -[:livesIn]->(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id)
)

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id) AS cp2
FROM GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
 -[:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id))

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN city ON city.id = p2.livesIn AND city.name = 'Utrecht'

SQL/
PGQ

plain
SQL

The SQL/PGQ query is 4× more concise

SQL/PGQ query

pattern
matching

relational
operatorspath-finding

SELECT count(id)
FROM GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*

(p2:person)-[:livesIn]->
(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id))

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: UtrechtlivesInfollows

SQL/PGQ query

SELECT count(id)
FROM GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*

(p2:person)-[:livesIn]->
(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id))

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: UtrechtlivesInfollows

pattern
matching

relational
operatorspath-finding

SQL/PGQ query

SELECT count(id)
FROM GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*

(p2:person)-[:livesIn]->
(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id))

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: UtrechtlivesInfollows

pattern
matching

relational
operatorspath-finding

SQL/PGQ query

SELECT count(id)
FROM GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*

(p2:person)-[:livesIn]->
(c:city WHERE c.name='Utrecht')

 COLUMNS (p2.id))

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: UtrechtlivesInfollows

pattern
matching

relational
operatorspath-finding

Implementation of SQL/PGQ in DuckDB

DuckDB: in-process analytics
● Created by Hannes Mühleisen and Mark Raasveldt
● Idea: analytical SQL system as a linkable library
● From research on data systems support for data science:

○ why donʼt data scientists use database systems?
⇒ make database technology better suited for data science

● Active discord, blog, starting events, traction:
○ 18K github stars, >2M downloads/month (5x increase YoY)
○ DuckDB Labs spin-off (+MotherDuck)

DuckDB Extension Framework

DuckPGQ

DuckDB Parse Bind Optimize Execute

Bind Optimize Execute

Results

Parse

SELECT count(id)
FROM
 GRAPH_TABLE (socialNetwork,
 MATCH (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
 -[:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id)
)

DuckDB Extension Framework

DuckPGQ

DuckDB#1 Parse Bind Optimize Execute

Bind Optimize Execute

Results

Parse

DuckDB#2
(modified fork)

CIDR 2023

DuckPGQ: extension module for DuckDB

- Duck parser extension
rewrites queries + UDFs

-

DuckPGQ: extension module for DuckDB

- Duck parser extension
rewrites queries + UDFs

- CSR creation on-the-fly,
exploiting ROWIDs to get
dense node-IDs quickly

- Scalar UDFs: multi-core
parallelism out of the box

Compressed Sparse Row (CSR) data structure
● On-the-fly creation

● Two scalar UDFs

○ Initialize vertex array

○ Initialize edge array

● Index in the vertex array
corresponds to the
row identifier of the vertex

● Vertex array contains
offsets for the edge arrays

DuckPGQ: extension module for DuckDB

- Duck parser extension
rewrites queries + UDFs

- CSR creation on-the-fly,
exploiting ROWIDs to get
dense node-IDs quickly

- Scalar UDFs: multi-core
parallelism out of the box

DuckPGQ: extension module for DuckDB

- Duck parser extension
rewrites queries + UDFs

- CSR creation on-the-fly,
exploiting ROWIDs to get
dense node-IDs quickly

- Scalar UDFs: multi-core
parallelism out of the box

- SIMD-efficient
Multi-Source BFS
(and pathfinding algos)

MS-BFS Algorithms
Multiple-Source (MS) graph algorithms

Idea:

● Do many (512 or more) searches at-a-time
○ “vectorized”

● Keep state for many (512 or more) searches
● Store state in SIMD registers
● Algorithm: sequential access Vertex & Edge arrays

○ Random access in Vertex for destination state
○ but it is shared for 512 searches

PVLDB 8 (2014)

DuckPGQ Extensions: weighted path
FROM GRAPH_TABLE(pg
MATCH ANY SHORTEST PATHS p=(a:Person)-[e:know]->+(b:Person)
COLUMNS (ELEMENT_ID(a) aid, a.name src,
 ELEMENT_ID(b) bid, b.name dst, COST(p), p)) tmp;

