
The LDBC Social Network Benchmark
Gábor Szárnyas, Jack Waudby, Benjamin Steer, Peter Boncz

(with contributions from former members of the SNB Task Force)

Overview
The LDBC Social Network Benchmark is a state-of-the-art benchmark suite for
modern HTAP and OLAP database management systems.

● The Interactive workload focuses on HTAP systems with continuous updates
● The BI workload target OLAP systems with batched updates

The workloads operate a social graph which is highly connected and has
correlations on attribute values (e.g. names) and structure (e.g. friendship).

They include graph features, e.g. traversing Message trees, finding the k-hop
neighbourhoods of Persons, and computing unweighted/weighted shortest paths
between Persons.

LDBC project, benchmark papers & meetings

2012 2013 2014 2015 2016 2017 2018 2019 2020

1 2 3 4 5 6 7 8 9 10 11 12 13

2021

14

2022

EU FP7 project | TUC meetings | Benchmark papers

SNB Interactive
SIGMOD

Datagen
TPCTC

Datagen + deletions
GRADES-NDA

SPB
BLINK

15
ACID tests

TPCTC
Graphalytics

VLDB
Paramgen

TPCTC
choke points

TPCTC

The LDBC Social Network Benchmark
● Initial mission during the EU project (2012-2015): develop a benchmark suite

○ Continued after the project, now in the making for almost 10 years
○ Influential in both academia and industry

● From 2015: new LDBC groups around query languages
○ Graph Query Language Task Force (G-CORE)
○ GQL Formal Semantics Working Group
○ Existing Languages Working Group
○ Property Graph Schema Working Group

● LDBC has a growing membership of individuals and organizations

This presentation is a summary of the LDBC Social Network Benchmark. We provide an
overview of the benchmark and codify some lessons learnt.

For an overview of the LDBC, see the talk titled “The Linked Data Benchmark Council”

https://docs.google.com/presentation/d/1oXKh94R4myUV5RvgeXn7OzhbveAn9Dg1Q4LlOkFrSko/edit

Data sets

● Graph schema

● Correlated data

● Deletions

● The Datagen project

Social network domain
Disclaimer: It is now established that serving as the primary database for a social
network is not the primary use case of graph databases.

That said: It is a widely understood domain with interesting graph data structures.
Additionally, it makes it easy to argue about correlations in the graph such as:

● “People are Germany are more likely to be called Joachim than in Italy”
● “People in the France make more trips to Belgium than people in Mexico to Japan”

The generated graphs are realistic to some extent but not fully. The goal is to add some
realistic correlations which query engines can exploit when optimizing the queries.

Statistics
Network of Person nodes, trees
of Messages/TagClasses/Places

Statistics for scale factor 1:

● 3M nodes, 17M edges
● 11k Persons, avg. degree

of knows edges: 39.4
● Branching factors

○ Message tree: 3.2
○ TagClass tree: 3.7
○ Place tree: 12.4

Graph schema
The graph is a labelled property graph. All edges are directed except the
Person-knows-Person edges, which are undirected.

Edge types (between node types) can be categorized as follows:

● Bipartite: most edge types form a bipartite subgraph, e.g. Forum-hasMember-Person
● Network: Person nodes form network along the knows edges
● Hierarchies:

○ TagClasses: a rooted tree of TagClass nodes (root: “Thing”)
○ Places: a non-rooted tree of 3 levels (Continent, Country, City)
○ Messages: each thread is a rooted tree with a Post root node and Comment nodes

The Datagen produces a property graph data set

The graph is fully dynamic: inserts and deletes with realistic distributions

Distributed generation for scalability:

● The Hadoop-based Datagen was used for the Interactive workload
● It was migrated to Spark in 2020, which is now used for the BI workload

📃 S3G2: a Scalable Structure-correlated Social Graph Generator, TPCTC 2012
📺 LDBC SNB Datagen: Under the hood by Arnau Prat, 9th LDBC TUC meeting, 2017
📃 Supporting dynamic graphs in SNB Datagen by J. Waudby et al., GRADES-NDA 2020
📃 Speeding up LDBC SNB Datagen, blogpost, 2020

