LDBCE

The LDBC Social Network Benchmark

Interactive workload v2:
A transactional graph query benchmark with deep delete operations

David Piiroja, Jack Waudby, Peter Boncz, Gabor Szarnyas

TPCTC | 2023-08-28 | Vancouver

https://arxiv.org/pdf/2307.04820.pdf

SNB Interactive v1 (2015)

Q9($name, $day)

name =
Sname

creation date <
$day

Queries start in 1-2 person nodes

14 complex reads, 7 short reads

8 insert operations run concurrently

Goal: High throughput (ops/s)

SNB Interactive v1 (2015)

Q9($name, Sday)

name =
Sname

creation date <
$day

Queries start in 1-2 person nodes

SNB Interactive v2 (2024)

Q9($name, Sday)

name =
Sname

creation date <
$day

+ New query variants based on correlation

14 complex reads, 7 short reads

+ New query: Cheapest path-finding

8 insert operations run concurrently

+ 8 delete operations

+ Scales to SF30,000

Goal: High throughput (ops/s)

+ Temporal bucketing

+ Path curation

Benchmark
framework

Benchmark workflow

Datagen
Data set Updates Factor tables
Paramgen
v l

Benchmark driver

l

Query parameters

System under test

Benchmark workflow

e Generates a temporal graph over 3 years

e Spark-based scalable generator up to 30TB data Factor tables
Paramgen
v l

Benchmark driver [«<— Query parameters

l

» System under test

Benchmark workflow

Datagen
Data set Updates Factor tables

e Ensures stable query runtimes

Paramgen

e Takes deletes into account

Benchmark driver [«<— Query parameters

l

» System under test

Benchmark workflow

Datagen
l l l
Data set Updates Factor tables
l
Paramgen
l
Schedules operations | Benchmark driver Query parameters

» System under test

Benchmark workflow

Datagen
Data set Updates Factor tables
Paramgen
v l

Benchmark driver [«<— Query parameters

Candidate systems:

e Graph databases

e Triplestores

e Relational databases

System under test

Data generator: Highlights

Person-knows-Person

e Degreedistribution: Ugander et al. “The
Anatomy of the Facebook Social Graph” (2011)

e Edges are added along 3 dimensions:
university attendance, interests, random

e Deletes are implemented according to Lérincz
et al. “Collapse of an online social network:
Burning social capital to create it?” (2019)

Generating deletes along dependencies:
Lifespan management

The generator generates the entire temporal with creation dates * and deletion dates t

>
forum & Q time

containerOf person a E 0

*member +—@ ’
member fmember * © :
member
hasCreator *post : O ,
Tpost% © i
post G O

Factor table generation

Example: #comments for friends of friends

e numFoaFComments(pl, cnt) = count(knows(pl, p2) = knows(p2, p3) > hasCreator(p3, c))
filter for unique values of p1, p2, p3

Joining three large tables would be very expensive, so we approximate it:

1. numFriendComments(p2, cnt) = count(knows(p2, p3) > hasCreator(p3, c))
2. numFoaFComments(pl, cnt) = sum(knows(pl, p2) = numFriendComments(p2, cnt))
filtering is omitted

Operations

Workload mix

CR
complex reads
8%, 1-500 ms

SR
short reads
72%, 0.1-75 ms

IN

inserts
20%, 0.1-100 ms

DEL
deletes
0.2%, ?? ms

Complex read Q9: Recent messages by

F/Frg™

person: Person otherPerson: Person

KNOWS*1..2 me— i
firstName
lastName

id = $personid

hasCreator T

v

message: Message

creationDate < $maxDate

id
content / imageFile
creationDate

Qg9 parameter selection: Window

Number of friends of friends per person ID

60000 A

50000 A

40000 A

30000 A

\—-—..-.—.-—-.——.. ™ ewen o 0o

20000 A

Number of friends of friends

\

10000 A

0 —p==

0 2000 4000 6000 8000 10000
Index

Complex read Q3: Travelling abroad

Friends and FoaFs that created Messages from given Countries but do not live there

