
The LDBC Social Network Benchmark
Interactive workload v1

Gábor Szárnyas

Linked Data Benchmark Council

Overview
The LDBC Social Network Benchmark is a state-of-the-art benchmark suite for database
management systems with a focus on graph processing.

● The Interactive workload focuses on transactional systems
● The BI workload targets OLAP systems

The workloads operate a social graph which is highly connected and has correlations on
attribute values (e.g. names) and structure (e.g. friendship). The queries make use of graph
features, e.g. traversing Message trees, finding the k-hop neighbourhoods of Persons, and
computing shortest paths between Persons.

This slide deck presents the Interactive v1 workload. Interactive v2 is under development.

Social networkOverview of SNB Interactive v1

Q9($name, $day)

creation date <
$day

name =
$name

14 complex reads, 7 short reads

Goal: High throughput (ops/s)

Queries start in 1–2 person nodes

8 insert operations run concurrently

Transactional workload

Q13($src, $dst)

id = $src id = $dst

shortest
knows*

Paper (SIGMOD 2015)

Specification

https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://ldbcouncil.org/docs/papers/ldbc-snb-interactive-sigmod-2015.pdf
https://ldbcouncil.org/docs/papers/ldbc-snb-interactive-sigmod-2015.pdf
https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf

Data set
and queries

UpdatesQueriesData set

Person
nodes

Message
nodes

Ada

M1
Mon

Ben

Dan

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

Data set Updates

knows

author

reply

Queries

Ada

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Data set UpdatesQueries

Q9($name, $day)

M

Ada

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Pa Pbknows
*1..2

author

creation date < $day

name =
$name

Data set UpdatesQueries

Q9(“Ben”, “Sat”)

M

Ada

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Pbknows
*1..2

author

creation date < “Sat”

name =
“Ben”

Pa

Data set Queries Updates

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Ada

Q9(“Ben”, “Sat”)

M

knows
*1..2

author

creation date < “Sat”

name =
“Ben”

Pa

Data set

Pb

Queries Updates

M1
Mon

Ben

Dan

knows

Gia

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Eve

Finn

Ada

Q9(“Ben”, “Sat”)

M

knows
*1..2

author

creation date < “Sat”

name =
“Ben”

Pa Pb

Data set Queries Updates

Ada

M1
Mon

Ben

Dan

knows

Gia

Finn

Carl

M2
Tue

M3
Sun

M5
Fri

reply

author

Eve

M4
Tue

Q9(“Ben”, “Sat”)

M

knows
*1..2

author

creation date < “Sat”

name =
“Ben”

Pa Pb

Data set Queries Updates

Ada

M1
Mon

Ben

Dan

knows

Gia

Finn

Carl

M2
Tue

M3
Sun

M5
Fri

reply

author

Eve

M4
Tue

Q9(“Ben”, “Sat”)

M

knows
*1..2

author

creation date < “Sat”

name =
“Ben”

Pa Pb

✔

✔

✔

Data set Queries Updates

Ada

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Data set Queries Updates

Q9($name, $day)

M

Pa Pbknows
*1..2

author

creation date < $day

name =
$name

Ada

M1
Mon

Ben

Dan

knows

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Gia

Q9(“Finn”, “Wed”)

M

Pbknows
*1..2

author

creation date < “Wed”

name =
“Finn”

Pa

Data set

Eve

Queries Updates

Finn

Q9(“Finn”, “Wed”)

M

author

creation date < “Wed”

name =
“Finn”

Pa

Data set

Pb

Queries Updates

M1
Mon

Ben

Dan

knows

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Gia

Eve

Ada

Finn

knows
*1..2

Q9(“Finn”, “Wed”)

M

Pa knows
*1..2

author

creation date < “Wed”

name =
“Finn”

Data set Queries Updates

M1
Mon

Ben

Dan

knows

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Gia

Eve

Ada

Finn

Pb

Q9(“Finn”, “Wed”)

M

Pa Pbknows
*1..2

author

creation date < “Wed”

name =
“Finn”

Data set

Q9(“Ben”, “Sat”): 10 nodes
Q9(“Finn”, “Wed”): 5 nodes

Queries Updates

M1
Mon

Ben

Dan

knows

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Gia

Eve

Ada

Finn

✔

Parameter selection
● Uniform random parameters → unstable distributions

uniform
random

uniform
random

uniform
random

Parameter
curation

A. Gubichev, P. Boncz
TPCTC 2014

name #1-hop #2-hop
Ben 2 3

Carl 4 2

Ada 3 2

…

Statistics (“factors”)

Ada

M1
Mon

Ben

Dan

knows

Gia

Eve

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

reply

author

Data set Queries Updates

numFriendsOfFriends

numMessagesPerDay
day #

Mon 1

Tue 2

…

Inserts

Ada

M1
Mon

Ben

Dan

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

Eve

Gia

Data set Updates

knows
reply

author

Queries

Ada

M1
Mon

Ben

Dan

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

Eve

Gia

Data set

Updates

+ knows(“Eve”, “Gia”)

knows
reply

author

UpdatesQueries

Ada

M1
Mon

Ben

Dan

Finn

Carl

M2
Tue

M3
Sun

M4
Tue

M5
Fri

M6
Sun

Eve

Gia

Data set

Updates

+ knows(“Eve”, “Gia”)

+ author(“Gia”, “M3”)knows
reply

author

UpdatesQueries

Data sets

● Graph schema

● Correlated data

● Deletions

● The Datagen project

Social network domain
Disclaimer: It is now established that serving as the primary database for a social
network is not the primary use case of graph databases.