Data generator (Datagen)

https://homepages.cwi.nl/~boncz/snb-challenge/datagen-tpctc.pdf
https://ldbcouncil.org/event/ninth-tuc-meeting/attachments/59277315/75431942.pdf
http://ldbcouncil.org/sites/default/files/datagen-deletions-grades-nda-2020.pdf
http://ldbcouncil.org/blog/speeding-ldbc-snb-datagen

Data generator (Datagen)
Graphs are produced using a distributed data
processing framework

● Earlier versions used Hadoop
● Migrated to Spark in 2020

Capable of producing output with different
serializers (CSV variants, Turtle).

📃 Speeding up LDBC SNB Datagen, blogpost, 2020

http://ldbcouncil.org/blog/speeding-ldbc-snb-datagen

Refresh operations
The “dynamic” part of the graph is changing throughout the benchmark. This puts
systems using static data structures (such as plain CSR) at a disadvantage.

Depending on the workload of SNB, the refresh operations are different:

Interactive: New Persons/Forums/Messages are inserted along with their edges

BI: Same inserts plus the same type of entities are also subject to deletes

Generating deletions is challenging as it necessitates assigning a lifespan to each entity
during generating, which takes into account how certain deletions are cascading (e.g.
deleting an entire Forum or a Message thread) which has a significant impact on the
distribution of the data.

Lifespan management, example 1
When can a Person-knows-Person edge exist? Its ∗creation date and †deletion date
values are selected from intervals constrained by those of its Person endpoints.

📃 Supporting fully dynamic graphs in LDBC SNB [GRADES-NDAʼ20]

http://ldbcouncil.org/sites/default/files/datagen-deletions-grades-nda-2020.pdf

Lifespan management, example 2
To create a Comment, its parent Message and its creator Person has to exist and the
person has to be a member (hm) of the Forum where the Messageʼs root Post is located.

📃 Supporting fully dynamic graphs in LDBC SNB [GRADES-NDAʼ20]

http://ldbcouncil.org/sites/default/files/datagen-deletions-grades-nda-2020.pdf

Initial data set and
batches B1, B2, B3

SNB Interactive data sets of SF0.1 to SF1000 are published at the SURF/CWI repository.
These data sets were generated using different serializers and partition numbers:
● Serializers:

○ csv_basic, csv_basic-longdateformatter
○ csv_composite, csv_composite-longdateformatter
○ csv_composite_merge_foreign, csv_composite_merge_foreign-longdateformatter
○ csv_merge_foreign, csv_merge_foreign-longdateformatter
○ ttl

● Partition numbers:
○ 2k (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024)
○ 6×2k (24, 48, 96, 192, 384, 768)

⚠ The data sets are stored on tape and have to be staged to disks before downloading.

Data sets

https://hdl.handle.net/11112/e6e00558-a2c3-9214-473e-04a16de09bf8

Workloads
● Interactive workload

● Business Intelligence workload

Comparison of workloads
Business Intelligence

v1.0 Interactive v1.0 Interactive v2.0

focus OLAP OLTP OLTP

typical
queries

multi-hop / path /
subgraph queries with
filtering & aggregation

2-3 hop top-k queries
with filtering

2-3 hop top-k queries
with filtering

data generator Spark Datagen Hadoop Datagen Spark Datagen

refresh operations inserts and deletes inserts inserts and deletes

target metric throughput score
power score throughput (ops/s) throughput (ops/s)

largest SF 10 000+ 1 000 10 000+

Interactive
workload
🔗 Specification

https://ldbcouncil.org/ldbc_snb_docs/workload-interactive.pdf

Interactive workload
Scenario: Users browsing a social network and producing content (Forums, Messages)

Queries: 14 complex reads, 7 short reads, 8 insert operations

Audit rules:

● Implementations using imperative code are allowed
● Defining materialized views is allowed if they are constantly maintained

✅ First audited benchmark in 2020, TuGraph by FMA Technologies (report)

📃 SIGMODʼ15 paper, slides

🔗 Benchmark page

http://ldbcouncil.org/sites/default/files/LDBC_SNB_I_20200726_SF30-100-300_tugraph.pdf
http://oai.cwi.nl/oai/asset/23380/23380A.pdf
https://www.slideshare.net/ldbcproject/sigmod-ldbcsnb
http://ldbcouncil.org/benchmarks/snb

Interactive workload: Queries
Complex queries: Always start from one or two Person nodes, and discover their
neighbourhoods (1..2 nodes) or paths between Person nodes.

Short queries: Discover the neighbourhood of a Person or a Message node.

Insert operations: Each operation inserts a node (an connects it to its neighbourhood)
or an edge between existing nodes.

Interactive workload: Complex queries

Q4: New topics

Q3: Friends and friends of friends
that have been to given countries

Interactive workload: Complex queries
Q14: Trusted connection paths

Interactive workload: Execution of queries
● Insert operationsʼ issue times are taken from the update streams generated by the data generator.

These are the times where the actual event happened during the simulation of the social network.
● Complex readsʼ frequencies are expressed in terms of update operations. For each complex read

query type, a frequency value is assigned which specifies the relation between the number of updates
performed per complex read.

● For each complex read instance, a sequence of short reads is planned. [...] The substitution
parameters for short reads are taken from the results of previously executed complex reads and short
reads. Once a short read sequence is issued (and provided that sufficient substitution parameters exist),
there is a probability that another short read sequence is issued. This probability decreases for each
new sequence issued. Since the same random number generator seed is used across executions, the
workload is deterministic.

(See the specification for more details.)

https://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf

Interactive workload: Data set
The Datagen produces 3 years worth of data. From this data

● 90% is used the initial data set (separated into static/dynamic directories), and
● 10% is added later in the form of inserts (updates).

These inserts affect the entities in the “dynamic” category (e.g. Person/Message nodes,
knows/likes edges). There are 8 insert operations, encoded in a variable-width CSV format:

● insert node: Person, Forum, Comment, Post
● insert edge: knows, hasMember, Comment-hasCreator-Person, Post-hasCreator-Person

Interactive workload: driver #1

1. Generate validation data set

● single-threaded, sequential execution
● input:

○ query parameters: substitution_parameters/ dir
○ update streams: update streams directory with the

updateStream_0_0_{forum,person}.csv files
● output:

○ validation_params.csv file

2. Validate implementation

● single-threaded, sequential execution
● input:

○ validation_params.csv file
● output:

○ passed/failed validation
○ if failed: expected vs. actual results

The driver has 3 modes of operation, all starting with a database containing the initial data set.

Interactive workload: driver #2
3. Execute benchmark

● multi-threaded, concurrent execution
○ some non-deterministic behaviour is possible due to concurrent execution
○ make sure your database clientʼs connection pool support concurrent connections

● input:
○ execution configuration values: warmup, operation_count, and time_compression_ratio
○ query frequencies: e.g. ldbc.snb.interactive.LdbcQuery1_freq (need to be in sync with the SF)
○ number of read threads: thread_count value
○ number of write threads: based on the number of update streams. For 2n write threads, the framework requires

n updateStream_*_forum.csv and n updateStream_*_person.csv files
○ query parameters: substitution_parameters/ directory

● output:
○ passed/failed schedule audit
○ throughput (operations per second)
○ per-query performance results

Parameter selection
For each generated data set, the Datagen component creates substitution parameters
(also known as “query parameters” and “query seeds”). Parameters are selected so that
the variance of the expected execution times is limited. This is a non-trivial task as
graph queries are prone to high-variance due to their skewed, power-law degree
distribution (exhibited by e.g. the Person-knows-Person subgraph).

Path queries are especially tricky as the execution time has huge variance based on
whether the path exist (usually quick to find) or does not exist (usually slow to prove).