F person: Person

hasCreator

xCount = count

Message —

id = $personid

$startDate < creationDate
< $startDate +

e KNOWSH 1,2 mee

-isLocatedIn—). countryX: Country

name = $countryXName

$durationDays A «neg»
otherPerson: Person | isPartOf
1
id isLocatedIn > City
firstName T
lastName yCount = count | «neg»
| isPartOf
Message []

hasCreator

$startDate < creationDate

< $startDate + —

$durationDays

isLocatedIn >

countryY: Country

name = $countryYName

Complex read Q3: Travelling abroad

Frequency of friendships between country pairs

e High correlation .
50004 ° Low correlation
a
= 4000 -
%]
©
C
Q
& 3000 A
s l Variant (a)
Q
2 2000 A
S
> °
=2 °
2
1000 A :
Variant (b) i
0- e e S—9S-S SooLoSSSTTT =

10° 10! 102 103
Country Pair Index

Short read Q3: Friends of a Person

person: Person

knows

id = $personid

creationDate

friend: Person

id
firstName
lastName

Short read Q6: Forum of a Message

message: Message

moderator: Person

id = $messageld

replyOf*0..

id
firstName
lastName

T hasModerator

Post

<€— containerOf —

forum: Forum

id
title

Insert query INS1: Add Person

oy

<€—isLocatedIn —*—

* Person

studyAt

92,

- haslnterest—*-

id = $cityld
F Tag
id in $taglds

id « $personld

firstName «— $personFirstName
lastName «— $lastName

gender < $gender

birthday « $birthday
creationDate « $creationDate
locationlIP « $locationIP
browserUsed < $browserUsed
speaks « $languages

email « $emails

classYear «— $studyAt[k].classYear

workAt

>

University

id = $studyAt[k].universityld

>l

.*

WOTKF rom «— SWOTKAL[i]. WOrKF rom

Company

id = $workAt[i].companyld

Delete query DEL4: Remove Forum

Tag

= hasTag +. Forum

— hasModerator—*-)

Person

id = $forumid

+ hasMember =g

Person

* containerOf

Post

v invoke delete

operation 6

Scheduling

Benchmark execution

preprocess [—> load —> warmup > benchmark run

(30 min) (2 hours)

e Collectindividual query runtimes
e Check 95% on-time requirement

Driver execution modes

The driver has 3 modes of operation, all start with the initial data set loaded.
1-2) Generate validation data set, Validate implementation

e single-threaded
e deterministic

3) Run benchmark

e multi-threaded
e calculates throughput
e pass/fail schedule

Scheduling operations: Theory

e Updates: replayed as they
happen in the social network

e Complexreads: a given complex
read query is scheduled for X
update operations

e Foreach complexread instance, a
sequence of short reads is
triggered, short reads can trigger
other short reads

IS 1 IS 2 IS 3 IS 4 IS 5 IS 6 IS 7
IC 1 ® ® ®
(o) ® ® ® ® ® ® ®
1GR3 ® ® ®
Ic 7 ® ® &® &® & &® &®
IC 8 ® &® &® &® &® ® ®
IC 9 ® ® ® ® ® ® ®
IC 10 ® ® ®
Ic 11 ® ® &®
IC 12 ® ® ®
IC 14 ® ® ®
IS 2 ® ® ® ® ® ® &®
IS 3 ® ® &®
IS 5 ® ® ®
IS 6 ® ® ®
IS 7 ® ® ® ® ® ® &®

Scheduling operations: Example

Replay speed is determined by the TCR (total compression ratio)

_I.

INS

DEL

INS

DEL

|

. 1
simulation time

Scheduling operations: Example

Replay speed is determined by the TCR (total compression ratio)

_I.

INS

DEL

INS

DEL

. 1
simulation time

thread 1

thread 2

>

physical time

>

Scheduling operations: Example

Replay speed is determined by the TCR (total compression ratio)

-H INs — DEL INS DEL }
simulation time
* / TCR=0.75 /
thread 1 INS | éEL
thread 2 DEL INS

>

physical time

>

Scheduling operations: Example

Replay speed is determined by the TCR (total compression ratio)

_I.

