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Goal of this document 
This document reports on the results of past discussions in the GS-Basic subgroup of the 
PGSWG working group. It focuses on the discussions on the topic of the syntax and semantics 
of the basic graph schemas for property graphs. It contains the results of these discussions as 
collected in [LDBC PGS:JH-03r7] and consisting of several proposals, their motivations and 
their trade-offs. 

Executive Summary 
This document discusses the syntax and semantics of graph-type cores, which consist of a set 
of vertex and edge types. It focuses on simple types, which means here that they are closed 
and describe only mandatory attributes. It also leaves inheritance as a topic for future 
discussions. 

The semantics of graph-type core defines a conformance relationship between property graphs 
and a graph-type core. We distinguish two types of conformance: strict conformance and 
weak conformance (which we will also refer to as just conformance). The strict conformance is 
meant to capture the usual expectations for a database schema in that it exhaustively defines 
what data is expected or authorized to appear. It is designed so that one may predict how much 
memory is required to store vertices and edges. Intuitively, a subtype does not usually strictly 
conform to a supertype because one cannot predict how much more memory is required for 
storing the subtype. The weak conformance is meant to capture the expectations of a database 
schema as a type that specifies the minimal conditions that the input of a graph query or graph 
processing program must satisfy to prevent certain runtime errors. This means that it is defined 
such that each graph that conforms to a subtype also conforms to a supertype. 

In this report several proposals for strict conformance and weak conformance are presented. 
The main proposal that has the most support within the GS-Basic group simply requires that for 
each element in the property graph there must be a matching type in the graph-type core. The 
other proposals are variants of this that attempt to add more expressive power or provide a 
more intuitive semantics. For a brief overview of all the proposals see Section Overview of 
proposals. 

In this document the emphasis is on presenting the proposals in an informal manner. For the full 
formal definitions the reader is referred to the companion report [LDBC PGS-B:BAS-02]. That 
document contains also some additional material, such as: 

● a fully described normalization procedure for the concrete syntax,
● a mapping between the at-least-one-match semantics and the combinatorial semantics,
● an extension of the at-least-one-match semantics for dealing with optional attributes and

WG3:MMX-069

2020-06-12 4



 

● an in-depth analysis of the assumptions concerning the type system that governs 
attribute values. 

Introduction 
The focus of the GS-Basic group and this report is on the basic constructs in graph schemas 
(also referred to as graph types in [GQL:DATA MODEL]), which means here specifically the 
vertex and edge types. Moreover, the group has discussed the syntax and semantics of 
graph-type cores, by which we mean here the part of the graph schema that defines the set of 
element types that specify what type of elements are allowed in its instances. This means that 
the topics of schema constraints (additional constraints on what is allowed in instances of the 
schema, such as key constraints) and attribute types were considered initially out of scope. 
However, the semantics of attribute types turned out to be very closely connected to the 
semantics of graph-type cores, and so the group has studied the proposed attribute types and 
their semantics in [GQL:EWD]. This has resulted in some observations concerning the 
semantics of attribute types that are discussed in the companion of this report [LDBC 
PGS-B:BAS-02], which presents and discusses the formal definitions. 
 
The scope of the discussions, and therefore also of this report, was for practical reasons limited 
to closed schemas and closed types. By “closed” we mean here that every vertex, edges and 
attribute must be somehow justified by the type or schema. This does not mean that the group 
thinks that types and schemas with a certain degree of openness are not important, quite the 
contrary, but just that this is a practical starting point for the discussion. In fact, the group has 
explored briefly some variants of open types to verify if the current proposals for closed types 
and schemas do not prevent an intuitive extension in that direction. 
 
One specific type of openness was explicitly addressed by the group, namely the openness that 
is defined by allowing subtyping i.e., defining a semantics where an instance is in the extension 
of a type if it is in the extensions of a subtype. This means that we consider two types of 
semantics for element types and schemas. The first type, which we will call strict conformance, 
explicitly forbids undeclared subtyping. The second one does take subtyping into account and is 
called weak conformance, or also just conformance. This distinction between strict conformance 
and conformance is analogous to the one that is made in [GQL:EWD]. The reasons for explicitly 
including subtyping in the discussions was that its understanding played an important role in the 
debate on the most appropriate closed semantics of graph-type cores. 
 
A final restriction in scope was that inheritance between element types would not be considered. 
Also this was because of practical reasons: some members felt that adding this would be 
straightforward and some felt it might be a serious complication and a contentious issue. 
Therefore it was decided to postpone its treatment. 
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Requirements 
Although there was not an explicit list of precise requirements or use-cases that the schema 
language fragment that was under consideration should meet, there were several principles that 
were agreed should guide the discussions: 

● Compatibility with current ideas in the WG3 group. The proposals cannot deviate too 
much from, or be deeply in conflict with, what is being considered by the WG3 group. 

● Well-understood relationships with schema languages in existing graph 
databases and graph computing frameworks. The proposal cannot be too different 
from existing implemented schema languages in systems such as Neo4j [Neo4j:DOC], 
TigerGraph [TG:DOC], DataStax Enterprise Graph [DSE:GRAPH], Tinkerpop [TP], 
JanusGraph [JG], Azure Cosmos DB [COSMOS] and Amazon Neptune [NEPTUNE]. 
This does not mean that we intentionally try to define a common superset of all these 
languages, or a common subset, but we do try to stay in the spirit of these languages so 
that translations between schemas in the different languages are well understood. 

● Closeness to conceptual data modelling techniques. Graph-based data models can 
be seen as an approximation of conceptual data modelling notations such as UML Class 
diagrams [OMG:UML] [ISO:UML], Enhanced ER diagrams [Elmasri:2015] and ORM 
diagrams [Halpin:2015]. Typical diagrams from such models should be straightforwardly 
representable in the schema language. 

● Preparedness for inheritance and openness. The syntax and semantics of the 
considered fragment of the schema language should allow for a straightforward 
extension with inheritance and types with a more open nature. 

Overview of proposals 
In this report the following proposals are presented for the semantics: 

● The main proposal which has the widest support and defines the semantics by 
requiring that for each element in the graph there must be at least one matching type in 
the graph-type core. 

● The combinatorial semantics is more permissive and requires that for each element 
there is a combination of types in the graph-type core that justifies it. 

● The exactly-one-match semantics requires that each element matches exactly one 
type in the graph-type core. 

● The isolation-aware semantics assumes that vertices are already justified if they are 
incident to an edge that is justified. It therefore requires only for isolated vertices that a 
matching vertex type exists in the graph-type core. 

● The homomorphism-based semantics interprets the graph-type core as a graph and 
requires that there exists a homomorphism from the property graph to this graph-type 
core graph. For these semantics also an isolation-aware variant is presented. 
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Detailed description of the proposals 
In this section we describe in detail the different proposals. For the full formal definitions the 
reader is referred to [LDBC PGS-B:BAS-02]. 

Basic definitions 
We start with establishing some standard terminology that we will use in the following sections. 
We will assume that there is a notion of attribute name (which generalises over labels and 
property names) and attribute value. We distinguish a special attribute value, lbl, that 
indicates that the attribute with this value represents a label.  

Property graphs 
A key notion is of course that of property graphs, which we will assume to be the following. 
 

Definition: A property graph is defined as consisting of (1) a set of vertices such that each 
vertex has some associated vertex content, (2) a set of edges such that each edge has an 
associated (a) tail vertex, (b) edge content and (c) head vertex. The tail and head vertices of 
each edge must be in the set of vertices, and the content that is associated with vertices and 
edges is a finite record that maps attribute names to attribute values.  

Both vertices and edges are assumed to be represented by an abstract identity, and so it is 
possible that a graph contains two vertices with the same content, and two edges that have 
the same tail vertex, head vertex and content.  

 
As usual we will refer to the vertices and edges in a property graph as the elements of the 
graph. 

 
Examples 

Consider the following Property Graph 

(v1 :Person {name = ”Jan Hidders”}) 

(v2 :City {name = “London”}) 

(v3 :City {name = “Brussels”}) 

 

(v1)-[e1 :worksIn {start=”2020-01-01”}]->(v2) 

(v1)-[e2 :livesIn {start=”2015-01-01”}]->(v3) 
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This graph contains three vertices v1, v2 and v3, and two edges e1 and e2. The vertex v1 is 
associated with the content { Person=lbl, name=”Jan Hidders” }. The edge e1 is 
associated with content { worksIn=lbl, start=”2020-01-01” }. Moreover, e1 has tail 
vertex v1 and head vertex v2.  

End examples 

Note: The described approach of viewing labels and properties as instances of the more 
general notion of attribute has an important disadvantage: it does not allow the same attribute 
name to appear as both a label and an attribute name on the same element. It is possible to 
adapt the formal definitions so that this is possible. One approach that has been suggested but 
has not been fully discussed in the working group is the following: 

● Introduced the notion of marked attribute name, which is an attribute name that is 
marked to indicate that it represents a label. An attribute name, say a, that is marked is 
denoted as :a. We assume that any marked attribute is distinct from any attribute name 
and so attribute names do not start with “:”. 

● Define a set of content keys, which are either attribute names or marked attribute 
names. 

● In the definition of property graph, redefine the notion of content so (1) it maps content 
keys to attribute values, rather than attribute names and (2) requires that a content key is 
mapped to lbl iff the content key is a marked attribute name. 

● The denotation of a content record might either stay {Person=lbl, name=”Jan 
Hidders”} or become {:Person=lbl, name=”Jan Hidders”}. 

Attribute types 
We will assume that there is a predefined set of attribute types. This can include: 

● Atomic types such as STRING, INTEGER and DATE 
● The special type LABEL that indicates and attribute represents a label 
● Collection types such STRING ARRAY[10] (an array of strings with maximum length 

10, and STRING MULTISET (a multiset containing strings) 
● Record types such as { Person: LABEL, name: STRING }. 
● Union types such as STRING | INTEGER describing a value that is of type STRING or 

of type INTEGER. 
● Special generic types such as  anyPropertyValue and  anyAttributeValue. 

 
We will assume that there is a subtype relationship defined over these types, so that for 
example  { Person: LABEL, name: STRING } is a subtype of { Person: LABEL }. Next to 
this we assume that there are two types of semantics defined for each type: a strict semantics 
and a weak semantics. The strict semantics represents the attribute values that strictly 
conform to the type, where the weak semantics represents the attribute values that just 
conform to the type, by which we mean that it strictly conforms to the type or to a subtype of the 
type. For example, the record { Person=lbl, name=”Jan Hidders” } strictly conforms to the 
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type  { Person: LABEL, name: STRING } but only (weakly) conforms to { Person: LABEL 
}. For both types of semantics we will assume that LABEL has only one conforming attribute 
value, which is the special value lbl. 
 
Finally we will also assume that there is a notion of type intersection for all the attribute types, 
which we will denote as for example  {Person: LABEL, name: STRING} & {name: 
PERSONALNAME, address: STRING}. Which would be equivalent to {Person: LABEL, name: 
(STRING & PERSONALNAME), address: STRING}, and for which we assume that it determines 
the greatest common subtype. We generalise this notion of intersection type for sets of attribute 
types, where the intersection over an empty set of types is assumed to denote the EMPTY type, 
i.e., the attribute to which no attribute value conforms. 
 
Since the attribute types that are record types are precisely what is needed to describe the 
content associated with an element, we will also refer to them as content types. So in this 
document the terms record type and content type will be used as if they are synonymous. 
 
This is all we will assume here for the attribute types. For a more in-depth discussion and an 
analysis of the assumptions in [GQL:EWD] we refer the reader to the companion report [LDBC 
PGS-B:BAS-02]. 

The syntax of graph-type cores 
We start with a very simple type of graph-type core that only considers simple vertex types and 
edge types and does not consider any form of inheritance or subtyping. As mentioned in the 
introduction, we focus in this document on the graph-type core, i.e., the part of the schema that 
specifies the allowed types, and so leave aside schema constraints and graph-level attributes. 

A proposal for a concrete syntax 
The following is a provisional concrete syntax to represent graph-type cores. It is not necessarily 
meant as advice on how such a syntax should look, although it is considered a good example 
by most members of GS-Basic. An important feature is the usage of type variables that explicitly 
are marked as such by letting them start with some special symbol like “$”. This is mainly 
introduced so that in future extensions of the language it will always be clear in type definitions if 
a certain identifier represents a label or a type variable. 

A grammar for the concrete syntax 
A graph-type core consists of a list of type specifications, which can be either vertex type 
specifications or edge type specifications. A graph-type core specification has the following 
syntax: 
 
SchemaCore ::= (ContentTypeDecl | VertexTypeDecl | EdgeTypeDecl)* 
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ContentTypeDecl ::=  TypeVar  "=" ContentType 

 
TypeVar ::= "$" VarName 

 
VertexTypeDecl  ::=  (TypeVar  "=")? VertexType 

 
VertexType ::= "(" ":" ( ContentType | TypeVar ) ")" 

 
ContentType ::= Label* ("{" AttrName AttrType ( "," AttrName AttrType )* "}")? 

 
EdgeTypeDecl ::= (TypeVar "=")? EdgeType 

 
EdgeType ::= VertexType "-[" ":" ContentType "]->" VertexType 
 

 
 
An example of a graph-type core is: 
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● $personContent = :Person { name STRING, birthdate DATE } 

● $person = (: $personContent ) 

● $city = (:City Place { name STRING, url URL }) 

● $country = (:Country Place { name STRING, url URL }) 

● $continent = (:Continent Place { name STRING, url URL }) 

● $livesIn = (:$person)-[:livesIn { start DATE }]->(:$city) 

● $worksIn = (:$person)-[:worksIn { start DATE }]->(:$city) 

● $cityLiesIn = (:$city)-[:liesIn]->(:$country) 

● $countryLiesOn = (:$country)-[:liesOn]->(:$continent) 

 
The type names for content types (e.g., $personContent) and element types  (e.g., $city and 
$worksIn) should be understood as a macro mechanism. So the above graph-type core is 
equivalent to: 
 

● (:Person { name STRING, birthdate DATE }) 
● (:City Place { name STRING, url URL }) 

● (:Country Place { name STRING, url URL }) 

● (:Continent Place { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

 -[:livesIn { start DATE}]-> 

(:City Place { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City Place { name STRING, url URL }) 

● (:City Place { name STRING, url URL }) 

  -[:liesIn]-> 

(:Country Place { name STRING, url URL }) 

● (:Country Place { name STRING, url URL }) 

  -[:liesOn]-> 

(:Continent Place { name STRING, url URL }) 
 
Note: The choice of $ as the marker for type variables might require more thought, as the 
symbol is already used for other purposes in SQL. We do however recommend that some 
symbol is chosen to distinguish variable names from labels. End note 

Representing labels as attributes 
Since labels are regarded as a special type of attribute, their denotation can be understood as a 
short-hand for denoting attributes of type LABEL.  So, for example the content type 
 

City Place { name STRING, url URL } 

 
could also have been written as 
 

{ City LABEL, Place LABEL, name STRING, url URL } 
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Note: Under the approach that was suggested earlier where we distinguish marked and 
unmarked attribute names to indicate properties and labels respectively, the alternative 
representation for the content type would be: 
 
{:City LABEL, :Place LABEL, name STRING, url URL} 

End note 

We can allow using & between labels. So the content type City Place { name STRING, url 
URL } can also be written as City & Place { name STRING, url URL }. We expect this to 
be consistent with a later generalization where & is defined to be the type intersection operator. 
So the content type might then for example also be written as City & Place & { name 
STRING } & { url URL }. 