There is a txt file for each query and each line them corresponds to a query execution.

The datetime values in the txt files are represented as UNIX epoch values. The driver
converts them into GMT-based timestamps.

📃 Parameter Curation for Benchmark Queries, TPCTC 2014

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.905.3519&rep=rep1&type=pdf

TCR and valid benchmark runs #1
Implementations compete on the throughput (operation/second), i.e. how quickly they
can replay a sequence of operations. In the driver, the speed of the replay is defined by
the total compression ratio (TCR) value. A TCR of 0.1 means the operations are played at
10x speed. A lower TCR is better as it indicates a higher throughput.

For a run to pass the audit, the implementation has to sustain its throughput for 2 hours
(after a 30-minute initial warmup whose performance results are discarded).

TCR and valid benchmark runs #2
For a given SF/TCR, implementations have to satisfy the 95% on-time requirement:

In order to pass an audit, 95% of the executed queries must meet the following condition:

actual_start_time − scheduled_start_time < 1 second

That is, 95% of the executed queries have to start in less than 1 second of their originally
intended start time. If the system falls behind too much and less than 95% of the
queries start on time, the run fails the audit.

In these cases, the test executor is advised to reduce the TCR and start another run.

⚠ Due to potentially noisy execution environments and slight differences in individual runs (due to
multi-threaded execution), it is recommended to leave a bit ʻin reserveʼ when calibrating the TCR value.

Example graph

Example graph
Persons network

Forums

Message threads:

● root = Post
● other nodes = Comment

BI workload
🔗 Specification

● Analytical queries

● Cyclic subgraphs

● Shortest paths

● Inserts/deletes

https://ldbcouncil.org/ldbc_snb_docs/workload-bi.pdf

Business Intelligence workload
Scenario: Ad-hoc graph OLAP queries with daily updates

Workload:

● 20 complex read queries (some queries have a/b variants: 28 in total)
● Write operations: apply one dayʼs worth of updates

Reads and writes are run separately:

load read write read write readwrite⋯

Benchmark workflow
Load phase

Read phase

● Run 28 query variants
● 10 parameterized

instances/variant
● Total 280 query instances

Write phase

● 33 batches
● One batch = one day of

inserts/deletes

Test workflow

Q11: Triangle query (WCOJs are beneficial)

Q18: Diamond query (WCOJs are beneficial)

Q9: Message threads
Traversing a message thread up/down is an important kernel in other queries.

Materializing the “root Post” of a Message thread seems useful.

Q20: Single-source multi-destination shortest p.

Q19: Multi-source multi-destination shortest p.

Parameter generator
Goal: Ensure that runtimes for a given query variant follow a unimodal normal distribution.

(raw data)

—[Spark DataFrames API]—>(factor tables)

—[parameter queries]—>(parameters)

Parameter generation: 25 query variants tuned

BI implementations
● Neo4j Cypher
● TigerGraph GSQL
● PostgreSQL (partial) SQL
● Umbra (partial) SQL

SQL implementations lack support for the path queries

Ongoing developments for BI
Completed tasks:

● factor table generation ✅
● loading from compressed CSVs ✅
● script to create validation parameters (for cross-validating implementations) ✅
● parameter generation (based on the factors) ✅
● add instrumentation to save runtimes and result to a file ✅

Ongoing tasks:

● Umbra implementation (ported from Postgres) ✅
● visualize results (PR) (initial distribution ✅)
● decide exact workflow(s): power test/throughput test, metrics
● allow the driver to distinguish between “warm-up” and “measurement window” phases
● define metrics for performance (e.g. geometric mean for reads and for updates)

https://github.com/ldbc/ldbc_snb_bi/commit/dcc6cb7a9cfb629974ec800b59986b8c897a1e06
https://github.com/ldbc/ldbc_snb_bi/pull/35

SNB BI publications
Papers:

🔗 Specification

📃 GRADES-NDAʼ18 paper, slides

https://ldbcouncil.org/ldbc_snb_docs/workload-bi.pdf
http://ldbcouncil.org/sites/default/files/ldbc-snb-bi-grades-nda.pdf
https://www.slideshare.net/szarnyasg

BI auditing rules
Audit rules:

● Precise auditing rules are yet to be defined

What is already clear:

● Must use a domain-specific query language
unlike Interactive where imperative languages can be used

● Views are allowed iff they are maintained
same as Interactive but maintenance is easier due to daily batch updates

Query design
Choke points and parameters

● Intended query plan

● Choke point analysis

● Parameter curation

Query templates and parameters
Queries are given using a query template which can have multiple input parameters.

These are substituted for with different parameters during execution.

The parameters are produced by the Paramgen component of Datagen.

Intended query plan
The intended query plan of a query is the ideal execution plan to evaluate that query.
E.g. in Interactive Q3 params can be chosen to produce a large or a small result:

● Neighbouring countries X = Belgium Y = France
● Far away countries X = Mexico Y = Japan

📃 [TPCTCʼ14]
📃 [Dissertation of A. Gubichev, ʼ15]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.905.3519&rep=rep1&type=pdf
http://mediatum.ub.tum.de/node?id=1238730

Choke points
A choke point is a difficult aspect of query processing that has a significant impact on
the performance of the query when evaluated using the intended query plan.

The TPCTCʼ12 paper analyzed TPC-H based on the lessons learnt when implementing
the benchmark on Vectorwise, Virtuoso, and HyPer.

Examples:

● Join ordering
● Efficient antijoins and outer joins
● Handling paths

📃 TPC-H choke points [TPCTCʼ12], Quantitative analysis of TPC-H CPs [VLDBʼ20]

https://homepages.cwi.nl/~boncz/snb-challenge/chokepoints-tpctc.pdf
http://www.vldb.org/pvldb/vol13/p1206-dreseler.pdf

Parameter curation
Goal: Reduce variance of query execution times, make results easier to interpret.
A negative example: Q1-Q4 of the SIGMOD 2014 Contest without parameter curation

📃 A GraphBLAS solution to the SIGMOD 2014 Programming Contest [HPECʼ20]

execution time
[seconds]

Q1 Q2 Q3 Q4

http://mit.bme.hu/~szarnyas/ldbc/hpec2020-sigmod14-msbfs-camera-ready.pdf

Selecting entities for deletes
One can think of this as a special case of parameter curation: based on whether we
select a Person

● with many friends and a lot of content or
● with little activity

The cost of performing the delete operation varies significantly.

⏳ This is currently being worked out as part of tuning the distribution of the deletes.

Some of the guiding principles
Both the choke point analysis and the parameter curation process are based on the
intended query plan.

The substitution parameters must specify existing entities.

● Read query parameters must specify existing entities
● Insertions must connect to existing nodes
● Deletions must target existing entities

The Ecosystem
of the LDBC SNB

● Specification

● Datagen

● Driver

● Implementations

Challenges:

● Coming up with a representative workload which has the “optimum” difficulty
● Establishing auditing rules (inspired by TPC)
● Specifying queries in an unambiguous way
● Creating a graphical notation (inspired by the graph transformation community)

We believe to have successfully tackled these in the latest specification.

📃 [specification]

Specification

https://arxiv.org/abs/2001.02299

Driver
Lots of challenges regarding concurrent execution: tracking dependencies between
refresh operations while maintaining a high throughput.

The driver implements these features in Java and is by far the largest project in SNB:

● main project: 38k LOC
● tests: 22k LOC

The new BI queries and deletes are already supported by the driver.

⏳ Adding support for batched refresh operations is ongoing work.

