
The LDBC Social Network Benchmark
Interactive workload v2:

A transactional graph query benchmark with deep delete operations

David Püroja, Jack Waudby, Peter Boncz, Gábor Szárnyas

TPCTC | 2023-08-28 | Vancouver

https://arxiv.org/pdf/2307.04820.pdf

SNB Interactive v1 (2015)
Q9($name, $day)

creation date <
$day

name =
$name

14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently

SNB Interactive v1 (2015)
Q9($name, $day)

creation date <
$day

name =
$name

14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently

SNB Interactive v2 (2024)
Q9($name, $day)

creation date <
$day

name =
$name

+ New query: Cheapest path-finding

+ Temporal bucketing

+ New query variants based on correlation

+ 8 delete operations

+ Path curation

+ Scales to SF30,000

Benchmark
framework

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

● Generates a temporal graph over 3 years
● Spark-based scalable generator up to 30TB data

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

● Ensures stable query runtimes
● Takes deletes into account

Datagen

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Schedules operations

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Candidate systems:
● Graph databases
● Triplestores
● Relational databases

Data generator: Highlights

● Degree distribution: Ugander et al. “The
Anatomy of the Facebook Social Graph” (2011)

● Edges are added along 3 dimensions:
university attendance, interests, random

● Deletes are implemented according to Lőrincz
et al. “Collapse of an online social network:
Burning social capital to create it?” (2019)

Person
nodes

Ada

Bob

Dan

Gia

Eve

Finn

Carl

knows

Person–knows–Person

Generating deletes along dependencies:
Lifespan management
The generator generates the entire temporal with creation dates ∗ and deletion dates †

forum

person

member

∗

∗ †

∗ †

∗ †

†

forum
person

member

∗member
†member

post

∗post
†post

post

containerOf

hasCreator

time

Example: #comments for friends of friends

● numFoaFComments(p1, cnt) = count(knows(p1, p2) ⋈ knows(p2, p3) ⋈ hasCreator(p3, c))
filter for unique values of p1, p2, p3

Joining three large tables would be very expensive, so we approximate it:

1. numFriendComments(p2, cnt) = count(knows(p2, p3) ⋈ hasCreator(p3, c))
2. numFoaFComments(p1, cnt) = sum(knows(p1, p2) ⋈ numFriendComments(p2, cnt))

filtering is omitted

Factor table generation

Operations

INS
inserts

20%, 0.1–100 ms

Workload mix

CR
complex reads
8%, 1–500 ms

DEL
deletes

0.2%, ?? ms

SR
short reads

72%, 0.1–75 ms

Complex read Q9: Recent messages by
F/FoaF

Q9 parameter selection: Window

Complex read Q3: Travelling abroad
Friends and FoaFs that created Messages from given Countries but do not live there

Complex read Q3: Travelling abroad

Variant (a)

Variant (b)

Short read Q3: Friends of a Person

Short read Q6: Forum of a Message

Insert query INS1: Add Person

Delete query DEL4: Remove Forum

Scheduling

(2 hours)

Benchmark execution

load warmup

(30 min)

benchmark runpreprocess

● Collect individual query runtimes
● Check 95% on-time requirement

Driver execution modes
The driver has 3 modes of operation, all start with the initial data set loaded.

1-2) Generate validation data set, Validate implementation

● single-threaded
● deterministic

3) Run benchmark

● multi-threaded
● calculates throughput
● pass/fail schedule

● Updates: replayed as they
happen in the social network

● Complex reads: a given complex
read query is scheduled for X
update operations

● For each complex read instance, a
sequence of short reads is
triggered, short reads can trigger
other short reads

Scheduling operations: Theory

Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

DELINS INSDEL
simulation time

Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

thread 1

thread 2

DELINS INSDEL
simulation time

physical time

Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

DELINS

INSDEL

thread 1

thread 2

DELINS INSDEL
simulation time

physical time

TCR = 0.75

Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

DELINS

INSDEL

CR

CR CR

CRthread 1

thread 2

DELINS INSDEL
simulation time

physical time

Scheduling operations: Example
Replay speed is determined by the TCR (total compression ratio)

DELINS

INSDEL

CR SR SR

CR SR CR SR SR

CR SRthread 1

thread 2

DELINS INSDEL
simulation time

physical time

95% on-time requirement

DELINS

DEL

CR SR SR

CR SR CR SR SR

CR SRthread 1

thread 2

physical time

DEL CR SR

INSINS

In order to pass an audit, 95% of the executed queries must meet the following condition:

actual start time − scheduled start time < 1 second

If a run falls behind, it is no longer valid.

Scalability

Scaling up to SF30,000
Migrated from the Hadoop-based data generator to the Spark-based one

Scaling to large SFs gets super-exponentially more difficult

● more expensive: compute/storage costs, egress
● longer execution and transfer times
● things start to break more and more often

○ tools cannot load/process
○ connections drop
○ AWS disks corrupt
○ EMR jobs hang
○ availability zone out of instances
○ running out of disk/temp space
○ files get lost silently during transfer

Cheapest
path-finding

“Cheapest path” = weighted shortest path (Dijkstra, Bellman–Ford)

Syntax in GQL and SQL/PGQ:

MATCH ANY CHEAPEST PATH p=
 (a:Person WHERE a.name='Bob')
 -[k:knows COST 1/k.interactionScore]->*
 (b:Person WHERE b.name='Eve')

The ANY CHEAPEST PATH clause is denoted as a language opportunity.