Normalization of the concrete syntax 
To simplify the task of defining the semantics of a graph-type core specification we will assume 
that it has been normalised so that (1) all labels are represented as attributes with type LABEL 
and (2) all variable substitutions have been made and (3) the result is a set of element types 
without duplicates. There is some variation possible in how this happens exactly. For example, 
there are different reasonable choices for the scope of variables and what happens with types 
that contain variables that are undefined. We consider this of minor importance, and so will in 
the remainder of this document simply assume that the specification is normalised and 
describes a set of element types. For an example of how a full normalization procedure could 
look like, the reader is referred to the companion report with formal definitions [LDBC 
PGS-B:BAS-02].  

Abstract syntax 
The formal and more abstract definition of a graph-type core that we will use for the definition of 
semantics as follows. 
 

Definition: A graph-type core is defined as a set of element types where an element type is 
defined as either a vertex type, which consists of just a simple content type, or a edge type, 
which is assumed to consist of (1) a vertex type describing the tail type, (2) a simple content 
type describing the edge content and (3) a vertex type describing the head type. In each case 
we refer to the content type in the element type simply as the content type of the element 
type. 
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The semantics of graph-type cores 
In this section we will present the proposals for the semantics of graph-type cores. We will start 
with the semantics that is considered preferable by most members of GS-Basic and PGSWG. 
This is followed by the alternatives that were also considered and even suggested by some 
members. 
 

The at-least-one-match semantics 
The semantics of a graph-type core is defined by defining when a certain property graph strictly 
conforms to a certain graph-type core, and when it just conforms. This is analogous to these 
notions for attribute values and their intention is the same: a property graph strictly conforms if it 
exactly matches the graph-type core, and it just (weakly) conforms if it in some sense can be 
regarded as an instance of a subtype of the graph-type core. 
 
This is in turn based on the notion of matching, that defines when a certain element in a graph 
matches a certain type, which roughly means that all attributes required by the type are present 
in the element and contain a value of the correct type. We will distinguish two kinds of matching: 
exact matching, which requires that the type describes all attributes of the element, and over 
matching, which does not require this (and so allows the element to have more attributes than 
are specified by the type) . We start with defining these notions for content types: 
 

Definition: Given a content type and a record we say that the record over matches the 
content type if for every attribute in the content type it holds that the record has that attribute 
with a value that conforms to the attribute type specified in the content type. We say that the 
record is an exact match of the content type if it holds in addition that for every attribute in 
the record there is a corresponding attribute in the content type such that that attribute value 
strictly conforms to the attribute type. 

 
For example, consider the content type { street: string, city: string } then 

● the record { street=“Malet st”, city=“London” } is an over match and also an 
exact match because the attributes street and city are defined and only those attributes 
and nothing else.  

● the record { street=“Malet st”, city=“London”, country=“UK” } is an over 
match because the attributes street and city are defined but not an exact match because 
it has the attribute country which is not defined in the content type.  

● the record { street=“Malet st” } is neither an over match nor an exact match 
because it is missing the attribute city, and 
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● the record { street=5, city=“London”, country=“UK” } is neither an over match 
nor an exact match because the value for the attribute street is a value that does not 
match the string type.  

 
Based on the preceding notions we can generalise the notions of matching to the level of 
elements: 
 

Definition: Given a property graph we say that an element in the graph is an over match of 
(or conforms to) an element type if the following holds: 

● the content of the element is an over match of the content type in the type, and 
● if the element is an edge then the content of the tail (head) vertex over matches the 

tail (head) type of the edge type. 

We say that an element in the graph is an exact match of (or strictly conforms to) an 
element type if the following holds: 

● the content of the element is an exact match of the content type in the type, and 
● if the element is an edge then the content of the tail (head) vertex exactly matches 

the tail (head) type of the edge type. 

 
Example 
 
Consider the following graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

● (:City { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City { name STRING, url URL }) 
 
Let’s go through the following vertices and edges: 

● (: {Person=lbl, name=”Jan Hidders”}) 

○ over match: No 
○ exact match: No 

● (: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

○ over match: Yes 
○ exact match: Yes 

● (: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

birthplace=”Deventer”}) 

○ over match: Yes 
○ exact match: No 
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● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 

(v1) -[e1 :worksIn]-> (v2) 

○ over match (of edge e1): No 
○ exact match (of edge e1): No 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :({City=lbl, name=”London”, url=”www.london.org”}) 

(v1)  -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

○ over match (of edge e1): Yes 
○ exact match (of edge e1): Yes 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”, foo= “bar”}]-> (v2) 

○ over match (of edge e1): Yes 
○ exact match (of edge e1): No 

End example 
 
Finally we define when a property graph conforms to a graph-type core. 
 

Definition: We say that a property graph conforms to a graph-type core if for every element 
in the graph there is an element type in the core that it matches.  We say that a property 
graph strictly conforms to a graph-type core if for every element in the graph there is an 
element type in the core that it exactly matches. 

 
Example 
 
Consider the following graph-type core: 
 

 
 

Given the following Property Graph G1: 

(v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 
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(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G1 strictly conforms to the graph-type core because every element is an exact 
match 

Given the following Property Graph G2: 

(v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

birthplace=”Deventer”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G2 conforms to the graph-type core because the vertex v1 is an over match.  

Given the following Property Graph G3: 

(v1 :{Person=lbl, name=”Jan Hidders”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G3 does NOT conform (hence does not strictly conform) to the graph-type core 
because the vertex v1 is not an over match.  

End example 

The combinatorial semantics 
The semantics that we present here is strictly speaking not meant as an alternative proposal. 
We discuss it here because it played a role in earlier discussions of PGSWG, where it was 
referred to as the type-1 semantics (as presented in “GS Basic, status update 23 March 2020” 
[Basic:23-03-2020]). It is regarded by some GS-Basic members as too complicated, although 
some consider it as more in line with the usual semantics of conceptual data models, especially 
those that allow overlapping inheritance such as EER diagrams, UML class diagrams and ORM 
diagrams. However, it is widely agreed that it is probably not compatible with the leading view in 
WG3, and therefore is not given as a recommendation. Nevertheless, since it received quite a 
number of positive votes in a recent vote in PGSWG, we feel it is worth presenting here and 
comparing it to the other proposals. 
 
Informally it can be described as allowing elements if their contents exactly match intersections 
of content types in the graph-type core. Equivalently this can be formulated as saying that each 
attribute in their content must be justified by at least one element type that they conform to. 
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Definition: We say that a property graph combinatorially conforms to a graph-type core if 
for every element in the graph it holds that (1) it conforms to at least one type in the 
graph-type core and (2) for every attribute of the element there is at least one element type in 
the graph-type core that the element conforms to and that justifies this attribute, i.e., the 
element type specifies an attribute with the attribute’s name and with an attribute type that the 
attribute’s value strictly conforms to. 

 

Note that the preceding definition is equivalent to requiring that for each element it holds that the 
content of that element strictly conforms to the intersection type over the content types of the 
element types in the graph-type core that the element conforms to 

Example 
 
Consider the following graph-type core: 
 
(:Person { name STRING, birthdate DATE }) 

(:Prof { status STRING, university STRING }) 

 

And consider the following Property Graph with only one vertex: 

(v1 :{Person=lbl, Prof=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

status=”Lecturer”, university=”Birkbeck”}) 

● Combinatorial Conform: Yes because the vertex has all the content types for Person 
and Prof hence it is an over match. Additionally, it only has the content types of both 
Person and Prof, therefore it is also an exact match 

● Person conform: Yes because it has the attributes for Person (name and birthdate) 
and others (status and university) 

● Prof conform:  Yes because it has the attributes for Prof (status and university) 
and others (name and birthdate)  

● Person strictly conform: No because it has more attributes than defined for Person 
● Prof strictly conform: No because it has more attributes than defined for Prof 

Now consider the following Property Graph with only one vertex: 

(v1 :{Person=lbl, Prof=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

status=”Lecturer”, university=”Birkbeck”, foo=”bar”}) 

● Combinatorial Conform: No because it has an attribute that is not defined in any of the 
types of which it is an over match: foo. 

● Person conform: Yes because it has the attributes for Person (name and birthdate) 
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and others (status and university and foo) 
● Prof conform:  Yes because it has the attributes for Prof (status and university) 

and others (name and birthdate and foo)  
● Person strictly conform: No because it has more attributes than defined for Person 
● Prof strictly conform: No because it has more attributes than defined for Prof 

End example 
 
The combinatorial semantics essentially say that the content type of an element should exactly 
match the intersection of the content types of all element types which the element 
over-matches. So, for edge types the head and tail types are ignored for the exact match. To 
understand why, consider the following example. 
 
$message = (:Message { creationDate DATE, content STRING }) 

$comment = (:Comment { public BOOL }) 

 

 

(:$comment)-[:isReplyTo]->(:$message) 

 

The intention of the combinatorial conformance is to interpret the semantics of types based on 
over matching rather than exact matching and to allow vertices to fully match with combinations 
of vertex types. In this case the type $comment can for example be combined with the type 
$message. Under this interpretation it makes sense to let the schema require for isReplyTo 
edges that the tail also over-matches $comment. Therefore we allow that such edges end in 
vertices that fully match a combination of $message and $comment. Observe that if in the 
combinatorial semantics we would have required for edges that they fully match the combination 
of a subset of the edge types, this would not have been allowed. 
 
For a more in-depth analysis of the relationship between normal conformance and combinatorial 
conformance, the reader is referred to the companion report [LDBC PGS-B:BAS-02], which 
gives a fully formal definition and formally compares the two. 
 
A note on computational complexity: The computational complexity of schema validation 
under combinatorial semantics may seem exponential at first sight since it quantifies over 
subsets of the graph-type core. However, it is sufficient to check the desired property for the set 
that consists of all element types that the element conforms to, and this can be checked in 
polynomial time. 

The exactly-one-match semantics 
One might consider making the definition of conformance more simple and strict and require 
that for each element there is exactly one fully matching type in the graph-type core. This 
suggestion was made and argued for in [LDBC PGS:AG-05]. The formal definition for 
conformance would in that case be changed to the following (with changes highlighted in grey). 
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Definition: We say that a property graph conforms to a graph-type core if for every element 
in the graph there is exactly one element type in the graph-type core such that the element 
conforms to the element type. We say that the graph strictly conforms to the graph-type 
core if for every element in the graph there is exactly one element type in the graph-type core 
that the element strictly conforms to. 

 
It should be noted that this might change the semantics and lead to unexpected exclusion 
constraints for certain types of semantics of attribute types. To illustrate this, consider the 
following graph-type core; 
 

● $personWithLongName = (:Person { name VARCHAR(50) }) 

● $personWithShortName = (:Person { name VARCHAR(15) }) 
 
Under the at-least-one-match semantics this has the following strictly conforming graph:. 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

However, under exactly-one-match semantics this graph no longer strictly conforms, since v2 
matches both $personWithLongName and $personWithShortName. Similar behaviour occurs 
with other property value types that can overlap, like record types with optional attributes, or 
union types. These cannot be removed by rewriting if they are nested inside collection types.  
 
On the other hand, if it holds that all attribute types are disjoint, i.e, for all two distinct attribute 
types it holds that there is no attribute value that strictly conforms to both types, then the 
exactly-one-match semantics and the at-least-one-match semantics (i.e., the first semantics that 
was presented) are equivalent for strict conformance.  
 
This issue also manifests itself for weak conformance. Consider the following graph-type core: 
 

● $personWithAddress = (:Person Local { address { street STRING,  

                                                number STRING,  

                                                city STRING }) 

● $personWithIntlAddress = (:Person { address { street STRING,  

                                              number STRING,  

                                              city STRING, 

                                              country STRING }) 

 
Under weak conformance as defined by the exactly-one-semantics the following graph would 
not weakly conform. 
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● (v1 :Person Local { street=”Atomiumplein”, number=”1”, city=”Brussels”, 

country=”Belgium” }) 

This is because it weakly conforms to both types. Also here we can observe that the 
at-least-one-match semantics and the exactly-one-match semantic are equivalent if we assume 
that there is no attribute value that weakly conforms to two distinct attribute types. However, this 
assumption does not hold if we allow subtyping for record types. 

The isolation-aware semantics 
The at-least-one-match semantics has an implicit assumption that the content types in an edge 
type in a graph-type core that describe the head and tail vertices correspond to the content type 
of a vertex type in the graph-type core. We will call the content types for which this is not the 
case dependent content types, and the vertex types they define dependent vertex types. If a 
graph-type core has dependent content types then under the current semantics the edge types 
in which they appear cannot be populated. For example, consider the following graph-type core 
declaration: 
 

● $PersonContent = Person { name STRING, birthdate DATE } 

● $worksInContent = worksIn { start DATE} 

● $CityContent = City { name STRING, url URL } 

● (: $PersonContent )-[: $worksInContent ]-> (: CityContent ) 

 
Note that in this declaration there are no vertex type declarations, and after substitution we 
obtain the following graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City { name STRING, url URL }) 

 
In this case only the empty graph conforms, since the graph-type core contains no vertex types 
and so no graph containing vertices can conform. 
 
One way to solve this is to allow vertices to exist already if they participate in an edge that is 
justified to exist, i.e., matches one of the edge types. We illustrate here how to adapt the 
definition for strict conformance, but the same principles can be applied to conformance and 
combinatorial conformance. 
 