That said: It is a widely understood domain with interesting graph data structures.
Additionally, it makes it easy to argue about correlations in the graph such as:

● “People are Germany are more likely to be called Joachim than in Italy”
● “People in the France make more trips to Belgium than people in Mexico to Japan”

The generated graphs are realistic to some extent but not fully. The goal is to add some
realistic correlations which query engines can exploit when optimizing the queries.

Statistics
Network of Person nodes, trees
of Messages/TagClasses/Places

Statistics for scale factor 1:

● 3M nodes, 17M edges
● 11k Persons, avg. degree

of knows edges: 39.4
● Branching factors

○ Message tree: 3.2
○ TagClass tree: 3.7
○ Place tree: 12.4

Graph schema
The graph is a labelled property graph. All edges are directed except the
Person-knows-Person edges, which are undirected.

Edge types (between node types) can be categorized as follows:

● Bipartite: most edge types form a bipartite subgraph, e.g. Forum-hasMember-Person
● Network: Person nodes form network along the knows edges
● Hierarchies:

○ TagClasses: a rooted tree of TagClass nodes (root: “Thing”)
○ Places: a non-rooted tree of 3 levels (Continent, Country, City)
○ Messages: each thread is a rooted tree with a Post root node and Comment nodes

The Datagen produces a property graph data set

The graph is fully dynamic: inserts and deletes with realistic distributions

The Datagen for SNB Interactive v1 uses Hadoop

📃 S3G2: a Scalable Structure-correlated Social Graph Generator, TPCTC 2012
📺 LDBC SNB Datagen: Under the hood by Arnau Prat, 9th LDBC TUC meeting, 2017

Data generator (Datagen)

https://homepages.cwi.nl/~boncz/snb-challenge/datagen-tpctc.pdf
https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431942.pdf

Data generator (Datagen)
Graphs are produced using a
Hadoop-based distributed generator

The generator is capable of
producing output with different
serializers (CSV variants, Turtle).

The “dynamic” part of the graph is changing throughout the benchmark. This puts
systems using static data structures (such as plain CSR) at a disadvantage.

In Interactive v1, new Persons/Forums/Messages are inserted along with their edges

Update operations

SNB Interactive data sets of SF0.1 to SF1000 are published at the SURF/CWI repository.
These data sets were generated using different serializers and partition numbers:
● Serializers:

○ csv_basic, csv_basic-longdateformatter
○ csv_composite, csv_composite-longdateformatter
○ csv_composite_merge_foreign, csv_composite_merge_foreign-longdateformatter
○ csv_merge_foreign, csv_merge_foreign-longdateformatter
○ ttl

● Partition numbers:
○ 2k (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024)
○ 12×2k (12, 24, 48, 96, 192, 384, 768)

⚠ The data sets are stored on tape and have to be staged to disks before downloading.
See download instructions.

Data sets

https://repository.surfsara.nl/datasets/cwi/ldbc-snb-interactive-v1-datagen-v100
https://ldbcouncil.org/data-sets-surf-repository/

Benchmark
framework

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

● Generates a temporal graph over 3 years
● Hadoop-based data generator (up to 1TB data)

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

● Ensures stable query runtimes
● Aims for a normal distribution

Datagen

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Schedules operations

Datagen

Data set Factor tablesUpdates

Query parameters

Paramgen

Benchmark workflow

Benchmark driver

System under test

Candidate systems:
● Graph databases
● Triplestores
● Relational databases

Data generator

● Degree distribution: Ugander et al. “The
Anatomy of the Facebook Social Graph” (2011)

● “knows” edges are added along 3 dimensions:
○ university attendance
○ geographical location
○ random

Person
nodes

Ada

Bob

Dan

Gia

Eve

Finn

Carl

knows

Person–knows–Person

Operations

INS
inserts

0.1–100 ms

Workload mix

CR
complex reads

1–500 ms

SR
short reads
0.1–75 ms

Complex read Q9: Recent messages by F/FoaF

Q9 parameter selection: Window

Complex read Q3: Travelling abroad
Friends and FoaFs that created Messages from given Countries but do not live there

Short read Q3: Friends of a Person

Short read Q6: Forum of a Message

Insert query INS1: Add Person

Scheduling

(2 hours)

Benchmark execution

load warmup

(30 min)

benchmark runpreprocess

● Collect individual query runtimes
● Check 95% on-time requirement

Driver execution modes
The driver has 3 modes of operation, all start with the initial data set loaded.

