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14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently
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SNB Interactive v2 (2024)
Q9($name, $day)
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name = 
$name

+ New query: Cheapest path-finding

+ Temporal bucketing

+ New query variants based on correlation

+ 8 delete operations

+ Path curation

+ Scales to SF30,000
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● Generates a temporal graph over 3 years
● Spark-based scalable generator up to 30TB data
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● Ensures stable query runtimes
● Takes deletes into account
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Candidate systems:
● Graph databases
● Triplestores
● Relational databases



Data generator: Highlights



● Degree distribution: Ugander et al. “The 
Anatomy of the Facebook Social Graph” (2011)

● Edges are added along 3 dimensions: 
university attendance, interests, random

● Deletes are implemented according to Lőrincz 
et al. “Collapse of an online social network: 
Burning social capital to create it?” (2019)

Person 
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Person–knows–Person



Generating deletes along dependencies: 
Lifespan management
The generator generates the entire temporal with creation dates ∗ and deletion dates † 
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Example: #comments for friends of friends

● numFoaFComments(p1, cnt) = count(knows(p1, p2) ⋈ knows(p2, p3) ⋈ hasCreator(p3, c))
filter for unique values of p1, p2, p3

Joining three large tables would be very expensive, so we approximate it:

1. numFriendComments(p2, cnt) = count(knows(p2, p3) ⋈ hasCreator(p3, c))
2. numFoaFComments(p1, cnt) = sum(knows(p1, p2) ⋈ numFriendComments(p2, cnt))

filtering is omitted

Factor table generation



Operations



INS
inserts

20%, 0.1–100 ms

Workload mix

CR
complex reads
8%, 1–500 ms

DEL
deletes

0.2%, ?? ms

SR
short reads

72%, 0.1–75 ms



Complex read Q9: Recent messages by 
F/FoaF 



Q9 parameter selection: Window



Complex read Q3: Travelling abroad
Friends and FoaFs that created Messages from given Countries but do not live there



Complex read Q3: Travelling abroad

Variant (a)

Variant (b)



Short read Q3: Friends of a Person



Short read Q6: Forum of a Message



Insert query INS1: Add Person



Delete query DEL4: Remove Forum



Scheduling



(2 hours)

Benchmark execution

load warmup

(30 min)

benchmark runpreprocess

● Collect individual query runtimes
● Check 95% on-time requirement



Driver execution modes
The driver has 3 modes of operation, all start with the initial data set loaded.

1-2) Generate validation data set, Validate implementation

● single-threaded
● deterministic

3) Run benchmark

● multi-threaded
● calculates throughput
● pass/fail schedule



● Updates: replayed as they 
happen in the social network

● Complex reads: a given complex 
read query is scheduled for X 
update operations

● For each complex read instance, a 
sequence of short reads is 
triggered, short reads can trigger 
other short reads

Scheduling operations: Theory



Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

DELINS INSDEL
simulation time
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Scheduling operations: Example
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95% on-time requirement

DELINS

DEL

CR SR SR

CR SR CR SR SR

CR SRthread 1

thread 2

physical time

DEL CR SR

INSINS

In order to pass an audit, 95% of the executed queries must meet the following condition:

actual start time − scheduled start time < 1 second

If a run falls behind, it is no longer valid.



Scalability



Scaling up to SF30,000
Migrated from the Hadoop-based data generator to the Spark-based one

Scaling to large SFs gets super-exponentially more difficult

● more expensive: compute/storage costs, egress
● longer execution and transfer times
● things start to break more and more often

○ tools cannot load/process
○ connections drop
○ AWS disks corrupt
○ EMR jobs hang
○ availability zone out of instances
○ running out of disk/temp space
○ files get lost silently during transfer



Cheapest 
path-finding



“Cheapest path” = weighted shortest path (Dijkstra, Bellman–Ford)

Syntax in GQL and SQL/PGQ:

MATCH ANY CHEAPEST PATH p=
  (a:Person WHERE a.name='Bob')
  -[k:knows COST 1/k.interactionScore]->*
  (b:Person WHERE b.name='Eve')

The ANY CHEAPEST PATH clause is denoted as a language opportunity.