We adapt the definition of strict conformance as follows: (changed parts marked in grey): 
 

Definition: We say that a property graph strictly conforms to a graph-type core if 

● for every edge in the graph there is a edge type in the graph-type core which it strictly 
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conforms to and 
● for every isolated vertex in the graph there is a vertex type in the graph-type core that 

it strictly conforms to.  

 
Under these semantics the following graph strictly conforms to the preceding graph-type core. 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

● (v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
● (v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

The next graph however does not strictly conform because it contains an isolated vertex without 
having a matching independent type in the graph-type core. 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

This change in semantics has advantages and disadvantages: 
● Good: It adds expressive power and gives a meaningful semantics for graph-type cores 

that otherwise would only allow the empty graph. 
● Good: It is similar to existing notions in conceptual data models such as ORM, where 

object types have to be declared explicitly as independent if their instances should be 
able to exist without participating in any non-identifying relationships. 

● Bad: It makes the semantics a bit more complex and implies sophisticated database 
constraints that might not be obvious. 

● Bad: In the case of conformance it might make certain forms of factorisation harder. 
 

To illustrate the point about sophisticated database constraints, consider the following 
graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 
(:City { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:livesIn { start DATE}]-> 
(:City { name STRING, url URL }) 
 

Under the adapted semantics this implies the following two constraints (formulated in the syntax 
that is close the one that is discussed in the working group for keys and cardinality constraints): 
 
WHERE (p :Person) REQUIRE  

  (THERE IS AT LEAST ONE wi SUCH THAT (p)-[wi :worksIn]->()) OR 

  (THERE IS AT LEAST ONE li SUCH THAT (p)-[li :livesIn]-()) 

 

WHERE (c :City) REQUIRE  

  (THERE IS AT LEAST ONE wi SUCH THAT ()-[wi :worksIn]->(c)) OR 
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  (THERE IS AT LEAST ONE li SUCH THAT ()-[li :livesIn]-(c)) 
 
For the point about factorisation consider the following graph-type core: 
 

● (:person manager) 

● (:person employee) 

● (:person)-[:knows]->(:person) 

 
This would now allow vertices with just the label person, and not those with manager or 
employee, which might not be the intended meaning. We could try to remedy this by indicating 
that we allow subtypes, by for example replacing : with <:. So the edge type could then be: 

 

● (<:person)-[:knows]->(<:person) 

 
However, that would then allow too much, since we could have a vertex with any set of labels in 
such an edge, as long as the set of labels contains the label person. 

The homomorphism-based semantics 
Another alternative semantics that was proposed is based on homomorphisms between 
property graphs and graph-type cores, and was inspired by [Bonifati:2019]. It is based on the 
observation that graph-type cores can be interpreted as graphs, where the vertex types are 
vertices and edge types are edges that connect these vertices (assuming that the vertex types 
in the edge type are also independently present in the graph-type core). As a consequence 
there is a natural notion of homomorphism from property graphs to graph-type cores. In the 
GS-Basic subgrup a case for this approach was made in [LDBC PGS:AG-10r1]. 
 
For the sake of this presentation we will discuss this in the context of strict conformance 
semantics, but the same principles can also be applied to conformance and combinatory 
conformance semantics. We start with the notion of homomorphism that we will base the 
semantics on. 
 

Definition: Given a property graph and a graph-type core we define a homomorphism from 
the graph to the graph-type core as a function that maps the elements of the graph to an 
element type in the graph-type core such that:  

1. every vertex in the graph is mapped to a vertex type it strictly conforms to and 
2. every edge in the graph is mapped to an edge type such that (1) the tail (head) vertex 

of the edge is mapped to the tail (head) type of the edge type and (2) the content of 
the edge strictly conforms to the content type of the edge type. 
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We can then redefine strict conformance such that a property graph conforms to a graph-type 
core if there is a homomorphism from the property graph to the graph-type core. 
 
To illustrate these semantics, consider the following graph-type core; 
 

● $personWithLongName = (:Person { name VARCHAR(50) }) 

● $personWithShortName = (:Person { name VARCHAR(15) }) 

● $degree = (:Degee { level VARCHAR(3), level VARCHAR(25)}) 

● $hobby = (:Hobby { description VARCHAR(100) }) 

● ($personWithLongName-[:hasDegree]->(:$degree) 

● ($personWithShortName-[:hasHobby]->(:$hobby) 
 
Under the homomorphism-based semantics the following graph strictly conform the the 
preceding schema. 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

● (v4 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v3) 

● (v2) -[:hasHobby]-> (v4) 

The following graph does not strictly confirm under homomorphism-based semantics: 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Degree { level=”MSc” topic=”Philosophy”} 

● (v3 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v2) 

● (v1) -[:hasHobby]-> (v3) 

It is possible to combine this approach with the ideas for dealing with dependent vertex types 
that were discussed in the previous section. This again allows us to give semantics to vertex 
types that only appear in edge types and not independently. For this we need a slightly more 
sophisticated notion of homomorphism. 
 

Definition: Given a property graph and a graph-type core we define an isolation-aware 
homomorphism from the graph to the graph-type core as a function that maps the elements 
of the graph to an element type in the graph-type core or to a vertex type that is the head or 
tail type of an edge type in the graph-type core, such that:  

1. every isolated vertex in the graph is mapped to a vertex type in the graph-type core, 
2. every vertex in the graph is mapped to a vertex type it strictly conforms to and 
3. every edge in the graph is mapped to an edge type such that (1) the tail (head) vertex 

of the edge is mapped to the tail (head) type of the edge type and (2) the content of 
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the edge strictly conforms to the content type of the edge type. 

 
Subsequently we can define strict conformance such that a property graph strictly conforms to a 
graph-type core if there is an isolation-aware homomorphism from the property graph to the 
graph-type core. 
 
To illustrate the difference with the previous semantics that is not isolation-aware, consider the 
following adapted graph-type core: 
 

● $personWithLongName = :Person { name VARCHAR(50) } 

● $personWithShortName = :Person { name VARCHAR(15) } 

● $degree = (:Degee { level VARCHAR(3), level VARCHAR(25)}) 

● $hobby = (:Hobby { description VARCHAR(100) }) 

● ($personWithLongName-[:hasDegree]->(:$degree) 

● ($personWithShortName-[:hasHobby]->(:$hobby) 
 
Note that $personWithLongName and $personWithShortName now define content types rather 
than vertex types. The following graph strictly conforms under isolation-aware 
homomorphism-based semantics: 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

● (v4 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v3) 

● (v2) -[:hasHobby]-> (v4) 

However, the following graph does not, since v2 is now an isolated vertex for which there is no 
matching independent vertex type: 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

● (v1) -[:hasDegree]-> (v3) 

These changes in semantics have advantages and disadvantages: 
● Good: The isolation-aware semantics gives a meaningful semantics for graph-type 

cores with vertex types that only occur in edge types. 
● Good: The homomorphism semantics adds expressive power, although not as much as 

when the schema would actually be a graph giving abstract identity to vertex types. 
● Bad: The added expressive power is quite subtle, and probably hard to understand by 

most users.  
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● Bad: Both have the disadvantage that, if distinct types can overlap, the computational 
complexity of validation becomes intractable, since it becomes similar to the general 
problem of checking for the existence of graph homomorphisms. 

Summary 

Main results and contributions 
The presented contribution in this report consists of a proposal for the syntax for graph-type 
cores and several proposals for their semantics. For each proposal for the semantics a 
motivation is given for why it can be seen as an improvement over the at-least-one-match 
semantics, and the trade-offs are discussed.  
 
We feel that each proposal offers an interesting insight, even if it is not considered the preferred 
one, since it highlights a weak point of the other proposals. For example the combinatorial 
semantics highlights the need to allow for certain sets of types to be combined. The 
isolation-aware semantics highlights that there is an implicit assumption that vertex types that 
are part of edge types also appear as independent vertex types in a graph-type core. The 
alternative proposals therefore provide insight into possible future extensions of the preferred 
semantics, to compensate for these weak points.  

Observations 
The main observations by the GS-Basic group are as follows: 

● The main underlying ideas of the semantics seem well-established, although there is no 
consensus on which proposal is preferred. However, the at-least-one-match semantics 
proposal in this document seems to have the most support. 

● The semantics of graph-type cores is for simple schemas similar to that of conceptual 
data models, but there is a clear difference when it comes to allowing overlap of types. 
Here conceptual data models tend to have a notion of overlapping inheritance which 
explicitly allows objects to belong to combinations of types. Under the current semantics 
such combinations would have to be explicitly added to the graph-type core. It will be an 
interesting challenge to add a similar construct to property graph schemas while 
preserving the computational complexity of validation. 

● The notion of (weak) conformance seems to follow naturally and the subtype relationship 
it implies for graph-type cores seems to satisfy the expectations for such a relationship. 
To illustrate this, consider a query that retrieves vertices by matching a graph pattern, 
from a graph that is expected to strictly conform to a certain graph-type core. We can 
then derive the expected vertex type for the retrieved vertices. If the same query is 
executed over a graph that only weakly conforms, then resulting vertices will still conform 
to the derived vertex type. 
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● The at-least-one-match semantics proposal seems straightforwardly extensible, as is for 
example illustrated by the extension with optional attributes, as is shown in the 
companion report [LDBC PGS-B:BAS-02. 

● The discussion concerning the exactly-one-match semantics (see Section  The 
exactly-one-match semantics) illustrates that assumptions concerning the type system 
for attribute values, especially those concerning overlap of types, can have 
repercussions for the semantics at schema level. It is therefore important to consider 
these as related issues. 

Open Questions 
There are several open questions and issues that we intend to address in future work. We list 
them here. 

What is an appropriate syntax for type variables? 
In the provisional concrete syntax used in this document type variables are made distinct from 
labels by prefixing them with “$”. It may seem a detail, but picking an appropriate syntax that 
distinguishes these variables form any other type of variable or parameter will be an important 
choice. 

What is the syntax and semantics for inheritance? 
Although this topic was intentionally avoided in this report, there have already been suggestions 
on how to describe inheritance, such as in [LDBC PGS:AG-05]. The basic idea is to allow type 
variables in locations where in the current syntax labels are expected. A graph-type core 
specification might look as follows: 
 

● $message = (:Message { creationDate DATE, content STRING }) 

● $post = (:Post $message { language STRING }) 

● $comment = (:Comment $message) 

● (:$comment)-[:isReplyTo]->(:$message) 

 
The inclusion of a type variable, like $message in $post signifies that the latter defines a 
subtype of the first. This subtype would be computing by taking the intersection type 
specification without the variable ((:Post { language STRING })) and the type associated 
with the variable ((:Message { creationDate DATE, content STRING })). 
 
An important issue for this type of semantics is that under strict conformation the above 
graph-type core would not allow isReplyTo edges to end in a vertex of type post or comment, 
but only in vertices of type $message, which seems intuitive given the usual interpretation of 
inheritance. 
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Related to the issue of inheritance is the issue of abstract types. It might be for example that in 
the above graph-type core we would like to indicate that the type $message is abstract and only 
serves as a supporting type to define the two subtypes  $post and $message. This can already 
be achieved by declaring the type $message as a content type, but that would allow this content 
type accidentally benign used as a content type for an edge type. Moreover, this cannot be used 
for abstract edge types. So an explicit keyword ABSTRACT that would modify a type to be 
abstract would probably be a useful construct to have. 

How to introduce open types? 
Given the clear need for introducing features in the schema language that allow it to be partially 
more open in certain places, even under strict semantics, raises the question of what features 
and constructs would be appropriate. 
 
At the attribute level there are obvious candidates such as explicit union types and the generic 
types anyPropertyValue and  anyAttributeValue. These would already allow to create 
schemas with a certain openness under strict semantics. 
 
At the level of element types an obvious candidate (suggested in [LDBC PGS:AG-05]) is to 
mark element types explicitly to indicate that they allow instances of subtypes, even under strict 
conformance. For example, if we indicate this by replacing the “:” with “<:”, then the previous 
core might be changed into: 
 

● $message = (:Message { creationDate DATE, content STRING }) 

● $post = (:Post $message { language STRING }) 

● $comment = (:Comment $message) 

● (:$comment)-[:isReplyTo]->(<:$message) 
 
Under this graph-type core an isReplyTo edge would, under strict semantics, be allowed to end 
in a vertex which is of a subtype of $message, so for example of type $post or type $comment. 
Note that this would still keep the graph-type core closed in the sense that we cannot have 
vertices that do not strictly conform to one of the vertex types. This would change if we indicated 
for one of the vertex types that it allows subtypes: 
 

● $message = (:Message { creationDate DATE, content STRING }) 

● $post = (:Post $message { language STRING }) 

● $comment = (<:Comment $message) 
● (:$comment)-[:isReplyTo]->(<:$message) 

 
This would allow vertices in a strictly conforming graph if they strictly conform to a subtype of 
(:Comment $message {}), or to be more explicit, a subtype of (:Message Comment { 
creationDate DATE, content STRING }). Note that this means they can have next to the 
explicitly specified attributes, additional attributes of any type. 
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While the additions described above are clearly useful, it is not clear if this covers most of the 
practical uses cases in an intuitive manner, and if additional constructs are needed for that. 

Which constructs can approximate conceptual data models? 
As discussed in Section Observations a feature that is hard to model in the given syntax is that 
which in Enhanced ER models is called overlapping inheritance with multiple subtypes. This 
would require some constructor that given a certain number of types generates all combinations 
of those types. One such construct is the power union type, as was suggested in  [LDBC 
PGS:AG-08]. It could be used as follows: 
 

● $employee = (:Employee { … }) 

● $manager = (:Manager $employee { … }) 

● $engineer = (:Engineer $employee { … }) 

● $mentor = {:Mentor $employee { … }) 

● (: PUT($manager, $engineer, $mentor) ) 

 

Here PUT would be a short-hand that specifies several element types, namely all those that are 
the intersection type over a non-empty subset of the set  { $manager, $engineer, $mentor 
}. So that would include for example $manager & $engineer and $engineer & $mentor and 
$manager & $engineer & $mentor . The above graph-type core would therefore be 
equivalent to: 
 

● $employee = (:Employee { … }) 

● $manager = (:Manager $employee { … }) 

● $engineer = (:Engineer $employee { … }) 

● $mentor = (:Mentor $employee { … }) 

● (: $manager ) 

● (: $engineer ) 

● (: $mentor ) 

● (: $manager & $engineer ) 

● (: $manager & $mentor ) 

● (: $engineer & $mentor ) 

● (: $manager & $engineer & $mentor ) 
 
Further analysis of this construct is needed to see if it indeed can cover in an intuitive manner all 
cases with overlapping inheritance, and if it preserves the tractable computational complexity of 
validation. 