1-2) Generate validation data set / Validate implementation

● single-threaded
● deterministic

3) Run benchmark

● multi-threaded
● calculates throughput
● pass/fail schedule

Updates: replayed as they happen in the
social network

Complex reads: a given complex read
query is scheduled for X update
operations

For each complex read instance, a
sequence of short reads is triggered,
short reads can trigger other short reads

Scheduling operations: Theory

Replay speed is determined by the TCR (total compression ratio)

Scheduling operations: Example

INS2INS1 INS3INS3
simulation time

Scheduling operations: Example

thread 1

thread 2

INS2INS1 INS3INS3
simulation time

Replay speed is determined by the TCR (total compression ratio)

Scheduling operations: Example

INS2INS1

INS3INS3

thread 1

thread 2

simulation time

physical time

TCR = 0.75
INS2INS1 INS3INS3

Replay speed is determined by the TCR (total compression ratio)

Scheduling operations: Example

CR

CR CR

CRthread 1

thread 2

simulation time

INS2INS1

INS3INS3

INS2INS1 INS3INS3

physical time

Replay speed is determined by the TCR (total compression ratio)

Scheduling operations: Example

CR SR SR

CR SR CR SR SR

CR SRthread 1

thread 2

simulation time

INS2INS1

INS3INS3

INS2INS1 INS3INS3

physical time

Replay speed is determined by the TCR (total compression ratio)

95% on-time requirement

INS2CR SR SR

CR SR CR SR SR

CR SRthread 1

thread 2

CR SR

INS3

In order to pass an audit, 95% of the executed queries must meet the following condition:

actual start time − scheduled start time < 1 second

INS2INS1

INS3INS3

physical time

Creating a new
SNB Interactive implementation

Creating a new SNB Interactive implementation #1

It is recommended to base a new implementation on an existing one:

● Graph DBMSs: use the Neo4j/Cypher or the TigerGraph/GSQL implementation
● Relational DBMSs: use the PostgreSQL or the Microsoft SQL Server implementation

Pick a data set serializer. In general:

● Graph DBMSs: use data sets produced by the CsvComposite serializer
● Relational DBMSs: use data sets produced by the CsvMergeForeign serializer

Creating a new SNB Interactive implementation #2

1. Generate or download the required data sets and query substitution parameters.
a. Use SF10 for cross-validation.
b. For benchmarks, SF30+ is required.

2. Fork the SNB Interactive repository and create a new Maven subproject.
3. Add a Java client to the DBMS as a Maven dependency (e.g. org.postgresql:postgresql)
4. Implement a bulk loader which loads the initial data set. Test it with a small data set (available in the

cypher/test-data/ and postgres/test-data/ directories), then proceed to larger data sets.
5. Implement the complex read queries:

a. Create the query implementations and their glue code in the *Db and *QueryStore classes.
b. Turn the update and short operations off, then use the create-validation-parameters mode to

generate the validation data set with an existing implementation.
c. Use the validation mode to check the correctness of the queries on the SF10 data set.

https://github.com/ldbc/ldbc_snb_interactive

6. Implement the short read queries and the insert operations:
a. Implement the 7 short queries and 8 insert operations and their glue code.
b. Create a full validation data set and cross-validate the new implementation against it on SF1

and SF10. Note that the database has to be reset to its initial state between runs: use the
scripts/snapshot-database.sh and scripts/restore-database.sh scripts.

7. Use the benchmark mode to perform a benchmark run.
8. Determine the best total_compression_ratio value for benchmarks.

a. The driver/determine-best-tcr.sh script can help find this value.
b. Ensure that the warmup plus benchmark runs execute for 2.5h+ in total.

9. Implement the ACID test suite and ensure that the system passes it.
10. Perform a recovery test by killing the system during a benchmark run (e.g. kill -9, reboot) and

checking whether the inserted entities are in the database after restarting.

Creating a new SNB Interactive implementation #3

https://github.com/ldbc/ldbc_acid

Summary

Implementations

system data model language

graph Cypher

relational SQL

relational SQL + graph extension

relational SQL

Audited results
As of September 2024, there
are 33 audited results on scale
factors between 30 and 1,000.

See the SNB Interactive site for
the results.

2020 2021 2022 2023 year2024

32k

8k

4k

64k

16k

128k

GraphScope
Huawei GES

AtlasGraph

TuGraph

CreateLink GalaxyBase

25× speedup in 4 years

71× price-performance

SF100 throughput (ops/s)

https://ldbcouncil.org/benchmarks/snb-interactive/

Future work: SNB Interactive v2
● Larger data sets: SF10,000 and beyond
● Deep delete operations
● Improved parameter selection
● Fine-tuning ongoing

Please reach out if you would like to implement the benchmark