INS

DEL

INS

DEL

. 1
simulation time

thread 1

INS

CR

DEL

CR

thread 2

DEL

CR

INS

CR

>

physical time

>

Scheduling operations: Example

Replay speed is determined by the TCR (total compression ratio)

-H INs — DEL INS DEL }
simulation time
thread 1 | | INS CR > SR >{ SR DEL CR > SR
thread 2 DEL CR P> SR INS CR > SR >{ SR

>

physical time

>

95% on-time requirement

In order to pass an audit, 95% of the executed queries must meet the following condition:

actual start time — scheduled start time < 1 second

If a run falls behind, it is no longer valid.

thread 1

INS

CR

SR

SR

DEL

CR

thread 2

DEL

CR

SR

INS

CR

SR > SR

physical time

>

Scalability

Scaling up to SF30,000

Migrated from the Hadoop-based data generator to the Spark-based one
Scaling to large SFs gets super-exponentially more difficult

® more expensive: compute/storage costs, egress
e longer execution and transfer times

e things start to break more and more often
o tools cannot load/process

connections drop

AWS disks corrupt

EMR jobs hang

availability zone out of instances

running out of disk/temp space

files get lost silently during transfer

O O O O O O

Cheapest
path-finding

Cheapest path query

“Cheapest path” = weighted shortest path (Dijkstra, Bellman-Ford)

Syntax in GQL and SQL/PGQ:

MATCH ANY CHEAPEST PATH p=
(a:Person WHERE a.name='Bob')
-[k :knows COST 1/k.interactionScore]->%*
(b:Person WHERE b.name='Eve')

The ANY CHEAPEST PATH clause is denoted as a language opportunity.

Cheapest path query

Difficult to express in SQL:1999 - long and cumbersome query, slow execution

But an important computational kernel: included in Interactive v2

with recursive pathb(a, b, w) AS (SELECT least(c.creatorpersonid, p.creatorpersonid) AS a, greatest(c.creatorpersonid,
p.creatorpersonid) AS b, greatest(round(46 - sqrt(count(*)::bigint, 1) AS w FROM message c, message p WHERE
c.parentmessageid = p.id AND EXISTS (SELECT * FROM person_knows_person WHERE personlid = c.creatorpersonid AND person2id =
p.creatorpersonid) group by a, b), path(src, dst, w) AS (SELECT a, b, w FROM pathb union all SELECT b, a, w FROM pathb),
shorts(dir, gsrc, dst, prev, w, dead, iter) AS (SELECT sdir, sgsrc, sdst, sdst, sw, sdead, siter FROM (VALUES (false,
:person1Id::bigint, :personi1Id::bigint, ©::bigint, false, @), (true, :person2Id::bigint, :person2Id::bigint, ©::bigint,
false, 0)) t(sdir, sgsrc, sdst, sw, sdead, siter) union all (with ss AS (SELECT * FROM shorts), toExplore AS (SELECT *
FROM ss WHERE dead = false order by w limit 1000), newPoints(dir, gsrc, dst, prev, w, dead) AS (SELECT e.dir, e.gsrc AS
gsrc, p.dst AS dst, p.src as prev, e.w + p.w AS w, false AS dead FROM path p join toExplore e on (e.dst = p.src) UNION
ALL SELECT dir, gsrc, dst, prev, w, dead OR EXISTS (SELECT * FROM toExplore e WHERE e.dir = o.dir AND e.gsrc = o.gsrc AND
e.dst = o.dst) FROM ss o), fullTable AS (SELECT DISTINCT ON(dir, gsrc, dst) dir, gsrc, dst, prev, w, dead FROM
newPoints ORDER BY dir, gsrc, dst, w, dead, prev DESC), found AS (SELECT min(l.w + r.w) AS wFROM fullTable 1, fullTable
rWHERE 1.dir = false AND r.dir = true AND l.dst = r.dst) SELECT dir, gsrc, dst, prev, w, dead OR (coalesce(t.w > (SELECT
f.w/2 FROM found f), false)), e.iter + 1 AS iter FROM fullTable t, (SELECT iter FROM toExplore limit 1) e)), ss(dir, gsrc,
dst, prev, w, iter) AS (SELECT dir, gsrc, dst, prev, w, iter FROM shorts WHERE iter = (SELECT max(iter) FROM shorts)),
result(f, t, inter, w) AS (SELECT 1l.gsrc, r.gsrc, l.dst, 1.w + r.w FROM ss 1, ss r WHERE 1.dir = false AND r.dir = true
AND 1.dst = r.dst ORDER BY 1l.w + r.w LIMIT 1), spl(arr, cur) as (SELECT ARRAY[inter]::bigint[], inter FROM result UNION
ALL SELECT array_prepend(ss.prev, spl.arr), ss.prev FROM ss, sp1 WHERE ss.dir = false AND ss.dst = spl.cur AND ss.prev <>
ss.dst), sp2(arr, cur) as (SELECT (SELECT arr FROM sp1 WHERE cur = (SELECT f FROM result)), (SELECT inter FROM result)
UNION ALL SELECT array_append(sp2.arr, ss.prev), ss.prev FROM ss, sp2 WHERE ss.dir = true AND ss.dst = sp2.cur AND ss.prev
<> ss.dst) SELECT sp2.arr AS personIdsInPath, result.w AS pathWeight FROM result, sp2 WHERE sp2.cur = result.t;