What is the semantics of undirected-edge types? 
An obvious extension of the syntax for dealing with undirected edges would be to indicate in the 
syntax of an edge type that it describes an undirected edge, e.g.: 
 

● (:$guest)-[:isFriendOf]-(:$member) 
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However, if like in this case the tail and head type are different, that raises the question of what 
the semantics of this is. There seem to be several reasonable options here, such as: 

1. This should not be allowed and has no semantics. Undirected edges are inherently 
symmetric, and so an asymmetric type does not make sense. 

2. It means that both the incident vertices should be of type $guest & $member, so be of 
type $guest as well as of type $member. In other words, a guest can only be a friend of 
a member if they are themselves a member, and a member can only be a friend of a 
guest if that member is a guest. This is close to the idea that an undirected edge actually 
represents two edges, one in each direction. 

3. It means that one incident vertex should be of type $guest and the other of type 
$member, or vice versa. That would allow a guest to be a friend of a member, even if that 
guest is not themselves a member. This is close to the idea that an undirected is like a 
directed edge except that it can be navigated in both directions. 

We expect that more discussion will be needed on this issue before we can settle on what the 
preferred semantics is. 

Why and how to introduce nominal typing? 
In the report only structural typing has been discussed, which means that the type name does 
not play a role in the semantics of a type. Since SQL uses nominal typing it might be 
appropriate to incorporate that into edge types and node types. Usually this means that the 
instance of the type is annotated with the type name of the type it is declared to be an instance 
of. However, it is not yet clear if this is really needed, and if it would involve changes to the 
underlying data model. 

Conclusion 
The semantics of a graph-type core, which contains only a set of vertex and edge types, may 
seem a straightforward issue. However, as will be obvious from this document, it is a topic with 
quite a few unexpected and subtle complications. So looking back it is not surprising that the 
result of the discussions in GS-Basic have led to several proposals that all have their benefits. It 
is for that reason that we have decided to present all of them in full detail in this report, even 
though the at-least-one-match semantics has the widest support. We hope that the insights 
presented in this report and its companion report will help the ISO/IEC JTC1 SC32 WG3 
working group in determining the syntax and semantics for GQL graph types. 
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Goal of this document 
The goal of this document is to serve as a companion document to provide the full formal 
definitions of the concepts presented in [LDBC PGS-B:BAS-01]. To make this document 
readable as a standalone document, it replicates informal explanations and examples 
from that document. In addition it also contains the following additional content that was 
not presented in [LDBC PGS-B:BAS-01]: 

● an example of a mapping from the concrete syntax to the abstract syntax (see Section 
Mapping the concrete syntax to the abstract syntax) 

● a discussion of the mapping between the at-least-one-match semantics and the 
combinatorial semantics, (see Section Comparing normal conformance and 
combinatorial conformance) 

● an extension of the at-least-one-match semantics for dealing with optional attributes (see 
Section graph-type cores with optional attributes) and 

● an in-depth analysis of the assumptions concerning the type system that governs that 
attribute values (see Section An analysis of the assumptions in WG3:MMX-010r2). 
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Basic definitions 
We start with recalling the main definitions that will be relevant for the discussion. For the 
definition of property graph we assume the existence of the following sets:  

● A countably infinite set A  of attribute names 
○ this generalises over property names and labels. 

● A countably infinite set V  of attribute values 
○ it includes a special value lbl, which is meant to be used as the value of an 

attribute to indicate that it represents a label and not a property 

Examples 

● A  = {name, url, Person, City, ... } 
● V = {Jan, London, 2020-01-01, 1, 2 , …, lbl} 

End examples 

Property graphs 
 

Definition: A property graph is defined as G = (V, E, 𝜌, 𝛼) where 

● V is a set of vertex identities, 
● E is a set of edge identities such that V ∩ E = ∅, 
● 𝜌 : E → (V × V) a total function mapping edge identities to pairs of vertex identities and 
● 𝛼 : (V ∪ E) → (A   V) a total function mapping edge/vertex identities to a finite partial 

function that maps attribute names to attribute values. 

 
Examples 

Consider the following Property Graph 

(v1 :Person {name = “Jan Hidders”}) 

(v2 :City {name = “London”}) 

(v3 :City {name = “Brussels”}) 

(v1)--[e1 :worksIn {start=“2020-01-01”}]-->(v2) 

(v1)--[e2 :livesIn {start=“2015-01-01”}]-->(v3) 

This Property Graph is represented with the following notation from the formal definition: 
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G = (V, E, 𝜌, 𝛼) where 

● V = {v1, v2, v3} 
● E = {e1, e2} 
● 𝜌(e1) = (v1, v2) 
● 𝜌(e2) = (v1, v3) 
● 𝛼(v1) = {Person ↦ lbl, name ↦ “Jan Hidders”} 
● 𝛼(v2) = {City ↦ lbl, name ↦ “London”} 
● 𝛼(v3) = {City ↦ lbl, name ↦ “Brussels”} 
● 𝛼(e1) = {worksIn ↦ lbl, start ↦ “2020-01-01”} 
● 𝛼(e2) = {livesIn ↦ lbl, start ↦ “2015-01-01”} 

End examples 

Note: The described approach of viewing labels and properties as instances of the more 
general notion of attribute has an important disadvantage: it does not allow the same attribute 
name to appear as both a label and an attribute name on the same element. It is possible to 
adapt the formal definitions so that this is possible. One approach that has been suggested but 
has not been fully discussed in the working group is the following: 

● Introduced the notion of marked attribute name, which is an attribute name that is 
marked to indicate that it represents a label. An attribute name, say a, that is marked is 
denoted as :a. We assume that any marked attribute is distinct from any attribute name 
and so does not start with “:”. 

● Define a set of content keys, which are either attribute names or marked attribute 
names. 

● In the definition of property graph, replace A with the set of content keys, and require 
that for any element x it holds that 𝛼(x)  maps content keys to lbl iff they are marked 
attribute names. 

● The denotation of a content record might either stay {Person=lbl, name=”Jan 
Hidders”} or become {:Person=lbl, name=”Jan Hidders”}. 

End note. 

Attribute types 
We start with stating our assumptions concerning attribute values and attribute types. Most of 
these assumptions originate from [GQL:EWD], and we will discuss where and why we differ.  

The attribute type lattice 
We presume the existence of the following sets and relationships between them: 

● A set Tattr of attribute types describing attribute values. 
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○ It includes a special attribute type label that will be used to indicate in a schema 
to indicate that a certain attribute represents a label.  

○ We assume there is a subtype relation ≤ defined over Tattr, which is a partial order 
that defines a lattice. 

○ We assume in addition that ≤ defines a lattice, i.e., for any two attribute types 𝜏, 𝜎 
∈ Tattr  

■ there is a unique type that is the largest common subtype of 𝜏 and 𝜎, 
which we will denote as 𝜏 ∧ 𝜎 and 

■ there is a unique type that is the smallest common supertype of 𝜏 and 𝜎, 
which we will denote as 𝜏 ∨ 𝜎. 

○ We assume a special attribute type empty that is the smallest element in the 
lattice. 

● For each attribute type 𝜏 ∈ Tattr there is a possibly empty set ⟦𝜏⟧ ⊆ V  containing all 
attribute values that strictly conform to type 𝜏. We will also refer to this set as the strict 
semantics of 𝜏. 

○ In particular ⟦label⟧ = { lbl } and ⟦empty⟧ = ∅  
○ We assume that for each attribute value v ∈ V   there is an attribute type 𝜏 ∈ 

Tattr such that v ∈ ⟦𝜏⟧. 

The notation for the largest common subtype is generalised for sets of attribute types, so that 
we can write for example 𝜏1 ∧ … ∧ 𝜏n for a finite set of attribute types  {𝜏1, …, 𝜏n}. Given the 
stated assumptions of the type lattice this has a well-defined unique semantics for non-empty 
finite sets. If the set is empty, we will assume 𝜏1 ∧ … ∧ 𝜏n denotes the attribute type empty. 

Examples 

● Tattr = {string, int, date, label, empty, anyPropVal, anyAttrVal} 
● ⟦string⟧ = {“Jan Hidders”, “London”, “Brussels”, … } 
● ⟦int⟧ = {1, 2, … } 
● ⟦date⟧ = {2020-01-01, 2015-01-01, … } 
● ⟦label⟧ = {lbl} // This is fixed 
● ⟦empty⟧ = ∅ 
● ⟦anyPropVal⟧ = ⟦string⟧ ⋃ ⟦int⟧ ⋃ ⟦date⟧ 
● ⟦anyAttrVal⟧ = ⟦anyPropVal⟧ ⋃  {lbl} 
● Subtyping lattice:  

○ empty < int, empty < date, empty < label 
○ int < string, date < string 
○ string < anyPropVal 
○ anyPropVal < anyAttrVal, label < anyAttrVal 

End examples 
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On the meaning of subtyping 

As might be clear from the example, there are very few restrictions on the type lattice, except 
that ≤ must be a partial order. Therefore it allows subtype relationships, such as int < string and 
date < string, which might or might not be intuitive within a certain setting. The main reason for 
this is that we are trying to define a framework that is as generic and extensible as possible and 
therefore has as few restrictions as possible. Another reason is that this framework is meant to 
serve as a vehicle to study what happens if certain common assumptions are added or 
removed. It is certainly the case that in some settings additional restrictions are desirable, either 
for implementation reasons or for conceptual simplicity or both. 

The two kinds of subtyping 

There is however an underlying philosophy that motivates why certain common restrictions that 
are found in other type systems are omitted. First of all, we distinguish two kinds of 
subtype-supertype relationships: 

1. The supertype describes a larger set of values that is less restricted than the set of 
values described by the subtype. As an example consider a supertype that describes all 
strings and a subtype that describes a subset that matches a certain regular expression. 
In this case the semantics of the subtype is simply a subset of that of the supertype. 

2. The supertype describes a set of values that are abstractions of values in the subtype. 
By abstractions we mean here that certain parts of the value are omitted. As an example 
consider a supertype that describes records with two fields and a subtype that describes 
records with an additional field. 

Given these two kinds of subtype relationships it seems reasonable to allow a subtype 
relationship between any two types where all values in the potential subtype can be interpreted 
as values in the supertype, which might possibly involve abstraction, i.e., the omission of 
information. In other words, there should be an intuitive coercion function that maps the values 
of the subtype to values of the supertype. This function is required to be total, but is not required 
to be injective. One example of such a function is the projection of records on a particular set of 
fields. It is also possible that the coercion function is simply the identity function, as might be the 
case where the subtype describes a set of strings that is a sublanguage of the supertype. So we 
explicitly allow that the strict semantics of a subtype and a supertype overlap. 

Consistent behaviour 

To satisfy the Liskov substitution principle the collection of coercion functions must provide a 
consistent view on which values are conceptually the same and which values are abstractions 
of each other. For example, if there are multiple paths in the type lattice between a subtype and 
a supertype, then all these paths should have the same associated coercion function. Therefore 
additional constraints are required so that the coercion functions behave consistently. To 
understand what these constraints are, we must first define more precisely what we mean here 
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by consistent behaviour. 

By consistent behaviour we mean that the type lattice with strict order 𝜏 < 𝜎 and associated 
family of coercion functions  K[𝜏 < 𝜎] : ⟦𝜏⟧ → ⟦𝜎⟧ can be interpreted consistently. This means 
that we can interpret all elements in V  as representing a conceptual value, like for example the 
integer number 5. This number might be represented by one attribute value in the type int8 and 
by another attribute value in int32, but the interpretation would map each of these to the same 
conceptual number 5 to represent the fact that for users these actually represent the same 
thing. In addition these conceptual values would have an ordering that defines when one is 
considered to be an abstraction of another. For example, the record {a ↦ 5} could be a 
considered a more abstract version of the record {a ↦ 5, b ↦ true}. To be a valid interpretation it 
must satisfy two constraints.  

1. The first constraint represents the intuition that the attribute values in the strict semantics 
of a certain type represent conceptual values at the same abstraction level. This means 
that if we take a certain conceptual value, like the record {a ↦ 5, b ↦ true}, there can be at 
most one attribute value that represents it at the abstraction level of the type {a ↦ 
integer}. Stated more precisely: if the interpretations of two attribute values in the strict 
semantics of an attribute type are the same conceptual value or abstract versions of the 
same conceptual value, then these attribute values must be identical. 

2. The second constraint captures that the coercion functions are consistent with the notion 
of abstraction in the interpretation. This means that they map one attribute value to 
another exactly if the interpretation of the second is an equally or more abstract version 
of the interpretation of the first. So it should for example map the record {a ↦ 5, b ↦ true} 
to the record {a ↦ 5}, but not to the record {a ↦ 6}. 

Formalisation of consistent behaviour 

More formally, we can define a valid interpretation as consisting of:  

1. A set W  containing the conceptual values that are represented by the attribute values. 
2. A partial order ≤W  over W  that orders conceptual values in abstractness. 
3. An interpretation function I : V  → W  that satisfies: 

a. For each attribute type 𝜏 and values w1 and w2 in ⟦𝜏⟧ it holds that w1 = w2 if there 
is a conceptual value z ∈ W  such that  z ≤W  I(w1) and z ≤W  I(w2). 

b. If 𝜏 < 𝜎 then for every w1 ∈ ⟦𝜏⟧ and w2 ∈ ⟦𝜎⟧ it holds that K[𝜏 < 𝜎](w1) = (w2) iff 
I(w1) ≤W  I(w2). 

The requirement that there must be a valid interpretation can be restated as a set of constraints 
that must hold for the lattice, the associated strict semantics and the coercion functions. These 
are the following constraints: 

● ST1: If there is an attribute value w ∈ ⟦𝜏⟧ ⋂ ⟦𝜎⟧ then K[𝜏 < 𝜎](w) = w, i.e., every value 
that appears in both the subtype and in the supertype is mapped by the coercion 

WG3:MMX-070

2020-06-12 8



 

function to itself. 
● ST2: If there is (1) an attribute value w ∈ ⟦𝜏1⟧ ⋂ ⟦𝜎1⟧, (2) two coercion functions K[𝜏1 < 

𝜏2] and K[𝜎1 < 𝜎2], and (3) a type 𝜏’ such that K[𝜏1 < 𝜏2](w) ∈ ⟦𝜏’⟧ and K[𝜎1 < 𝜎2](w) ∈ 
⟦𝜏’⟧, then K[𝜏1 < 𝜏2](w) = K[𝜎1 < 𝜎2](w), i.e., if two coercion functions map the same value 
to two values that appear together in the strict semantics of some type, then the results 
of the two coercion functions are identical. 