Cheapest path query



Cheapest path query
Difficult to express in SQL:1999 – long and cumbersome query, slow execution

But an important computational kernel: included in Interactive v2
with recursive pathb(a, b, w) AS ( SELECT least(c.creatorpersonid, p.creatorpersonid) AS a, greatest(c.creatorpersonid, 
p.creatorpersonid) AS b, greatest(round(40 - sqrt(count(*)::bigint, 1)  AS w FROM message c, message p WHERE 
c.parentmessageid = p.id AND EXISTS (SELECT * FROM person_knows_person WHERE person1id = c.creatorpersonid AND person2id = 
p.creatorpersonid) group by a, b), path(src, dst, w) AS ( SELECT a, b, w FROM pathb union all SELECT b, a, w FROM pathb ), 
shorts(dir, gsrc, dst, prev, w, dead, iter) AS ( SELECT sdir, sgsrc, sdst, sdst, sw, sdead, siter FROM (VALUES (false, 
:person1Id::bigint, :person1Id::bigint, 0::bigint, false, 0), (true, :person2Id::bigint, :person2Id::bigint, 0::bigint, 
false, 0)) t(sdir, sgsrc, sdst, sw, sdead, siter) union all ( with ss AS (SELECT * FROM shorts), toExplore AS (SELECT * 
FROM ss WHERE dead = false order by w limit 1000), newPoints(dir, gsrc, dst, prev, w, dead) AS (  SELECT e.dir, e.gsrc AS 
gsrc, p.dst AS dst, p.src as prev, e.w + p.w AS w, false AS dead  FROM path p join toExplore e on (e.dst = p.src)  UNION 
ALL  SELECT dir, gsrc, dst, prev, w, dead OR EXISTS (SELECT * FROM toExplore e WHERE e.dir = o.dir AND e.gsrc = o.gsrc AND 
e.dst = o.dst) FROM ss o ), fullTable AS (  SELECT DISTINCT ON(dir, gsrc, dst) dir, gsrc, dst, prev, w, dead  FROM 
newPoints  ORDER BY dir, gsrc, dst, w, dead, prev DESC ), found AS (SELECT min(l.w + r.w) AS wFROM fullTable l, fullTable 
rWHERE l.dir = false AND r.dir = true AND l.dst = r.dst) SELECT dir, gsrc, dst, prev, w, dead OR (coalesce(t.w > (SELECT 
f.w/2 FROM found f), false)), e.iter + 1 AS iter FROM fullTable t, (SELECT iter FROM toExplore limit 1) e) ), ss(dir, gsrc, 
dst, prev, w, iter) AS (SELECT dir, gsrc, dst, prev, w, iter FROM shorts WHERE iter = (SELECT max(iter) FROM shorts)), 
result(f, t, inter, w) AS ( SELECT l.gsrc, r.gsrc, l.dst, l.w + r.w FROM ss l, ss r WHERE l.dir = false AND r.dir = true 
AND l.dst = r.dst ORDER BY l.w + r.w LIMIT 1), sp1(arr, cur) as ( SELECT ARRAY[inter]::bigint[], inter FROM result UNION 
ALL SELECT array_prepend(ss.prev, sp1.arr), ss.prev FROM ss, sp1 WHERE ss.dir = false AND ss.dst = sp1.cur AND ss.prev <> 
ss.dst), sp2(arr, cur) as ( SELECT (SELECT arr FROM sp1 WHERE cur = (SELECT f FROM result)), (SELECT inter FROM result) 
UNION ALL SELECT array_append(sp2.arr, ss.prev), ss.prev FROM ss, sp2 WHERE ss.dir = true AND ss.dst = sp2.cur AND ss.prev 
<> ss.dst) SELECT sp2.arr AS personIdsInPath, result.w AS pathWeight FROM result, sp2 WHERE sp2.cur = result.t;



Cheapest path query: Q14 new version



Path curation
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The shortest path distance changes multiple times during the day.



For each day, we construct:

G1 – deletes but no inserts, 
setting an upper bound

G2 – inserts but no deletes, 
setting a lower bound

lower ≤ actual length ≤ upper 

Path curation 
with temporal 
bucketing

Pairs of nodes yielding 
3-hop paths in G1 and G2:

● 1 to 5
● 1 to 6
● 2 to 5
● 2 to 6



For each day, we construct:

G1 – deletes but no inserts, 
setting an upper bound

G2 – inserts but no deletes, 
setting a lower bound

lower ≤ actual length ≤ upper 

Path curation 
with temporal 
bucketing

Connected components 
algorithm on G2

Pairs of nodes in different 
components are guaranteed 
to be unreachable that day



Not yet:

● We also have to consider the degree distribution of the source–target nodes.

Actually:

● For “perfect” parameter curation, we would need to run the entire workload with 
many parameter candidates and only keep ones which showed a similar behaviour.

Is path curation alone sufficient?



Summary



Implementations

system data model language

graph Cypher

relational SQL

relational SQL + graph extension

relational SQL



SNB Interactive v2
● A scalable, transactional database benchmark
● Interesting queries (correlated vs. anti-correlated, cheapest path finding)
● Deep delete operations
● State-of-the-art parameter selection
● Fine-tuning ongoing, to be released in 2024

Please reach out if you would like to implement the benchmark