Cheapest path query: Q14 new version

Find a cheapest path on edges where numinteractions = 1,
using edge weight = max(round(40 - sgrt(numinteractions)), 1)

e KNOWS* —.

person1: Person person2: Person

id = $personid id = $person2id

numinteractions = count(c)

personA: Person personB: Person |

I—

hasCreator T hasCreatorT

c: Comment m: Message |

'—reply0f4>|

Example for finding a path between person1 and person2

knows knows pY knows knows pwW knows @
replyOf ‘
replyOf
replyOf replyOf replyOf
replyOf ‘
replyOf
hasCreator
replyOf replyOf ‘
replyOf replyOf replyOf

Path curation

Shortest distance from “Ada” to “Eve”

Shortest distance from “Ada” to “Eve”

4 e
I E

3 = O

2

Shortest distance from “Ada” to “Eve”

Shortest distance from “Ada” to “Eve”

Shortest distance from “Ada” to “Eve”

4 ©

° @ Bob @
) @ &
1 000 500 10:00 14:00 18:00 @

The shortest path distance changes multiple times during the day.

Path curation
with temporal
bucketing

For each day, we construct:

G1 - deletes but no inserts,
setting an upper bound

G2 - inserts but no deletes,
setting a lower bound

&—0¢

e

© 060 060 06 COOHO

G1: Deletes applied G2: Inserts applied

Q0 Q 6
5 o
&0 &8

lower < actual length < upper e @ 6 a

Pairs of nodes yielding
3-hop paths in G1 and G2:

Path curation
with temporal
bucketing

For each day, we construct:

G1 - deletes but no inserts,
setting an upper bound

G2 - inserts but no deletes,
setting a lower bound

lower < actual length < upper e @

@—0¢

i

© 060 060 06 COOHO

G1: Deletes applied G2: Inserts applied

Q ©
O
o0 ¢

Connected components
algorithm on G2

Pairs of nodes in different
components are guaranteed
to be unreachable that day

Is path curation alone sufficient?

Not yet:
e We also have to consider the degree distribution of the source-target nodes.
Actually:

e For “perfect” parameter curation, we would need to run the entire workload with
many parameter candidates and only keep ones which showed a similar behaviour.

Summary

Implementations

;ﬂqu-J graph Cypher
F’OstgreSQL relational SQL
%%Qit_ Server relational SQL + graph extension

@ UMBRA relational SQL

SNB Interactive v2

A scalable, transactional database benchmark

Interesting queries (correlated vs. anti-correlated, cheapest path finding)
Deep delete operations

State-of-the-art parameter selection

Fine-tuning ongoing, to be released in 2024

Please reach out if you would like to implement the benchmark

B

The graph & RDF
benchmark reference