● ST3: If there is an attribute value w ∈ ⟦𝜏⟧ ⋂ ⟦𝜎⟧ and a type 𝜏’ such that 𝜏 < 𝜏’ < 𝜎 then w 
∈ ⟦𝜏’⟧, i.e., if a value appears in the subtype and the supertype then it also appears in 
all the types between the subtype and the supertype. 

Indeed, it can be shown that these constraints characterise the existence of a valid 
interpretation, i.e., they are both sufficient and necessary conditions for the existence of a valid 
interpretation. 

Since we do not explicitly mention the coercion functions in our framework, the assumptions 
ST1 and ST2 cannot be directly stated, but they do at this level imply the following constraint: 

● ST4:If a subtype has a non-empty strict semantics then the supertype also has a 
non-empty strict semantics. 

We will not add ST3 and ST4 at this point to our standard assumptions because it contradicts 
the assumptions in [GQL:EWD], as is discussed in Section Additional assumptions in 
WG3:MMX-010r2. However, we do see them as valid assumptions under the presented 
interpretation of subtyping. 

The Liskov substitution principle revisited 

The notion of consistent behaviour, as discussed in the preceding sections, is a necessary 
condition for adhering to the Liskov substitution principle, but it is not a sufficient condition. A 
potential complication is that in the setting of GQL certain inputs may be typed or untyped, 
which can make the interpretation of the substitution principle less straightforward. For example, 
it might be expected the the principle implies that any operation with signature 𝜏1 ⨉ 𝜏2 → 𝜏3 
allows input values of subtypes of 𝜏1 and 𝜏2 but coerces them to the expected type. That would 
guarantee that if the operator is given as input a less abstract version of a value, the result is as 
if it had been fed the value at the expected abstraction level. 

However, this might not always be appropriate in a partially untyped setting. To illustrate this, 
consider the following expression, where x  refers to some element in a graph: 

 x.a = x.b 

It seems reasonable to assume here that =  has a signature anyPropVal ⨉ anyPropVal → 
Boolean. However, mapping the operands x.a and x.b to that abstraction level means that 
all records are mapped to the empty record, and therefore would all be considered equal. This is 
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of course not the most intuitive interpretation of the equality operator, which would be to simply 
test the equality of the operands. It is therefore explicitly allowed that operations with a certain 
signature do not coerce their input values to the expected type. This does not exclude that 
some operations will consistently coerce their input values. For example, there might be an 
explicitly typed equality operation that coerces all its input values to some explicitly specified 
(record) type and at that level compares the input values. 

A similar problem occurs with simple operations like the addition. For example, assume we have 
the following integer types with the indicated subtype relation: int8 < int16 < int32 < int64. Now 
consider the following expression: 

 x.a + x.b 

It might be that for each integer type there is a specific addition that behaves somewhat 
differently from the others in its overflow behaviour: the int8 addition might result in an overflow 
on certain integers, where the int16 addition does not. This expression can however be given a 
consistent interpretation that satisfies the substitution principle by assuming it coerces the input 
values to the smallest type of integer that avoids the overflow (if it can) and executes the 
corresponding addition. So that would mean here (assuming int64 is the largest type to which 
the addition applies) that the addition behaves in a manner that is consistent as if it coerces all 
input values to int64. Also here there can be an option of a typed addition where the 
programmer explicitly indicates the input type. 

Weak and strong conformance for types 

The strict semantics of a type, denoted as ⟦𝜏⟧, will later be used to define strict conformance for 
schemas. In addition we define a semantics that takes subtyping into account and that will be 
used for defining (weak) conformance. For each 𝜏 ∈ Tattr  we define a set ⟦𝜏⟧* ⊆ V  that 
contains exactly all attribute values that conform to 𝜏, by which we mean here all attribute values 
that strictly conform to a subtype of 𝜏. More formally: ⟦𝜏⟧* = ⋃𝜎 ≤ 𝜏 ⟦𝜎⟧. We call ⟦𝜏⟧* the weak 
semantics of 𝜏 or also simply the semantics of attribute type 𝜏. This approach to defining the 
semantics of subtyping gives an interpretation to subtyping that flexible, powerful and both 
informally and formally easy to understand ][Balsters:1991]. 

We will call a type 𝜏 an abstract type if it holds that ⟦𝜏⟧* = ⋃𝜎 < 𝜏 ⟦𝜎⟧*. If a type is not an abstract 
type we will call it a concrete type. Note that this deviates from the definition in [GQL:EWD] 
where an abstract type is defined as a type where the strict semantics is empty. We will come 
back to this in Section An analysis of the assumptions in [GQL:EWD]. 

Discussion of the assumptions for attribute types 

The definitions and assumptions stated for the type lattice are sufficient to proceed with the 
presentation of the semantics of graph schemas, but several additional assumptions can be 
considered to make it easier to implement and understand. We briefly discuss some of them. 
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Union and intersection types 
The lattice operations are similar to union and intersection types, but do not necessarily have all 
the properties that one would expect of them. For example, the following equalities do not follow 
from the preceding definitions and assumptions: 

● A1: ⟦𝜏 ∧ 𝜎⟧* = ⟦𝜏⟧* ⋂ ⟦𝜎⟧* 
● A2: ⟦𝜏 ∨ 𝜎⟧* = ⟦𝜏⟧* ⋃ ⟦𝜎⟧* 

It seems reasonable to add these as assumptions, which then justifies identifying the lattice 
operations with union types and intersection types. Note that A2 is equivalent to assuming that 𝜏 
∨ 𝜎 is an abstract type, since all strict subtypes of 𝜏 ∨ 𝜎 must be subtypes of 𝜏 or subtypes of 𝜎.  

It can be shown that A2 follows from the definitions in [GQL:EWD], because it introduces an 
explicit union type constructor, which we denote as +, and for which it holds by definition that ⟦𝜏 
| 𝜎⟧* = ⟦𝜏⟧* ⋃ ⟦𝜎⟧*. Since the document also assumes that lattice subtyping and extensional 
subtyping coincide, it follows from the fact that ⟦𝜏 | 𝜎⟧* = ⟦𝜏⟧* ⋃ ⟦𝜎⟧* is the smallest superset of 
both ⟦𝜏⟧* and ⟦𝜎⟧*, that 𝜏 | 𝜎 is the smallest supertype of both 𝜏 and 𝜎, which by definition is 
equal to 𝜏 ∨ 𝜎. It follows that ⟦𝜏 ∨ 𝜎⟧* = ⟦𝜏 | 𝜎⟧* = ⟦𝜏⟧* ⋃ ⟦𝜎⟧*.  

As will be discussed in the Section Lattice subtyping versus extensional subtyping, also A1 can 
be shown to follow from the assumptions in [GQL:EWD]. 

Note that A1 and A2 do not imply that ⟦𝜏 ∨ 𝜎⟧ = ⟦𝜏⟧ ⋃ ⟦𝜎⟧, which also would be an appropriate 
assumption to add for union types. However, this would contradict some assumptions in 
[GQL:EWD], as discussed in Section An analysis of the assumptions in [GQL:EWD]. 

Lattice subtyping versus extensional subtyping 
The given definitions allow us to compare types in two different ways: with the lattice order 𝜏 ≤ 𝜎, 
and with the order defined by the set semantics ⟦𝜏⟧* ⊆ ⟦𝜎⟧*. Indeed, in [GQL:EWD] it is stated 
that this holds by definition: “Given two data types T and U, T is a subtype of U if and only if 
every element of T is also an element of U.” (4.12.3.1 Subtype relation, p. 51)q. It does follow 
that ⟦𝜏⟧* ⊆ ⟦𝜎⟧* if 𝜏 ≤ 𝜎, but the reverse does not necessarily hold. Consider the following 
counterexample: 

● Tattr = {𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, label, empty, any},  
V  = {w1, w2, lbl} 

● ⟦𝜏1⟧ = {w1}, ⟦𝜏2⟧ = {w2},  ⟦𝜏3⟧ = {w1}, ⟦𝜏4⟧ = ∅,  ⟦𝜏5⟧ = ∅, 
⟦label⟧ = {lbl},  ⟦empty⟧ = ∅, ⟦any⟧ = V ,  

● empty < 𝜏1, empty < 𝜏2, empty < 𝜏3, 
𝜏1 < 𝜏4, 𝜏2 < 𝜏4, 𝜏2 < 𝜏5, 𝜏3 < 𝜏5, 𝜏4 < any, 𝜏5 < any, 
empty < label < any 
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Here we have ⟦𝜏4⟧* = {w1, w2} and ⟦𝜏5⟧* = {w1, w2} but it does not hold that 𝜏4 ≤ 𝜏5.  
  
To prevent this situation, we can add the following assumption: 

● A3: ⟦𝜏⟧ ⋂ ⟦𝜎⟧ ⊆ ⟦𝜏 ∧ 𝜎⟧* 

Intuitively A3 states that if two types share a value in their strict semantics this must be because 
they “inherit” this value from a common subtype. In other words, for each attribute value w there 
is a unique smallest type 𝜏 such that w ∈ ⟦𝜏⟧ . We will refer to this type as the most specific 
type of w. Note that the previous counterexample indeed violated A3 since w1 does not have 
such a most specific type. Unfortunately A3 is not sufficient, as is illustrated by the following 
counterexample: 

● Tattr = {𝜏1, 𝜏2, label, empty, any},  
V  = {w1, lbl} 

● ⟦𝜏1⟧ = {w1}, ⟦𝜏2⟧ = ∅, ⟦label⟧ = {lbl},  ⟦empty⟧ = ∅, ⟦any⟧ = V ,  
● empty < 𝜏1 < 𝜏2 < any, empty < label < any 

This lattice satisfies A3, but we have ⟦𝜏1⟧* = {w1} and ⟦𝜏2⟧* = {w1} while it does not hold that  𝜏1 
≤ 𝜏2. This counterexample is a bit strange in that it has an abstract type 𝜏2 which is not a 
consequence of a union type. Another counterexample shows that even if we only allow such 
abstract types, there is still a problem. 
 

● Tattr = {𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6, 𝜏7, label, empty, any},  
V  = {w1, w2, w3, lbl} 

● ⟦𝜏1⟧ = {w1}, ⟦𝜏2⟧ = {w2},  ⟦𝜏3⟧ = {w3}, ⟦𝜏4⟧ = ∅,  ⟦𝜏5⟧ = ∅, ⟦𝜏6⟧ = ∅,  ⟦𝜏7⟧ = ∅, 
⟦label⟧ = {lbl},  ⟦empty⟧ = ∅, ⟦any⟧ = V ,  

● empty < 𝜏1, empty < 𝜏2, empty < 𝜏3, 
𝜏1 < 𝜏4, 𝜏2 < 𝜏4, 𝜏2 < 𝜏5, 𝜏3 < 𝜏5, 𝜏4 < 𝜏6, 𝜏3 < 𝜏6, 𝜏1 < 𝜏7, 𝜏5 < 𝜏7,  
𝜏6 < any, 𝜏7 < any, 
empty < label < any 
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Here we have ⟦𝜏6⟧* = {w1, w2, w3} and ⟦𝜏7⟧* = {w1, w2, w3} but it does not hold that 𝜏6 ≤ 𝜏7.  
 
To prevent the problems of the previous two counterexamples, we add a final assumption which 
states that we can compare types by comparing their set of concrete subtypes. 

● A4: Two types with the same set of concrete subtypes are identical. 

This prevents the previous counterexample, because there we have two types, namely 𝜏1 and 
𝜏2, that have the same concrete subtypes, namely the set {𝜏1}, but are not identical. Together, 
A3 and A4 are sufficient to prove that  ⟦𝜏⟧* ⊆ ⟦𝜎⟧* iff 𝜏 ≤ 𝜎.  

Moreover, it can be shown that the addition of A3 allows us to prove A1. This is because we 
can derive from the lattice assumptions that ⟦𝜏 ∧ 𝜎⟧* ⊆ ⟦𝜏⟧* ⋂ ⟦𝜎⟧*. Moreover, for any value w 
∈ ⟦𝜏⟧* ⋂ ⟦𝜎⟧* it holds that w ∈ ⟦𝜏’⟧ and w ∈ ⟦𝜎’⟧ for some type 𝜏’ ≤ 𝜏 and for some type 𝜎’ ≤ 𝜎. 
It then follows by A3 that w ∈ ⟦𝜏’ ∧ 𝜎’⟧*. From the lattice it follows that (𝜏’ ∧ 𝜎’) ≤ (𝜏’ ∧ 𝜎’), and 
so we can conclude that w ∈ ⟦𝜏 ∧ 𝜎⟧*. 

It can be observed that A3 follows from the definitions and assumptions in [GQL:EWD]. More 
specifically, A3 follows from “The most specific type of an element of a data type is the concrete 
existing data type that is a subset of all other existing data types that contain that element. The 
most specific type of an element of a data type is always uniquely defined.” (4.12.1 Instance 
conformance, p. 51).  
 
Whether A4 follows from the assumptions in [GQL:EWD] could not be verified at the time of 
writing. 

An analysis of the assumptions in [GQL:EWD] 
The strict semantics of a type is defined in [GQL:EWD] as follows: “An instance V strictly 
conforms to a data type T if and only if V conforms to T and there is no data type U that is a 
(non-empty) strict subtype of T such that V is also an element of U.” (4.12.2 Instance 
conformance, p. 51)  From this it follows that ⟦𝜏⟧ ⋂ ⟦𝜎⟧ = ∅ if 𝜏 is a strict subtype of 𝜎. However, 
a consequence of this is that the strict semantics of all abstract types is empty. This is because 
any value in their semantics (and so also in their strict semantics) must be in the strict semantics 
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of at least one of their strict subtypes. So it follows that ⟦𝜏 ∨ 𝜎⟧ = ∅ for any two types 𝜏 and 𝜎, 
and also that ⟦anyPropValue⟧ = ∅, which means all such abstract types are rendered unusable 
under strict schema conformance. 
 