Cheapest path query

Cheapest path query
Difficult to express in SQL:1999 – long and cumbersome query, slow execution

But an important computational kernel: included in Interactive v2
with recursive pathb(a, b, w) AS (SELECT least(c.creatorpersonid, p.creatorpersonid) AS a, greatest(c.creatorpersonid,
p.creatorpersonid) AS b, greatest(round(40 - sqrt(count(*)::bigint, 1) AS w FROM message c, message p WHERE
c.parentmessageid = p.id AND EXISTS (SELECT * FROM person_knows_person WHERE person1id = c.creatorpersonid AND person2id =
p.creatorpersonid) group by a, b), path(src, dst, w) AS (SELECT a, b, w FROM pathb union all SELECT b, a, w FROM pathb),
shorts(dir, gsrc, dst, prev, w, dead, iter) AS (SELECT sdir, sgsrc, sdst, sdst, sw, sdead, siter FROM (VALUES (false,
:person1Id::bigint, :person1Id::bigint, 0::bigint, false, 0), (true, :person2Id::bigint, :person2Id::bigint, 0::bigint,
false, 0)) t(sdir, sgsrc, sdst, sw, sdead, siter) union all (with ss AS (SELECT * FROM shorts), toExplore AS (SELECT *
FROM ss WHERE dead = false order by w limit 1000), newPoints(dir, gsrc, dst, prev, w, dead) AS (SELECT e.dir, e.gsrc AS
gsrc, p.dst AS dst, p.src as prev, e.w + p.w AS w, false AS dead FROM path p join toExplore e on (e.dst = p.src) UNION
ALL SELECT dir, gsrc, dst, prev, w, dead OR EXISTS (SELECT * FROM toExplore e WHERE e.dir = o.dir AND e.gsrc = o.gsrc AND
e.dst = o.dst) FROM ss o), fullTable AS (SELECT DISTINCT ON(dir, gsrc, dst) dir, gsrc, dst, prev, w, dead FROM
newPoints ORDER BY dir, gsrc, dst, w, dead, prev DESC), found AS (SELECT min(l.w + r.w) AS wFROM fullTable l, fullTable
rWHERE l.dir = false AND r.dir = true AND l.dst = r.dst) SELECT dir, gsrc, dst, prev, w, dead OR (coalesce(t.w > (SELECT
f.w/2 FROM found f), false)), e.iter + 1 AS iter FROM fullTable t, (SELECT iter FROM toExplore limit 1) e)), ss(dir, gsrc,
dst, prev, w, iter) AS (SELECT dir, gsrc, dst, prev, w, iter FROM shorts WHERE iter = (SELECT max(iter) FROM shorts)),
result(f, t, inter, w) AS (SELECT l.gsrc, r.gsrc, l.dst, l.w + r.w FROM ss l, ss r WHERE l.dir = false AND r.dir = true
AND l.dst = r.dst ORDER BY l.w + r.w LIMIT 1), sp1(arr, cur) as (SELECT ARRAY[inter]::bigint[], inter FROM result UNION
ALL SELECT array_prepend(ss.prev, sp1.arr), ss.prev FROM ss, sp1 WHERE ss.dir = false AND ss.dst = sp1.cur AND ss.prev <>
ss.dst), sp2(arr, cur) as (SELECT (SELECT arr FROM sp1 WHERE cur = (SELECT f FROM result)), (SELECT inter FROM result)
UNION ALL SELECT array_append(sp2.arr, ss.prev), ss.prev FROM ss, sp2 WHERE ss.dir = true AND ss.dst = sp2.cur AND ss.prev
<> ss.dst) SELECT sp2.arr AS personIdsInPath, result.w AS pathWeight FROM result, sp2 WHERE sp2.cur = result.t;

Cheapest path query: Q14 new version

Path curation

Shortest distance from “Ada” to “Eve”

Ada Bob

Dan

Finn

Eve

Carl

Shortest distance from “Ada” to “Eve”

Ada Bob

Dan

Finn

Eve

Carl

Shortest distance from “Ada” to “Eve”

Ada Bob

Dan

Finn

Eve

Carl

Shortest distance from “Ada” to “Eve”

Ada Bob

Dan

Finn

Eve

Carl

Shortest distance from “Ada” to “Eve”

Ada Bob

Dan

Finn

Eve

Carl

The shortest path distance changes multiple times during the day.

For each day, we construct:

G1 – deletes but no inserts,
setting an upper bound

G2 – inserts but no deletes,
setting a lower bound

lower ≤ actual length ≤ upper

Path curation
with temporal
bucketing

Pairs of nodes yielding
3-hop paths in G1 and G2:

● 1 to 5
● 1 to 6
● 2 to 5
● 2 to 6

For each day, we construct:

G1 – deletes but no inserts,
setting an upper bound

G2 – inserts but no deletes,
setting a lower bound

lower ≤ actual length ≤ upper

Path curation
with temporal
bucketing

Connected components
algorithm on G2

Pairs of nodes in different
components are guaranteed
to be unreachable that day

Not yet:

● We also have to consider the degree distribution of the source–target nodes.

Actually:

● For “perfect” parameter curation, we would need to run the entire workload with
many parameter candidates and only keep ones which showed a similar behaviour.

Is path curation alone sufficient?

Summary

Implementations

system data model language

graph Cypher

relational SQL

relational SQL + graph extension

relational SQL

SNB Interactive v2
● A scalable, transactional database benchmark
● Interesting queries (correlated vs. anti-correlated, cheapest path finding)
● Deep delete operations
● State-of-the-art parameter selection
● Fine-tuning ongoing, to be released in 2024

Please reach out if you would like to implement the benchmark