📃 EU Deliverable “Benchmarking transactions” [D2.2.3]

http://ldbcouncil.org/sites/default/files/LDBC_D2.2.3.pdf

Implementations
Reference implementations:

● PostgreSQL [SQL]: a row-oriented RDBMS
● Neo4j [Cypher]: a graph database management system
● DuckDB [SQL]: a column-oriented OLAP RDBMS with a vectorized runtime
● Umbra [SQL]: a column-oriented HTAP RDBMS with a compiled runtime, WIP

Audited systems:

● Sparksee (2015)
● Virtuoso (2015)
● FMA TuGraph (2020)
● More coming…

Auditing
process

● Ensure objective comparison

● Drive competition among vendors

Auditing guidelines
Complex workflow to ensure fair comparison.

TPC has lots of rules to prevent cheating
(including the use of “benchmark specials”),
sometimes going as far as deprecating entire
benchmarks such as TPC-D.

For LDBC, audited benchmark results:

● Are produced by an independent auditor
● Can be published as “LDBC benchmark

results”

ACID tests
Ensure that the isolation level claimed by the DBMS is enforced. 📃 [TPCTCʼ20]

http://ldbcouncil.org/sites/default/files/ldbc-acid-tpctc2020.pdf

The essential complexity
of graph DB benchmarks

Why are the SNB Interactive/BI workloads so complex?

● Real graph data is correlated [TPCTCʼ12]
○ Graph data generator with correlations
○ Scalability is important -> distributed generator
○ Need to support multiple layouts (merged FK/projected FK)

● A mature database system has dozens of intertwined optimizations [TPCTCʼ13]
○ Characterized by choke points in the context of TPC-H
○ ~30 choke points (aggregation, join, data access locality, expressions, correlation, parallelism)

● Benchmark needs parameterized queries [TPCTCʼ14]
○ Some warmup is required but many systems cache results -> queries need to be parameterized
○ Parameter selection needs to be done carefully to make query times predictable

● Issuing updates needs a sophisticated driver [SIGMODʼ15]
○ Update streams need to be able to run concurrently without cross-stream dependencies

● Updates are required to discourage read-only data structures [GRADES-NDAʼ20]
○ Without updates, materialization of partial results could give an unfair advantage
○ Introducing deletions needs lifespan management

● ACID compliance is required [TPCTCʼ20]
○ It is difficult to test within the full benchmark, needs a separate benchmark suite

LSQB
Labelled Subgraph Query Benchmark

Note: This in not an official LDBC benchmark but a microbenchmark for developers

Reuse Datagen from the LDBC SNB:

● Same scale factors, same vertex and edges labels
● Lots of many-to-many cardinality edges with interesting distributions
● No updates, no properties, just INT64 identifiers

LSQB: Labelled Subgraph Query Benchmark

Basic graph patterns

Q1: long path Q2: simple cycle Q3: triangle

Simplified the queries from the BI workload

All queries are global and use count(*) aggregation

Basic and complex graph patterns

Q7: star
with optional edges

Q8: low-cardinality path
with negative condition

Q9: high-cardinality path
with negative condition

Q4: star Q5: low-cardinality path Q6: high-cardinality path

Future work

Future work
⚙ Continuous: We support the adoption of this benchmark and help audits

💡 New benchmarks: There are many possibilities to discover, including

● a benchmark with “financial fraud detection”-like queries
● streaming/temporal graph queries
● machine learning (embeddings, GNNs)

We are happy to discuss proposed new graph benchmarks. Feel free to reach out at
info@ldbcouncil.org

mailto:info@ldbcouncil.org

Implementing the SNB

Implementation guidelines
● For best performance, using multiple read and write threads is a must. These are

configurable separately (see the Interactive repositoryʼs README).
● For the Interactive workload, using imperative code is allowed for all queries,

including complex, short, update, and ACID test queries.
● For BI, all queries and insert/delete operations must use a domain-specific

language.