Another argument against this assumption is that it precludes some quite reasonable overlap 
under strict semantics. For example, it would be intuitive and useful to let the strict semantics of 
VARCHAR(10)overlap with VARCHAR(20), and let the strict semantics of INTEGER ARRAY[10] 
overlap with INTEGER ARRAY[20]. This is consistent with and would follow from the 
interpretation of VARCHAR(10) as ”all strings of up to 10 characters’’, and of INTEGER 
ARRAY[10] as ”all integer arrays with length up to 10”. Not allowing this overlap would mean that 
under strict conformance for schemas, a property with a value of type VARCHAR(10) would not 
be allowed where a value of type VARCHAR(20) is expected. Of course this might also be dealt 
with through coercion, but if coercion does not change the value, just the associated type, then 
it effectively behaves as if there is overlap. 
 
Another assumption in [GQL:EWD] is the following: “All data types that are the most specific 
type of some instance are disjoint and therefore two instances that do not have the same most 
specific type are never considered to be identical” (4.12.1 General information about data 
types, p. 51)  The first part of this sentence can be stated as ⟦𝜏⟧* ⋂ ⟦𝜎⟧* = ∅ if 𝜏 and 𝜎 are 
distinct concrete types. This might be regarded as too strict. For example, it disallows that the 
semantics of { name STRING } overlaps with that of { name STRING, address STRING }. As 
a consequence it would not be possible to let { name STRING, address STRING } be a 
subtype of { name STRING }. So under (weak) conformance for schemas, a property with a 
value of type { name STRING, address STRING } would not be allowed where a value of type 
{ name STRING } is expected. Another problematic example would be user-defined subtypes 
of types like VARCHAR(100) defined by restrictions such as regular expressions. Under this 
assumption it would be impossible to have two such types with a third one being a common 
subtype. This is because the assumption says that the intersection of the semantics of the two 
super-types must be empty, and so the semantics of the subtype must also be empty. 
 
The previously mentioned quote from [GQL:EWD] was perhaps meant to say something weaker 
than our interpretation. An alternative interpretation might be that  ⟦𝜏⟧ ⋂ ⟦𝜎⟧ = ∅ if 𝜏 and 𝜎 are 
distinct concrete types, so require that the strict semantics do not overlap rather than the weak 
semantics, which is a weaker assumption. However, this brings us back to the same issues that, 
at the beginning of this section, are associated with requiring that the strict semantics of a strict 
subtype cannot overlap with that of the supertype. 
 
In [GQL:EWD] a statement is made concerning the cardinality of the extension of types, so 
about the sizes of ⟦𝜏⟧*. It states: “Given two data types T and U, if T is a strict subtype of U then 
T is smaller than U.”. Here “smaller” refers to the cardinality being smaller. This can be correct, 
but does require the additional assumptions that (1) the set A  of attribute names is finite and (2) 
the set V  of attribute values is finite. If either of these sets is countably infinite, then the 
extension of a record type will be countably infinite (since it contains the extensions of countably 
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infinite subtypes) and therefore will all have the same cardinality. Since some of these record 
types are strict subtypes of other records types, this would contradict the claim that strict 
subtypes are strictly smaller. If we want to ensure that V  is finite in a type system such as is 
proposed in [GQL:EWD] where there are atomic types, record types and collection types which 
can all be recursively nested, then it is not enough to require that all atomic types have finite 
extensions. In addition it should be required that there is an upper bound on the cardinality of 
values of a collection type, the width of records and the nesting depth of recursively nested 
attribute values. 

On axiomatizing and deciding the subtype relationship 
In [GQL:EWD] an extension-based definition of subtyping is given, and next to that also rules for 
deciding this relationship are given. This raises the issue of soundness and completeness for 
these rules, which can be sometimes hard to establish in the presence of union types, as 
discussed in [Hidders:1995]. For example, the following two rules are not sound: 
 

● 𝜎 ∨ 𝜏 ≤ 𝜏‘ iff 𝜎 ≤ 𝜏‘ and 𝜏 ≤ 𝜏‘ 
● 𝜏‘ ≤ 𝜎 ∨ 𝜏 iff 𝜏‘ ≤ 𝜎 or 𝜏’ ≤ 𝜏 

 
As an example consider (int ∨ bool) ∨ string ≤ int ∨ (bool ∨ string), which clearly holds, 
but according to both rules is false. These rules are however sound if we assume that the types 
𝜎, 𝜏 and 𝜏‘ are concrete types. In fact, the following more general rule is sound if we assume all 
𝜎i, 𝜏j  are concrete: 
 

● 𝜎1 ∨ … ∨ 𝜎n ≤ 𝜏1 ∨ … ∨ 𝜏m iff for every 𝜎i there is a 𝜏j such that 𝜎i  ≤ 𝜏j 
 
This rule can provide a sound and complete axiomatisation if (1) union types are the only 
abstract types and (2) there is a sound and complete axiomatisation for concrete types. Usually, 
however, assumption (1) is not valid, for example if there are record types such as { name ↦ 
string, birthdate ↦ (date ∨ null) }, which is an abstract type. However, this is not a problem if 
we can assume that all such types can be rewritten to a finite union of concrete types. For 
example, the previous record type is equivalent to the union type  { name ↦ string, birthdate ↦ 
date } ∨ { name ↦ string, birthdate ↦ null }. 
 
It can be that there are abstract types that cannot be reduced to a finite union of concrete types. 
For example, there might be a type string with an infinite set of concrete subtypes varchar(1), 
varchar(2), et cetera. In that case it is sufficient to assume that the subtype relationship over 
concrete types and irreducible abstract types is axiomatizable. This is because the previous rule 
is in fact sound for the more general case where all 𝜎i, 𝜏j are irreducible, i.e, cannot be reduced 
to finite unions of concrete types, and so are either concrete types or irreducible abstract types. 
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The syntax of graph-type cores 
We start with a very simple type of graph-type core that only considers vertex types and vertex 
types and does not consider any form of inheritance or subtyping. We focus in this document on 
the graph-type core, i.e., the part of the schema that specifies the allowed types, and so leave 
aside schema constraints and graph-level attributes. 

Concrete syntax 
A graph-type core consists of a list of type specifications, which can be either vertex type 
specifications or vertex type specifications. A graph-type core specification has the following 
syntax: 
 
SchemaCore ::= (ContentTypeDecl | VertexTypeDecl | EdgeTypeDecl)* 

 
ContentTypeDecl ::=  TypeVar  "=" ContentType 

 
TypeVar ::= "$" VarName 

 
VertexTypeDecl  ::=  (TypeVar  "=")? VertexType 

 
VertexType ::= "(" ":" ( ContentType | TypeVar ) ")" 

 
ContentType ::= Label* ("{" AttrName AttrType ( "," AttrName AttrType )* "}")? 
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EdgeTypeDecl ::= (TypeVar "=")? EdgeType 

 
EdgeType ::= VertexType "-[" ":" ContentType "]->" VertexType 
 

 
 
An example of a graph-type core is: 
 

● $personContent = :Person { name STRING, birthdate DATE } 

● $person = (: $personContent ) 

● $city = (:City Place { name STRING, url URL }) 

● $country = (:Country Place { name STRING, url URL }) 

● $continent = (:Continent Place { name STRING, url URL }) 

● $livesIn = (:$person)-[:livesIn { start DATE }]->(:$city) 

● $worksIn = (:$person)-[:worksIn { start DATE }]->(:$city) 

● $cityLiesIn = (:$city)-[:liesIn]->(:$country) 

● $countryLiesOn = (:$country)-[:liesOn]->(:$continent) 

 
The type names should be understood as a macro mechanism. So the above graph-type core is 
equivalent to: 
 

● (:Person { name STRING, birthdate DATE }) 
● (:City Place { name STRING, url URL }) 

● (:Country Place { name STRING, url URL }) 

● (:Continent Place { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

 -[:livesIn { start DATE}]-> 

(:City Place { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City Place { name STRING, url URL }) 

● (:City Place { name STRING, url URL }) 

  -[:liesIn]-> 

(:Country Place { name STRING, url URL }) 

● (:Country Place { name STRING, url URL }) 

  -[:liesOn]-> 
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(:Continent Place { name STRING, url URL }) 
 
Since labels are regarded as a special type of attribute, their denotation can be understood as a 
short-hand for denoting attributes of type label, which in the concrete syntax we will denote as 
LABEL.  So, for example the content type 
 

City Place { name STRING, url URL } 

 
could also have been written as 
 

{ City LABEL, Place LABEL, name STRING, url URL } 
 

Note: Under the approach that was suggested earlier where we distinguish marked and 
unmarked attribute names to indicate properties and labels respectively, the alternative 
representation for the content type would be: 
 
{:City LABEL, :Place LABEL, name STRING, url URL} 

End note 

We can allow using & between labels. So the content type City Place { name STRING, url 
URL } can also be written as City & Place { name STRING, url URL }. We expect this to 
be consistent with a later generalization where & is defined to be the type intersection operator. 
So the content type might then for example also be written as City & Place & { name 
STRING } & { url URL }. 

Abstract syntax 
We start with defining the auxiliary concept of content type, which describes the attributes of an 
element. 
 

Definition: A content type is a finite partial function 𝜅 : A   Tattr that maps some attribute 
names to an attribute type.  

 
Example 
An example of a content type is function 𝜅 such that  

● 𝜅(Person) = label 
● 𝜅(birthdate) = date 
● 𝜅(name) = string 
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● 𝜅(startDate) = date 

We will denote this 𝜅 = { Person ↦ label, birthdate ↦ date, name ↦ string, startDate ↦ date }. 

End example 
 
A graph-type core is formally defined as follows. 
 

Definition: A graph-type core is defined as a set of vertex types where a vertex type is 
defined as either a simple vertex type, denoted as vertex(𝜅) where 𝜅 is a  content type, or a 
vertex type, denoted as edge(𝜎, 𝜅, 𝜏) where 𝜎 is a simple vertex type that describes the tail 
vertex, 𝜅 is a content type that describes the attributes of the edge and 𝜏 is a content type that 
describes the head vertex. In each case we refer to 𝜅 as the content type of the vertex type. 
The set of all simple vertex types is denoted as Tvertex, and the set of all vertex types is 
denoted as Tedge. 

 
Graph-type core Example 
 
Consider the following graph-type core: 

● (:Person { name STRING, birthdate DATE }) 

● (:City { name STRING, url URL }) 
● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City { name STRING, url URL }) 

 

The following is the graph-type core represented in the formal notation from the definition: 
C = { vertex(𝜅1), vertex(𝜅2), edge(vertex(𝜅1), 𝜅3, vertex(𝜅2)) } where 

● 𝜅1 = { Person ↦ label, fullName ↦ string, birthdate ↦ date } 
● 𝜅2 = { City ↦ label, name ↦ string, url ↦ url } 
● 𝜅3 = { worksIn ↦ label, start ↦ date } 

End example 

Mapping the concrete syntax to the abstract syntax 
The mapping of concrete syntax to the abstract syntax is as follows. We start with rewriting the 
concrete syntax to a normal form where no variables are left. We do this in two steps: 
 

1. We iterate over the type declarations that define a variable, in the order that they appear 
in the graph-type core expression. For each content and vertex type declaration we 
apply it as a substitution to all the subsequent type declarations up to the end of the 
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graph-type core expression or a type declaration that redefines the same variable, 
whichever comes first. The substitution replaces the variable with the content type 
assigned to the variable, or the content type of the vertex type assigned to the variable, 
where the latter might itself be a variable. If the variable is bound to an edge type then 
we do not apply it as a substitution. 

2. We remove any type declarations that still have variables left in them.  We also remove
any content declarations. The result of this step is a list of element type declarations
without variables in them.

3. We replace all explicit labels with equivalent attribute specifications in the specified
content type.

The resulting list of element types is then mapped to a set of formal element types by mapping 
each specified type to its formal counterpart in the obvious manner: each vertex type is mapped 
to a formal edge type with the specified content type and each edge type is mapped to a formal 
edge type with tail content type, content type and head content type as specified in the 
expression. 

The semantics of graph-type cores 
In this section we will present the proposals for the semantics of graph-type cores. We will start 
with the semantics that is considered preferable by most members of GS-Basic. This is followed 
by the alternatives that were also considered and even suggested by some members. 

The at-least-one-match semantics 
The semantics of a graph-type core is defined by defining when a certain property graph 
conforms to a certain graph-type core. This is in turn based on the notion of matching, that 
defines when a certain element in a graph matches a certain type, which roughly means that all 
attributes required by the type are present in the element and contain a value of the correct 
type. We will distinguish two kinds of matching: exact matching, which requires that the type 
describes all attributes of the element, and over matching, which does not require this (and so 
allows the element to have more attributes than are specified by the type) . We start with 
defining these notions for content types: 

Definition: Given a content type 𝜅 we define the set of all over matches of 𝜅, denoted as 
⟦𝜅⟧*, is defined as all finite partial functions r : (A   V) such that for every (a ↦ 𝜎) ∈ 𝜅  there
is a pair (a ↦ w) ∈ r such that w ∈ ⟦𝜎⟧*. The set of all exact matches of 𝜅, denoted as ⟦𝜅⟧, is 
defined as all r ∈ ⟦𝜅⟧* such that for every pair (a ↦ w) ∈ r there is a pair (a ↦ 𝜎) ∈ 𝜅 such that 
w ∈ ⟦𝜎⟧. 

For example, consider the content type { street ↦ string, city ↦ string } then 
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● the record { street ↦ “Malet st”, city ↦ “London” } is an over match and also an exact 
match because the attributes street and city are defined and only those attributes and 
nothing else.  

● the record { street ↦ “Malet st”, city ↦ “London”, country ↦ “UK” } is an over match 
because the attributes street and city are defined but not an exact match because it has 
the attribute country which is not defined in the content type.  

● the record { street ↦ “Malet st”  } is neither an over match nor an exact match because it 
is missing the attribute city, and 

● the record { street ↦ 5, city ↦ “London”, country ↦ “UK” } is neither an over match nor an 
exact match because the value for the attribute street is a value that does not match the 
string type.  

