
The LDBC Financial Benchmark:
Transaction Workload

VLDB 2025, London, United Kingdom

Research 60 - Database Engine Performance and Manageability II

Presenter: Shipeng Qi @ AntGroup, LDBC (qishipengqsp@gmail.com)

Authors: Shipeng Qi, Bing Tong, Jiatao Hu, Heng Lin, Yue Pang, Wei Yuan, Songlin Lyu, Zhihui Guo,
Ke Huang, Xujin Ba, Qiang Yin, Youren Shen, Yan Zhou, Tao Lv, Jia Li, Lei Zou, Yongwei Wu, Gábor

Szárnyas, Xiaowei Zhu, Wenguang Chen, Chuntao Hong

(with contributions from members of the FinBench Working Group)

Inherently connected data in Ant Group

~1 billion
Total registered users of Alipay

~100 billion
Total transaction count of Alipay

10 thousands ~ 1 trillion
Actual graph size we face

Transfer

Social Events

Credit Payment
Water Fee Payment

Watch Playlet

Apply Loans

Purchase

Motivation
Previous graph benchmarks fail to capture the characteristics of financial scenarios.

Benchmark Design Overview

Data Generator

Dataset Factor Tables (Statistics)Updates

Query Parameters

Parameter Generator

Benchmark Driver

System Under Test
bulk load

[1] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark. In Revised Selected Papers of the 5th TPC
Technology Conference on Performance Characterization and Benchmarking - Volume 8391. Springer-Verlag, Berlin, Heidelberg, 61–76. https://doi.org/10.1007/978-3-319-04936-6_5

Bench Components

Data Artifacts

● Design philosophy: “choke point driven methodology”[1] to balance between the real-world

business complexity and benchmark abstraction

● Key aspects: dataset (including schema and distribution), query, and workload

Dataset Schema

● Entities as vertices while

activities as edges

● Timestamp frequently used

● Various subtypes of same

entities

● Rich properties

● Edge multiplicity

Surveyed on over 20 business clusters and take typical transaction scenario as design

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
gender: String
birthday: Date
country: String
city: String

Person

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
country: String
city: String
business: String
description: String
url: String

Company

id: ID
createTime: DateTime
isBlocked: Boolean
type: String
nickname: String
phoneNumber: String
email: Long String
freqLoginType: String
lastLoginTime: DateTime
accountLevel: String

Account

id: ID
type: String
createTime: DateTime
isBlocked: Boolean
lastLoginTime: DateTime
riskLevel: String

Medium

own

signIn

id: ID
loanAmount: 64-bit Float
balance: 64-bit Float
usage: String
interestRate: 32-bit Float

Loan

apply

apply

deposit

invest

repay

transfer

invest

own

withdraw

guarantee

guarantee

Single edges

Multiple edges

Note: edge properties are omitted here.

5 vertex types and 9 edge types

financial graphsocial network[2]

Dataset Distribution

Power law distribution of the vertex degree

We randomly sampled three subgraphs from the online production environment by uniformly
selecting vertices to ensure representative profiling

What is the difference?

Max 5000 friend limited by Facebook

Bounded skewness with a shallower tail

Unbounded skewness in FinBench

Hub vertices of higher degree

V.S.

[2] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. 2011. The Anatomy of the Facebook
Social Graph. arXiv:1111.4503 [cs.SI] Retrieved June 17, 2025 from https://arxiv.org/abs/1111.4503

Dataset Generation

Data Generator

Dataset Factor Tables (Statistics)Updates

Query Parameters

Parameter Generator

Benchmark Driver

System Under Test
bulk load

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
gender: String
birthday: Date
country: String
city: String

Person

id: ID
name: String
isBlocked: Boolean
createTime: DateTime
country: String
city: String
business: String
description: String
url: String

Company

id: ID
createTime: DateTime
isBlocked: Boolean
type: String
nickname: String
phoneNumber: String
email: Long String
freqLoginType: String
lastLoginTime: DateTime
accountLevel: String

Account

id: ID
type: String
createTime: DateTime
isBlocked: Boolean
lastLoginTime: DateTime
riskLevel: String

Medium

own

signIn

id: ID
loanAmount: 64-bit Float
balance: 64-bit Float
usage: String
interestRate: 32-bit Float

Loan

apply

apply

deposit

invest

repay

transfer

invest

own

withdraw

guarantee

guarantee

Single edges

Multiple edges

Data
Model

Data
Distribution

The scalable and configurable data

generator simulates the financial

activities and then segments the

overall data to snapshot data for

bulk loading and incremental data

for write queries.

Fact: The cost of graph queries varies

depending on the starting vertex.

The factor tables record statistics of

query footprints, and are used to guide

the read query parameter selection to

ensure the benchmark reliability.

Case Study: Temporal Queries

• Feature: Query usually looks back in a

limited time window. They filter edges

between startTime and endTime in traversal.

• Practices: Hot/cold storage tiering, data

compaction

• Choke point: Query benefits from temporal

access locality (for edges).

src : Account

src.id = ${id1}

edge1 : transfer
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

dst : Account

dst.id = ${id2}

edge2 : transfer
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

other1 : Account

edge3 : transfer
edge3.timestamp > ${startTime}
edge3.timestamp < ${endTime}

otherN : Account

…

Figure 6: The pattern of complex read query 4 (TCR 4)
in transaction workload.

Query Explanation:

TCR 4 matches a transfer cycle within a specified time window

between startTime and endTime.