┌───────┬─────────┬───────┬─────────┬───────┬─────────────────┐
│ aid │ src │ bid │ dst │ COST │ p │
│ int64 │ varchar │ int64 │ varchar │ int32 │ int64[] │
├───────┼─────────┼───────┼─────────┼───────┼─────────────────┤
│ 0 │ Ana │ 1 │ Bo │ 1 │ [0, 0, 1] │
│ 0 │ Ana │ 3 │ Jo │ 1 │ [0, 1, 3] │
│ 2 │ Ed │ 1 │ Bo │ 1 │ [2, 2, 1] │
│ 3 │ Jo │ 0 │ Ana │ 1 │ [3, 3, 0] │
│ 3 │ Jo │ 2 │ Ed │ 1 │ [3, 4, 2] │
│ 0 │ Ana │ 2 │ Ed │ 2 │ [0, 1, 3, 4, 2] │
│ 3 │ Jo │ 1 │ Bo │ 2 │ [3, 4, 2, 2, 1] │
└───────┴─────────┴───────┴─────────┴───────┴─────────────────┘
 ^ ^
Note: the green numbers are ELEMENT_IDs of edges | |

DuckPGQ Extensions: label masks
CREATE PROPERTY GRAPH pg

VERTEX TABLES (
 College PROPERTIES (id, college) LABEL College,
 Person PROPERTIES (id, name, birthDate) LABEL Person
 IN msk (Student, TA))
EDGE TABLES (
 know SOURCE KEY(src) REFERENCES Person(id)
 DESTINATION KEY(dst) REFERENCES Person(id)
 PROPERTIES (createDate, msgCount) LABEL know,

 enrol SOURCE KEY(studentID) REFERENCES Person(id)
 DESTINATION KEY(collegeID) REFERENCES College(id)
 PROPERTIES (classYear) LABEL studiesAt);

Ongoing work: GNN integration
● Analyze PGQ property graphs in DGL and Pytorch Geometric

● Export DGL and PyTorch Geometric graphs to PGQ property graphs

Ongoing work in DuckPGQ

DuckPGQ

DuckDB Parse Bind Optimize Execute

Bind Optimize Execute

Results

Parse

Ongoing work: Parallel Pathfinding
● Scalar function find_path(src,dst) has limitations

○ Morsel-driven parallelism on [src,dst] table
○ morsel=120K tuples – thatʼs a lot of searches!

thread 1

thread 2

120K searches

Ongoing work: Parallel Pathfinding
● Scalar function find_path(src,dst) has limitations

○ Morsel-driven parallelism on [src,dst] table
○ morsel=120K tuples – thatʼs a lot of searches!

● New project: DuckDB pathfinding operator
○ Every BFS frontier advance is a DuckDB event
○ Threads are scheduled to work on vertex-ranges
○ Source starts with [src,dst] materialization

■ deduplication of src, dst, [src,dst])
○ Sink re-creates the found paths

■ proper order and duplicity

thread 1

thread 2

thread 2

thread 1

Fine-grained Parallelism

Ongoing work: Factorized Query Processing
● DuckDB for joins uses a bucket-chained hash-table

○ Mixes hash-conflicts with duplicates in a chain

● We changed the hash-table to only have chains for duplicates

○ Linear hashing on the buckets

○ Itsʼ faster on joins!

Ongoing work: Factorized Query Processing
● DuckDB for joins uses a bucket-chained hash-table

○ Mixes hash-conflicts with duplicates in a chain

● We changed the hash-table to only have chains for duplicates

○ Linear hashing on the buckets

○ Itsʼ faster on joins!
CIDR 2022

Ongoing work: Factorized Query Processing
● Joins can now return a hit-list

○ A hit-list points to a hash-table chain ⇒ factorized n:m join

● Exploiting these:

○ Factorized Aggregation: Embedding (sub-)aggregates in hit-lists

○ Factorized Joins: Embedding hit-lists in hit-lists (“graph construction”)

○ Worst-Case Optimal Joins (WCOJ): Cyclical joins using hit-list intersection

Adaptive Query
execution

Ongoing work: Factorized Query Processing
● Joins can now return a hit-list

○ A hit-list points to a hash-table chain ⇒ factorized n:m join

● Exploiting these:

○ Factorized Aggregation: Embedding (sub-)aggregates in hit-lists

○ Factorized Joins: Embedding hit-lists in hit-lists (“graph construction”)

○ Worst-Case Optimal Joins (WCOJ): Cyclical joins using hit-list intersection

Adaptive Query
execution

Conclusion
● SQL/PGQ (skipped)
● DuckPGQ last year

○ Parser support + scalar UDF MS-BFS pathfinding
○ Extensions: weighted shortest path-ding, flexible labels

● DuckPGQ ongoing work
○ GNN library integrations
○ MS-BFS operator (better parallelism)
○ Factorized query processing

Try DuckPGQ out in DuckDB v1.0.0

DuckPGQ
on GitHub

Daniël ten Wolde