 
The notions of subtyping and intersection types, which is postulated for attribute types, can be 
generalized for content types as follows. If we have two content types 𝜅1 and 𝜅2 we say that 𝜅1 is 
a subtype of 𝜅2, denoted as 𝜅1 ≤ 𝜅2, if for every pair (a ↦ 𝜏) ∈ 𝜅2 there is a pair (a ↦ 𝜎) ∈ 𝜅1  such 
that 𝜎 ≤ 𝜏. The implied intersection type can be formulated as follows. If we have two content 
types 𝜅1 and 𝜅2 then  𝜅1 ∧ 𝜅2 denotes the content type 𝜅3 where dom(𝜅3) = dom(𝜅1) ⋃ dom(𝜅2) 
and 

● for a ∈ dom(𝜅1) \ dom(𝜅2) holds 𝜅3(a) = 𝜅1(a) 
● for a ∈ dom(𝜅1) ⋂ dom(𝜅2) holds 𝜅3(a) = 𝜅1(a) ∧ 𝜅2(a) 
● for a ∈ dom(𝜅2) \ dom(𝜅1) holds 𝜅3(a) = 𝜅2(a). 

 
Note that these notions of subtyping and intersection types are consistent in the sense that the 
intersection type identifies the greatest common subtype of two types, and that they satisfy the 
relationship ⟦𝜅1 ∧ 𝜅2⟧* = ⟦𝜅1⟧* ⋂ ⟦𝜅2⟧*. Moreover, it is consistent with the “is of type” definition 
for attribute values, which means here that it holds that ⟦𝜅⟧* = ⋃𝜅‘ ≤ 𝜅  ⟦𝜅’⟧. 
 
Based on the preceding notions we generalise the notions of matching for the level of elements: 
 

Definition: Given a property graph G = (V, E, 𝜌, 𝛼) we define the set of over matches in G of 
a simple type 𝜏, denoted as ⟦𝜏⟧*G, is defined as all elements x ∈ V ⋃ E such that 

● if 𝜅 is the content type of 𝜏 then 𝛼(x) ∈ ⟦𝜅⟧*, and 
● if 𝜏 = edge(vertex(𝜅1), 𝜅, vertex(𝜅2)) then for all vertices v1 and v2 such that (v1, v2) = 

𝜌(x) it holds that 𝛼(v1) ∈ ⟦𝜅1⟧* and 𝛼(v2) ∈ ⟦𝜅2⟧*. 

The set of exact matches in G of a simple type 𝜏, denoted as ⟦𝜏⟧G, is defined as all elements 
x ∈ V ⋃ E such that: 

● if 𝜅 is the content type of 𝜏 then 𝛼(x) ∈ ⟦𝜅⟧, and 
● if 𝜏 = edge(vertex(𝜅1), 𝜅, vertex(𝜅2)) then for all vertices v1 and v2 such that (v1, v2) = 

𝜌(x) it holds that 𝛼(v1) ∈ ⟦𝜅1⟧ and 𝛼(v2) ∈ ⟦𝜏2⟧. 
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Example 
 
Consider the following graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

● (:City { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City { name STRING, url URL }) 
 
Let’s go through the following vertices and edges: 

● (: {Person=lbl, name=”Jan Hidders”}) 

○ over match: No 
○ exact match: No 

● (: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

○ over match: Yes 
○ exact match: Yes 

● (: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

birthplace=”Deventer”}) 

○ over match: Yes 
○ exact match: No 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 

(v1) -[e1 :worksIn]-> (v2) 

○ over match (of edge e1): No 
○ exact match (of edge e1): No 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :({City=lbl, name=”London”, url=”www.london.org”}) 

(v1)  -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

○ over match (of edge e1): Yes 
○ exact match (of edge e1): Yes 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”, foo= “bar”}]-> (v2) 

○ over match (of edge e1): Yes 
○ exact match (of edge e1): No 

End example 
 
The notions of subtyping and intersection types, which we defined for content types, can be 
generalized for element types as follows. If we have two simple vertex types vertex(𝜅1) and 
vertex(𝜅2) then we say that vertex(𝜅1) is a subtype of vertex(𝜅2), denoted as vertex(𝜅1) ≤ 
vertex(𝜅2), if 𝜅1 ≤ 𝜅2. Moreover, we say that edge(𝜎, 𝜅, 𝜏) is a subtype of edge(𝜎’, 𝜅’, 𝜏’), denoted 
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as edge(𝜎, 𝜅, 𝜏) ≤ edge(𝜎’, 𝜅’, 𝜏’), if 𝜎 ≤ 𝜎’, 𝜅 ≤ 𝜅’, and 𝜏 ≤ 𝜏’. The implied intersection type can be 
formulated as follows: 

● vertex(𝜅1) ∧ vertex(𝜅2) = vertex(𝜅1 ∧ 𝜅2)  
● edge(𝜎, 𝜅, 𝜏) ∧ edge(𝜎’, 𝜅’, 𝜏’) = edge(𝜎 ∧ 𝜎’, 𝜅 ∧ 𝜅’, 𝜏 ∧ 𝜏’) 

 
Note that also in this case these notions of subtyping and intersection types are consistent in 
the sense that the intersection type identifies the greatest common subtype of two types. 
Moreover, it is consistent with the “is of type” definition for attribute values, which means here 
that it holds for every vertex type 𝜏 that ⟦𝜏⟧* = ⋃𝜎 ≤ 𝜏 ⟦𝜎⟧. 
 
Finally we define when a property graph conforms to a graph-type core. 
 

Definition: We say that a property graph G = (V, E, 𝜌, 𝛼) conforms to a graph-type core C if 
for every element x ∈ V ⋃ E there is a vertex type 𝜏 ∈ C such that x ∈ ⟦𝜏⟧*G. We say that G 
strictly conforms to C if for every element x ∈ V ⋃ E  there is a vertex type 𝜏 ∈ C such that x 
∈ ⟦𝜏⟧G. 

 
Example 
 
Consider the following graph-type core: 
 

 
 

Given the following Property Graph G1: 

(v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G1 strictly conforms to the graph-type core because every element is an exact 
match 
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Given the following Property Graph G2: 

(v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

birthplace=”Deventer”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G2 conforms to the graph-type core because the vertex v1 is an over match.  

Given the following Property Graph G3: 

(v1 :{Person=lbl, name=”Jan Hidders”}) 

(v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
(v3 :{City=lbl, name=”Brussels”, url=”www.brussels.org”}) 

(v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

(v1) -[e2 :livesIn {start=”2015-01-01”}]-> (v3) 

Property Graph G3 does NOT conform (hence does not strictly conform) to the graph-type core 
because the vertex v1 is not an over match.  

End example 

The combinatorial semantics 
Next to the basic notion of conformance that was just defined we also introduce a more liberal 
notion of conformance that we will call combinatorial conformance and that was in earlier 
discussions referred to as the type-1 semantics (as for example presented in “GS Basic, status 
update 23 March 2020” [Basic:23-03-2020]). Informally it can be described as allowing elements 
if all their attributes are each justified by at least one of the types they conform to, or 
equivalently, that their contents exactly match the intersection of the content types of the type 
they conform to. 
 

Definition: We say that a property graph G = (V, E, 𝜌, 𝛼) combinatorially conforms to a 
graph-type core C if for every element x ∈ V ⋃ E it holds that (1) there is at least one element 
type 𝜏 ∈ C such that x ∈ ⟦𝜏⟧*G  and (2) for every pair (a ↦ w) ∈ 𝛼(x) there is at least one 
element type 𝜏 ∈ C with content type 𝜅 such that (a) x ∈ ⟦𝜏⟧*G and (b) there is a pair (a ↦ 𝜎) 
∈ 𝜅 such that w ∈ ⟦𝜎⟧. 

 

Note that he previously definition can be equivalently stated as requiring that for every element 
x ∈ V ⋃ E it holds that 𝛼(x) ∈ ⟦𝜅1 ∧ … ∧ 𝜅n⟧ where {𝜅1, …, 𝜅n} is the set of all content types of 
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element types 𝜏 in C such that x ∈ ⟦𝜏⟧*G. 

Example 
 
Consider the following graph-type core: 
 
(:Person { name STRING, birthdate DATE }) 

(:Prof { status STRING, university STRING }) 

 

And consider the following Property Graph with only one vertex: 

(v1 :{Person=lbl, Prof=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

status=”Lecturer”, university=”Birkbeck”}) 

● Combinatorial Conform: Yes because the vertex has all the content types for Person 
and Prof hence it is an over match. Additionally, it only has the content types of both 
Person and Prof, therefore it is also an exact match 

● Person conform: Yes because it has the attributes for Person (name and birthdate) 
and others (status and university) 

● Prof conform:  Yes because it has the attributes for Prof (status and university) 
and others (name and birthdate)  

● Person strictly conform: No because it has more attributes than defined for Person 
● Prof strictly conform: No because it has more attributes than defined for Prof 

Now consider the following Property Graph with only one vertex: 

(v1 :{Person=lbl, Prof=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”, 

status=”Lecturer”, university=”Birkbeck”, foo=”bar”}) 

● Combinatorial Conform: No because it has an attribute that is not defined in any of the 
types of which it is an over match: foo. 

● Person conform: Yes because it has the attributes for Person (name and birthdate) 
and others (status and university and foo) 

● Prof conform:  Yes because it has the attributes for Prof (status and university) 
and others (name and birthdate and foo)  

● Person strictly conform: No because it has more attributes than defined for Person 
● Prof strictly conform: No because it has more attributes than defined for Prof 

End example 
 
The combinatorial semantics essentially say that the content type of an element should exactly 
match the intersection of the content types of all element types which the element 
over-matches. So, for edge types the head and tail types are ignored for the exact match. To 
understand why, consider the following example. 
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$message = (:Message { creationDate DATE, content STRING }) 

$comment = (:Comment { public BOOL }) 

 

(:$comment)-[:isReplyTo]->(:$message) 

 

The intention of the combinatorial conformance is to interpret the semantics of types based on 
over matching rather than exact matching and to allow vertices to fully match with combinations 
of vertex types. In this case the type $comment can for example be combined with the type 
$message. Under this interpretation it makes sense to let the schema require for isReplyTo 
edges that the head also over-matches $comment. Therefore we allow that such edges end in 
vertices that fully match a combination of $message and $comment. Observe that if in the formal 
semantics we would have required for edges that they fully match the combination of a subset 
of the edge types, this would not have been allowed. 
 

Comparing normal conformance and combinatorial conformance 
The combinatorial conformance semantics can be understood in terms of the normal 
conformance semantics. We can for example expand a graph-type core by adding combinations 
of existing types, by applying exhaustively the following rule: 
 

● E1: If the graph-type core contains the types 𝜏 and 𝜎 then add 𝜏 ∧ 𝜎. 
 
We will call the result of this the expanded graph-type core. 
 
However, it is unfortunately not true that a property graph conforms to an expanded graph-type 
core iff it combinatorially conforms to the original graph-type core. Consider again the message 
example: 
 
$message = (:Message { creationDate DATE, content STRING }) 

$comment = (:Comment { public BOOL }) 

 

(:$comment)-[:isReplyTo]->(:$message) 

 

As mentioned earlier, under combinatorial conformance a property graph can contain vertices 
that belong to the combination of $message and $comment. Moreover, such a vertex might be at 
the head or the tail of an isReplyTo edge. 
 
Let us now consider the expansion of this graph-type core, which results in the addition of the 
following type: 
 
$messageComment = (:Message Comment { creationDate DATE, content STRING, 

                                     public BOOL }) 
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Note that since there is only one edge type, no new combinations of edge types are added. The 
resulting expanded schema, under normal conformance semantics, does allow vertices that 
belong to the intersection of  $message and $comment, for which it has the $messageComment 
type. However, these vertices are under normal conformance semantics not allowed to 
participate in isReplyTo edges. Therefore the expanded graph-type core is not equivalent to 
the original graph-type core under combinatorial conformance semantics, since such vertices 
would there be allowed to participate in these edges. 
 
However, this can be resolved by adding an additional expansion rule: 
 

● E2: If the graph-type core contains edge(𝜎, 𝜅, 𝜏) and a vertex type 𝜏’,  
then add the types edge(𝜎 ∧ 𝜏’, 𝜅, 𝜏) and edge(𝜎, 𝜅, 𝜏 ∧ 𝜏’). 

 
This rule will in the example add the following additional edge types: 
 
(:$messageComment) -[:isReplyTo]-> (:$message) 
(:$comment) -[:isReplyTo]-> (:$messageComment) 

(:$messageComment) -[:isReplyTo]-> (:$messageComment) 

 
After this we have indeed obtained a graph-type core that is under normal conformance 
semantics equivalent to the original graph-type core under combinatorial conformance 
semantics. Indeed, with this additional rule added to the exhaustive expansion process, it holds 
that every property graph combinatorially conforms to a graph-type core if and only if it conforms 
to the expansion of that graph-type core. 

The exactly-one-match semantics 
One might consider making the definition of conformance more strict and require that for each 
element there is exactly one fully matching type in the graph-type core. The formal definition for 
conformance would be changed to the following (with changes highlighted in grey). 
 

Definition: We say that a property graph G = (V, E, 𝜌, 𝛼) conforms to a graph-type core C if 
for every element x ∈ V ⋃ E there is exactly one vertex type 𝜏 ∈ C such that x ∈ ⟦𝜏⟧*G. We 
say that G strictly conforms to C if for every element x ∈ V ⋃ E  there is exactly one vertex 
type 𝜏 ∈ C such that x ∈ ⟦𝜏⟧G. 

 
However, that changes the semantics. To illustrate this, consider the following graph-type core; 
 

● $personWithLongName = (:Person { name VARCHAR(50) }) 

● $personWithShortName = (:Person { name VARCHAR(15) }) 
 
Under the at-least-one-match semantics this has the following strictly conforming graph:. 
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● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

However, under exactly-one-match semantics this graph no longer strictly conforms, since v2 
matches both $personWithLongName and $personWithShortName. Similar behaviour occurs 
with other property value types that can overlap, like record types with optional attributes, or 
union types. These cannot be removed by rewriting if they are nested inside collection types.  
 
On the other hand, if it holds that all attribute types are disjoint, i.e, for all two distinct attribute 
types 𝜏1 and 𝜏2 it holds that ⟦𝜏1⟧ ⋂ ⟦𝜏2⟧ = ∅, then the exactly-one-match semantics and the 
at-least-one-match semantics are equivalent for strict conformance.  
 
This issue also manifests itself for weak conformance. Consider the following graph-type core: 
 

● $personWithAddress = (:Person Local { address { street STRING,  

                                                number STRING,  

                                                city STRING }) 

● $personWithIntlAddress = (:Person { address { street STRING,  

                                              number STRING,  

                                              city STRING, 

                                              country STRING }) 

 
Under weak conformance as defined by the exactly-one-semantics the following graph would 
not weakly conform. 
 