Creating a new
SNB Interactive
implementation

Steps to create an auditable
SNB Interactive implementation

Creating a new SNB Interactive implementation #1

It is recommended to base a new implementation on an existing one:

● Graph DBMSs: use the Neo4j/Cypher or the TigerGraph/GSQL implementation
● Relational DBMSs: use the PostgreSQL or the Microsoft SQL Server implementation

Pick a data set serializer. In general:

● Graph DBMSs: use data sets produced by the CsvComposite serializer
● Relational DBMSs: use data sets produced by the CsvMergeForeign serializer

Creating a new SNB Interactive implementation #2

1. Generate or download the required data sets and query substitution parameters.
a. Use SF10 for cross-validation.
b. For benchmarks, SF30+ is required.

2. Fork the SNB Interactive repository and create a new Maven subproject.
3. Add a Java client to the DBMS as a Maven dependency (e.g. org.postgresql:postgresql)
4. Implement a bulk loader which loads the initial data set. Test it with a small data set (available in the

cypher/test-data/ and postgres/test-data/ directories), then proceed to larger data sets.
5. Implement the complex read queries:

a. Create the query implementations and their glue code in the *Db and *QueryStore classes.
b. Turn the update and short operations off, then use the create-validation-parameters mode to

generate the validation data set with an existing implementation.
c. Use the validation mode to check the correctness of the queries on the SF10 data set.

https://github.com/ldbc/ldbc_snb_interactive

6. Implement the short read queries and the insert operations:
a. Implement the 7 short queries and 8 insert operations and their glue code.
b. Create a full validation data set and cross-validate the new implementation against it on SF1

and SF10. Note that the database has to be reset to its initial state between runs: use the
scripts/snapshot-database.sh and scripts/restore-database.sh scripts.

7. Use the benchmark mode to perform a benchmark run.
8. Determine the best total_compression_ratio value for benchmarks.

a. The driver/determine-best-tcr.sh script can help find this value.
b. Ensure that the warmup plus benchmark runs execute for 2.5h+ in total.

9. Implement the ACID test suite and ensure that the system passes it.
10. Perform a recovery test by killing the system during a benchmark run (e.g. kill -9, reboot) and

checking whether the inserted entities are in the database after restarting.

Creating a new SNB Interactive implementation #3

https://github.com/ldbc/ldbc_acid

Creating a new SNB
Business Intelligence

implementation
Steps to create an auditable

SNB BI implementation

It is recommended to base a new implementation on an existing one:

● Graph DBMSs: use the Neo4j/Cypher or the TigerGraph/GSQL implementation
● Relational DBMSs: use the Umbra implementation

Pick a data set serializer. As a general rule of thumb:

● Graph DBMSs: use the csv-composite-projected-fk data sets
● Relational DBMSs: use the csv-composite-merged-fk data sets

Creating a new SNB BI implementation #1

1. Generate or download the required data sets and query substitution parameters.
a. Use SF10 for validation
b. For benchmarks, SF30+ is required.

2. Fork the SNB BI repository and create a new directory with the required Python and
shell scripts.

3. Implement a bulk loader which loads the initial data set.
4. Implement the 20 read query templates.
5. Cross-validate the read queries using the --queries flag of the benchmark script. It is

recommended to start with a small scale factor, e.g. the SF0.003 sample data set and
proceed gradually towards the SF10 data set.

6. Implement the update operations (inserts and deletes).
7. Cross-validate the read queries and updates using the --validate flag of the

benchmark script.

Creating a new SNB BI implementation #2

https://github.com/ldbc/ldbc_snb_bi

8. Decide on whether to use concurrent read and write operations. If so:
a. Adjust the benchmark script such that the throughput batches use concurrent

RWs.
b. Implement the ACID test suite and ensure that the system passes it.
c. Perform a recovery test by killing the system during a benchmark run (e.g.

kill -9, reboot) and checking whether the inserted entities are in the
database after restarting.

9. Use the benchmark mode (run-benchmark.sh script) to perform a benchmark
run on small data sets.

10. Test the implementation on the scale factor(s) used for the benchmark (e.g.
SF3,000 and SF10,000).

Creating a new SNB BI implementation #3

https://github.com/ldbc/ldbc_acid

Example graph

~30 nodes and ~60 edges

Example graph