Case Study: Recursive Path Filtering

edge2 : signIn
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge1 : transfer *1..3
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

other11 : Account

other21 : Account

other3 : Account

…

account : Account

account.id = ${id}

medium1 : Medium

medium1.isBlocked = True

medium2 : Medium

medium2.isBlocked = True

medium3 : Medium

medium3.isBlocked = True

*1..3

other12 : Account other13 : Account

other22 : Account

timestamp:
2020/01/01

timestamp:
2020/02/01

timestamp:
2020/03/01

Figure 7: The pattern of complex read query 1 (TCR 1) in transaction workload.

Query Explanation:

TCR 1 matches transfer paths in ascending temporal order, tracing the

divergence/downstream of a fund flow.

• Feature: Query matches paths filtered by

monotonicity predicates.

• Choke point: Query benefits from path-

level predicates push-down, pruning

invalid intermediate results.

Given a path: A -[e1]-> B -[e2]-> ... -> X

• Timestamp order: e1 < … < ei

• Amount order: e1 > … > ei

• Optional: ei ∈ (ei-1, ei-1 + k), k is const.

Case Study: Read-Write Query
Txn Begin

Txn Abort

Txn Commit

Txn Abort
src: Account

id = ${srcId}

transfer

timestamp <- ${time}
amount <- ${amount}

dst: Account

id = ${dstId}

src: Account

id = ${srcId}

dst: Account

id = ${dstId}

src : Account

id = ${srcId}
edge1 : transfer
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

dst : Account

id = ${dstId}

edge2 : transfer
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge3 : transfer
edge3.timestamp > ${startTime}
edge3.timestamp < ${endTime}

otherN : Account

New Txn Begin

Txn Commit

src: Account

id = ${srcId}
isBlocked <- True

dst: Account

id = ${dstId}
isBlocked <- True

Blocked

Detected

Not detected

Figure 8: The pattern of read-write query 1 (TRW 1) in transaction workload.

• Query Explanation: Query usually checks

graph pattern indicating illegal activities

before write operation execution.

• Feature: Query is a complex read (the risk

strategies) wrapped in transactions

• Choke point: Query benefits from

optimization on write operation contention

and conflicts.

Time-biased random walk:

Workload Orchestration

Transaction Workload includes 12 Complex Reads, 6 Simple Reads, 17 Writes, 3 Read-Writes

edge2 : signIn
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge1 : transfer *1..3
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

other11 : Account

other21 : Account

other3 : Account

…

account : Account

account.id = ${id}

medium1 : Medium

medium1.isBlocked = True

medium2 : Medium

medium2.isBlocked = True

medium3 : Medium

medium3.isBlocked = True

*1..3

other12 : Account other13 : Account

other22 : Account

timestamp:
2020/01/01

timestamp:
2020/02/01

timestamp:
2020/03/01

● Write queries and read-write queries are incremental data.

● Read queries are mixed as random walks on the graph.

Simple Read 1
find the properties of exact account

• 𝑈 is a random variable uniformly distributed in the

interval [0, 1).

• 𝑡 is the time window length for the complex read query.

• 𝑘 is a coefficient that adjusts the time window

Longer temporal window in Complex Read Queries

indicates more Simple Read Queries following it.

Complex
Read 1

Chokepoint Analysis Experiments

Experiment 1: Achieved ~41% query execution
speedup on TCR 1 with temporal edge storage

Experiments are conducted on TuGraph-DB (open-source) to demonstrate choke point analysis

LabelId TemporalId DstVi
d EId

VertexUid : OutEdgeUid InEdgeUid …

SrcVid

OutEdgeUid InEdgeUid…
edge2 : signIn
edge2.timestamp > ${startTime}
edge2.timestamp < ${endTime}

edge1 : transfer *1..3
edge1.timestamp > ${startTime}
edge1.timestamp < ${endTime}

other11 : Account

other21 : Account

other3 : Account

…

account : Account

account.id = ${id}

medium1 : Medium

medium1.isBlocked = True

medium2 : Medium

medium2.isBlocked = True

medium3 : Medium

medium3.isBlocked = True

*1..3

other12 : Account other13 : Account

other22 : Account

timestamp:
2020/01/01

timestamp:
2020/02/01

timestamp:
2020/03/01

Figure 7: The pattern of complex read query 1 (TCR 1)

Complex Read Query Push-down Speedup

TCR 1 70.3%

TCR 2 87.4%

TCR 5 83.3%

Produce Results

Distinct

Expand(All) [other <-- medium EdgeFilter e2]

VarLen Expand(All) [acc -->*1..3 other EdgeFilter isAsc]

Node Index Seek [acc] IN []

Simplified logical plan of TCR 1
Experiment 2: Achieved at least 70% query execution

speedups with path filters pushed down

Note: Please refer to the paper for the end2end experiments

Takeaways & Future Work

• Profiled financial graphs and found features including timestamp properties, edge multiplicity
and unbounded skewness.

• Provided a scalable (currently SF100) and configurable data generator conforming to the data
features to simulate financial graphs.

• Identified several choke points embedded in queries and designed a Transaction Workload
with 4 query categories.

• Provided a benchmark driver and reference implementations for demonstration and validation.

• Conducted choke point analysis experiments for further system optimization.

Future plan: Larger dataset scales and a new workload for OLAP (like SNB BI) in financial scenarios

Thanks!

• ldbc/ldbc_finbench_docs

• ldbc/ldbc_finbench_datagen

• ldbc/ldbc_finbench_driver

• ldbc/ldbc_finbench_transaction_impls

