

The LDBC benchmark suite

Gábor Szárnyas

(LDBC benchmark expert)

Data modelling: Tabular vs. graph

Person			knows		
id	name	age	person a	person b	
1	Ada	46	1	2	
2	Ben	30	2	3	
3	Carl	57	1	3	

Waves of the "attributed graph" data model

year	data model	declarative language
1969	network model (CODASYL)	no
1988	object-oriented model	OQL
1999	RDF	SPARQL
2010	property graph	Cypher, Gremlin,

Graph databases (2010-)

MATCH

(p1:Person)-[:knows]-(p2)
(p2:Person)-[:knows]-(p3)
(p3:Person)-[:knows]-(p1)

pattern matching

MATCH

STAMFORD, Conn., March 16, 2021

Gartner Identifies Top 10 Data and Analytics Technology Trends for 2021

The (sorry) State of Graph Database Systems

Peter Boncz CWI

The **A** Register[®]

The Great Graph Debate: Revolutionary concept in databases or niche curiosity?

Q

Knowledge graphs 'overcome the shortcomings of large language models'

Investing in knowledge graphs provides higher accuracy for LLM-powered, question-answer systems over SQL databases, data.world's Juan Sequeda, says

02 Feb 2024 | INTERVIEWS

Waves of the "attributed graph" data model

_

year	data model	declarative language	_
1969	network model (CODASYL)	no	
1988	object-oriented model	OQL	problem #1:
1999	RDF	SPARQL	vsually no standard query language
2010	property graph	Cypher, Gremlin,	problem #2:

performance

limitations

Competition drives performance!

Initially, RDBMSs also had serious performance problems

1980s: benchmark wars

- Objective system-to-system comparison is very difficult
- Vendors are motivated to boast good results
- Need an independent authority and a standard

Inspiration: TPC benchmarks

TPC®

Transaction Processing Performance Council (1988–)

Influential benchmarks: TPC-C, TPC-H, TPC-DS

TPC-H v2 Performance (QphH) on the SF1,000 data set

19/04/2001 14/01/2004 10/10/2006 06/07/2009 01/04/2012 27/12/2014 22/09/2017 18/06/2020

LDBC: Linked Data Benchmark Council

A non-profit company

~25 organizational and 100 individual members

Mission: Accelerate progress in graph data management

Stakeholders

database companies

hardware vendors

Cloud providers

researchers and academic institutes

LDBC encourages stakeholders to...

Sponsor Companies

Database workloads

Social Network Benchmark suite

Data set

Updates

SQL:1992

```
SELECT DISTINCT m.id
FROM (
 SELECT k.p2id AS id
 FROM person Pa,
      knows k
 WHERE Pa.name = $name
   AND Pa.id = k.p1id
 UNTON
 SELECT k2.p2id AS id
 FROM person Pa,
      knows k1,
      knows k2
 WHERE Pa.name = $name
   AND Pa.id = k1.p1id
   AND k1.p2id = k2.p1id
   AND k1.p1id <> k2.p2id
 ) Pb,
 Message m
WHERE Pb.id = m.authorId
  AND m.creationDate < $day
```

Q9(\$name, \$day)

SQL/PGQ (SQL:2023)

```
SELECT id
FROM GRAPH_TABLE (socialNetwork
MATCH ANY ACYCLIC
  (Pa:Person WHERE Pa.name = $name)
  -[:knows]-{1,2} (Pb:Person)
  -[:author]-> (m:Message)
WHERE m.creationDate < $day
COLUMNS (m.id))</pre>
```


SQL/PGQ (SQL:2023)

```
SELECT length FROM GRAPH_TABLE (sn
MATCH p = ANY SHORTEST
  (Pa:Person WHERE Pa.id = $src)-[:knows]-*
  (Pb:Person WHERE Pb.id = $dst)
COLUMNS (path_length(p) AS length))
```

SQL:1999

```
WITH RECURSIVE ps(sp, ep, path, eR) AS (
   SELECT p1id AS sp, p2id AS ep, [p1id, p2id] AS path, (p2id = $dst) AS eR
   FROM knows WHERE sp = $src UNION ALL SELECT ps.sp AS sp, p2id AS ep,
   array_append(path, p2id) AS path, max(CASE WHEN p2id = $dst THEN 1 ELSE 0 END)
   OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS eR
   FROM ps JOIN knows ON ps.ep = p1id WHERE NOT EXISTS
   (SELECT 1 FROM ps pps WHERE list_contains(pps.path, p2id)) AND ps.eR = 0)
SELECT min(length(path)) AS length FROM ps WHERE ep = $dst
```


Benchmark workflow

SNB Business Intelligence (2022)

Analytical workload

Metric 1: Power

Metric 2: Throughput

Analytical workload

Metric 1: Power

Metric 2: Throughput

Audited results

Scale factors

100 1,000 (×3) 10,000

TuGraph[™]

30,000

Financial Benchmark (2023)

Transactional workload

Metric: Throughput

Target: Distributed systems

Relaxed consistency requirements

 $t1.\$ \ge t2.\$$ $t1.\$ \ge t2.\$$ t1.date < t2.date t1.date < t2.date

Financial Benchmark (2023)

Transactional workload

Metric: Throughput

Target: Distributed systems

Relaxed consistency requirements

Audited results

no audited results yet!

Using the benchmarks

Benchmark kit

Specification

Academic paper

Data generator

Pre-generated data sets

Driver

2+ implementations

Guidelines

E LDBC Social Network Benchmark (version 2.2.1)
--

Auditing

Performed by certified auditors

Audited results are used in RFPs (Request for Proposals)

Benchmark setup	SF	Hardware	Performance	Performance (price- adjusted)
 O System: GraphScope Flex 0.26.1 O Test sponsor: Alibaba Cloud O Date: 2024-05-14 	100	Alibaba Cloud ecs.r8a.16xlarge 64×AMD EPYC 9T24 @ 3.7GHz vCPUs, 512GiB RAM	130,098.36 ops/s	1,273.873
 Queries implemented in: C++ System cost: 738,724 RMB (102,128.22 USD) 	300	Alibaba Cloud ecs.r8a.16xlarge 64×AMD EPYC 9T24 @ 3.7GHz vCPUs, 512GiB RAM	131,263.87 ops/s	1,285.285

Total Cost of Ownership

We report the TCO based on the <u>TPC Pricing Specification</u>

3-year software license

3-year hardware / cloud serve

3-year maintenance (enterprise-grade support):

- 7 days/week, 24 hours/day coverage
- *"the response time for problem recognition must not exceed 4 hours"*

Read-only workloads

Graph algorithms

Macrobenchmark

Unlabelled, unattributed graphs

Metric: Processing time

Comment

liker: Person

Tag

≠ person1

Usage statistics

Data set downloads

Comparison with TPC benchmarks

macro / application-	"scale factors":	flexible hardware and
level benchmarks	SF30 = 30GiB CSV	software setup
auditor training, exam,	competing on metrics,	benchmark approval
and certification	e.g. throughput	and renewal
only members can	reports are written by	no standard query
commission audits	auditors	language required

Challenges in the graph database space

DB Engines Ranking for graph: ¹/₄ drop in 3 years

Areas for LDBC to improve in

Covering important recent technologies

Cloud infrastructure and cloud-native systems

- serverless setups
- take elasticity into account for pricing

ML workloads

- graph neural networks
- knowledge graphs
- vector databases

LDBC: Summary of 12 years

The graph & RDF benchmark reference