● (v1 :Person Local { street=”Atomiumplein”, number=”1”, city=”Brussels”, 

country=”Belgium” }) 

This is because it weakly conforms to both types. Also here we can observe that the 
at-least-one-match semantics and the exactly-one-match semantic are equivalent if we assume 
that there is no attribute value that weakly conforms to two distinct attribute types. However, this 
assumption does not hold if we allow subtyping for record types. 

The isolation-aware semantics 
The at-least-one-match semantics has an implicit assumption that the content types in an edge 
type in a graph-type core that describe the head and tail vertices correspond to the content type 
of a vertex type in the graph-type core. We will call the content types for which this is not the 
case dependent content types, and the vertex types they define dependent vertex types. If a 
graph-type core has dependent content types then under the current semantics the edge types 
in which they appear cannot be populated. For example, consider the following graph-type core 
declaration: 
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● $PersonContent = Person { name STRING, birthdate DATE } 

● $worksInContent = worksIn { start DATE} 

● $CityContent = City { name STRING, url URL } 

● (: $PersonContent )-[: $worksInContent ]-> (: CityContent ) 

 
Note that in this declaration there are no vertex type declarations, and after substitution we 
obtain the following graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 

(:City { name STRING, url URL }) 

 
In this case only the empty graph conforms, since the graph-type core contains no vertex types 
and so no graph containing vertices can conform. 
 
One way to solve this is to allow vertices to exist already if they participate in an edge that is 
justified to exist, i.e., matches one of the edge types. We illustrate here how to adapt the 
definition for strict conformance, but the same principles can be applied to conformance and 
combinatorial conformance. 
 
We would adapt the definition of strict conformance as follows: (changed parts in grey): 
 

Definition: We say that G strictly conforms to C if  

● for every edge e ∈ E there is a vertex type 𝜏 ∈ C such that e ∈ ⟦𝜏⟧G, and 
● for every vertex v ∈ V that is not incident to any edge in G there is a simple vertex 

type 𝜏 ∈ C such that v ∈ ⟦𝜏⟧G.  

 
Under these semantics the following graph strictly conforms to the preceding graph-type core. 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

● (v2 :{City=lbl, name=”London”, url=”www.london.org”}) 
● (v1) -[e1 :worksIn {start=”2020-01-01”}]-> (v2) 

The next graph however does not strictly conform because it contains an isolated vertex without 
having a matching independent type in the graph-type core. 

● (v1 :{Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”}) 

This change in semantics has advantages and disadvantages: 
● Good: It adds expressive power and gives a meaningful semantics for graph-type cores 

that otherwise would only allow the empty graph. 
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● Good: It is similar to existing notions in conceptual data models such as ORM, where 
object types have to be declared explicitly as independent if their instances should be 
able to exist without participating in any non-identifying relationships. 

● Bad: It makes the semantics a bit more complex and implies sophisticated database 
constraints that might not be obvious. 

● Bad: In the case of conformance it might make certain forms of factorisation harder. 
 

To illustrate the point about sophisticated database constraints, consider the following 
graph-type core: 
 

● (:Person { name STRING, birthdate DATE }) 

  -[:worksIn { start DATE}]-> 
(:City { name STRING, url URL }) 

● (:Person { name STRING, birthdate DATE }) 

  -[:livesIn { start DATE}]-> 
(:City { name STRING, url URL }) 
 

Under the adapted semantics this implies the following two constraints (formulated in the syntax 
that is close the one that is discussed in the working group for keys and cardinality constraints): 
 
WHERE (p :Person) REQUIRE  

  (THERE IS AT LEAST ONE wi SUCH THAT (p)-[wi :worksIn]->()) OR 

  (THERE IS AT LEAST ONE li SUCH THAT (p)-[li :livesIn]-()) 

 

WHERE (c :City) REQUIRE  

  (THERE IS AT LEAST ONE wi SUCH THAT ()-[wi :worksIn]->(c)) OR 

  (THERE IS AT LEAST ONE li SUCH THAT ()-[li :livesIn]-(c)) 
 
For the point about factorisation consider the following graph-type core: 
 

● (:person manager) 

● (:person employee) 

● (:person)-[:knows]->(:person) 

 
This would now allow vertices with just the label person, and not those with manager or 
employee, which might not be the intended meaning. We could try to remedy this by indicating 
that we allow subtypes, by for example replacing : with <:. So the edge type could then be: 

 

● (<:person)-[:knows]->(<:person) 

 
However, that would then allow too much, since we could have a vertex with any set of labels in 
such an edge, as long as the set of labels contains the label person. 
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The homomorphism-based semantics 
An alternative semantics can be based on homomorphisms between property graphs and 
graph-type cores, as is proposed for example in [Bonifati:2019]. For the sake of this 
presentation we will discuss this in the context of strict conformance semantics, but the same 
principles can also be applied to conformance and combinatory conformance semantics. 
 
Given a property graph a property graph G = (V, E, 𝜌, 𝛼) and a graph-type core C we define a 
homomorphism as a function h : (V ⋃ E) → C such that for every element x ∈ V ⋃ E it holds that 
x exactly matches h(x). 
 

Definition: Given a property graph a property graph G = (V, E, 𝜌, 𝛼) and a graph-type core C 
we define a homomorphism from G to C as a function h : V ⋃ E → C such that  

1. for every vertex v ∈ V it holds that h(v) = vertex(𝜅) and 𝛼(v) ∈ ⟦𝜅⟧ for some content 
type 𝜅 and 

2. for every edge e ∈ E with 𝜌(e) = (v1, v2) it holds that h(e) = edge(h(v1), 𝜅, h(v2)) and 
𝛼(e) ∈ ⟦𝜅⟧ for some content type 𝜅. 

 
We can then redefine strict conformance such that a property graph conforms to a graph-type 
core if there is a homomorphism from the property graph to the graph-type core. 
 
To illustrate these semantics, consider the following graph-type core; 
 

● $personWithLongName = (:Person { name VARCHAR(50) }) 

● $personWithShortName = (:Person { name VARCHAR(15) }) 

● $degree = (:Degee { level VARCHAR(3), level VARCHAR(25)}) 

● $hobby = (:Hobby { description VARCHAR(100) }) 

● ($personWithLongName-[:hasDegree]->(:$degree) 

● ($personWithShortName-[:hasHobby]->(:$hobby) 
 
Under the homomorphism-based semantics the following graph strictly conform the the 
preceding schema. 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

● (v4 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v3) 

● (v2) -[:hasHobby]-> (v4) 

The following graph does not strictly confirm under homomorphism-based semantics: 
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● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Degree { level=”MSc” topic=”Philosophy”} 

● (v3 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v2) 

● (v1) -[:hasHobby]-> (v3) 

It is possible to combine this approach with the ideas for dealing with dependent vertex types 
that were discussed in the previous section. This again allows us to give semantics to vertex 
types that only appear in edge types and not independently. For this we need a slightly more 
sophisticated notion of homomorphism. 
 

Definition: Given a property graph a property graph G = (V, E, 𝜌, 𝛼) and a graph-type core C 
we define a isolation-aware homomorphism from G to C as a function h : (V ⋃ E) → (C ⋃ Cdep) 
where Cdep = { 𝜏 | edge(𝜏 , 𝜅, 𝜎) ∈ C ∨ edge(𝜎, 𝜅, 𝜏) ∈ C } such that  

1. for every vertex v ∈ V that is not incident to any edge in G it holds that h(v) ∈ C, 
2. for every vertex v ∈ V it holds that h(v) = vertex(𝜅) and 𝛼(v) ∈ ⟦𝜅⟧ for some content 

type 𝜅 and 
3. for every edge e ∈ E with 𝜌(e) = (v1, v2) it holds that h(e) = edge(h(v1), 𝜅, h(v2)) and 

𝛼(e) ∈ ⟦𝜅⟧ for some content type 𝜅. 

 
Subsequently we can define strict conformance such that a property graph strictly conforms to a 
graph-type core if there is an isolation-aware homomorphism from the property graph to the 
graph-type core. 
 
To illustrate the difference with the previous semantics that is not isolation-aware consider the 
following adapted graph-type core: 
 

● $personWithLongName = :Person { name VARCHAR(50) } 

● $personWithShortName = :Person { name VARCHAR(15) } 

● $degree = (:Degee { level VARCHAR(3), level VARCHAR(25)}) 

● $hobby = (:Hobby { description VARCHAR(100) }) 

● ($personWithLongName-[:hasDegree]->(:$degree) 

● ($personWithShortName-[:hasHobby]->(:$hobby) 
 
Note that $personWithLongName and $personWithShortName now define content types rather 
than vertex types. The following graph strictly conforms under isolation-aware 
homomorphism-based semantics: 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

WG3:MMX-070

2020-06-12 32



 

● (v4 :Hobby { description=”Bird watching” } 

● (v1) -[:hasDegree]-> (v3) 

● (v2) -[:hasHobby]-> (v4) 

 However, the following graph does not, since v2 is now an isolated vertex for which there is no 
matching independent vertex type: 

● (v1 :Person { name=”Mary Anne Cunningham” } 

● (v2 :Person { name=”George Walsh” } 

● (v3 :Degree { level=”MSc” topic=”Philosophy”} 

● (v1) -[:hasDegree]-> (v3) 

These changes in semantics have advantages and disadvantages: 
● Good: The isolation-aware semantics gives a meaningful semantics for graph-type 

cores with vertex types that only occur in edge types. 
● Good: The homomorphism semantics adds expressive power, although not as much as 

when the schema would actually be a graph giving abstract identity to vertex types. 
● Bad: The added expressive power is quite subtle, and probably hard to understand by 

most users.  
● Bad: Both have the disadvantage that, if distinct types can overlap, the computational 

complexity of validation becomes intractable, since it becomes similar to the general 
problem of checking for the existence of graph homomorphisms. 

Graph-type cores with optional attributes 
In this section we discuss adding optional attributes to graph-type cores and the semantics of 
this can be formalised. 

Concrete syntax 
We allow in a content type declaration labels and attributes types to be annotated with “?” to 
indicate that the attribute is optional. For this purpose the syntax rule for content types is 
adapted as follows (new parts are highlighted in grey): 
 
ContentType ::=  OptLabel* ("{" AttrName OptAttrType ( "," AttrName OptAttrType )* "}")? 

 
OptLabel ::= Label ("?")? 
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OptAttrType ::= AttrType ("?")? 

 
 
An example of  a graph-type core with a single vertex type with optional attributes is: 
 
(:City Place Capital? { name STRING, url URL? }) 

 

Vertices of this type might or might not have a label Capital, and they might or might not have 
an attribute with name url, but if they do then it must have a value of type STRING. So the 
following vertices are all exact matches of the previous type: 
 
(v1 :City Place { name=“The Hague” }) 

(v2 :City Place Capital { name=“Amsterdam” }) 

(v3 :City Place { name=”Manchester”, url=https://www.manchester.gov.uk/ }) 

(v4 :City Place Capital { name=“London”, url=https://www.london.gov.uk/ }) 
 
The following are over matches of the previous type: 
 
(v5 :City Place { name=“The Hague”, population=540,000 }) 

 
The following is not a match at all: 
 
(v6 :City Place { name=“The Hague”, url=540,000 }) 

Abstract syntax 
We define the notion of marked content type to incorporate the marking that some attributes are 
optional. 
 

Definition: A marked content type is a pair (𝜅, M) where 𝜅 is a content type and M a subset of 
dom(𝜅) that indicates which attributes are not optional (so mandatory). 

 
We extend the notion of graph-type core in a similar fashion: 
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Definition: A marked graph-type core is defined as a set of vertex types where a marked 
element type is defined as either a marked vertex type, denoted as vertex(m) where m is an 
marked content type, or a marked edge type, denoted as edge(𝜎 , m, 𝜏) where 𝜎 and 𝜏  are 
marked vertex types and m is a marked content type. 

Formal semantics 
We adapt the notion of matching for records and marked content types as follows: 
 

Definition: Given a marked content type m = (𝜅, M) we define the set of all over matches of 
m, denoted as ⟦m⟧*, is defined as all finite partial functions r : (A   V) such that (1) for every 
(a ↦ 𝜎) ∈ 𝜅 and (a ↦ w) ∈ r it holds that w ∈ ⟦𝜎⟧* and (2) for every (a ↦ 𝜎) ∈ 𝜅 such that a ∈ 
M there is a pair (a ↦ w) ∈ r for some attribute value w. The set of all exact matches of m, 
denoted as ⟦m⟧, is defined as all r ∈ ⟦m⟧* such that for every pair (a ↦ w) ∈ r there is a pair 
(a ↦ 𝜎) ∈ 𝜅 such that w ∈ ⟦𝜎⟧. 

 
Note that the notion of over matching has now two requirements, namely (1) that every attribute 
in the record that is also mentioned in the content type must have a value of the specified type 
and (2) that all attributes that are not marked as optional indeed exist in the record. 
 
For example, consider the marked content type ({ street ↦ string, city ↦ string }, { street }) , so a 
content type { street ↦ string, city ↦ string } where city is marked as optional, then 

● the record { street ↦ “Malet st”, city ↦ “London” } is an over match and also an exact 
match, 

● the record { street ↦ “Malet st”, city ↦ “London”, country ↦ “UK” } is an over match but not 
an exact match, 

● the record { street ↦ “Malet st”  } is an over match and an exact match, 
● the record { city ↦ “London”  } is neither an over match nor an exact match, and 
● the record { street ↦ 5, city ↦ “London”, country ↦ “UK” } is neither an over match nor an 

exact match, and 
● the record { street ↦ “Malet st”, city ↦ 5, country ↦ “UK” } is neither an over match nor an 

exact match. 
 
The notions of subtyping and intersection types, which was already earlier defined for content 
types, can be  generalized for marked content types as follows If we have two content types (𝜅1, 
M1) and (𝜅2, M2) we say that (𝜅1, M1) is a subtype of (𝜅2, M2), denoted as (𝜅1, M1) ≤ (𝜅2, M2), if 𝜅1 ≤ 
𝜅2 and M1 ⊇  M2. The implied intersection type can be formulated as follows. If we have two 
marked content types (𝜅1, M1) and (𝜅2, M2)  then (𝜅1, M1) ∧ (𝜅2, M2) denotes the marked content 
type (𝜅1 ∧ 𝜅2, M1 ⋃ M2). As before, we can observe again that this defines the greatest common 
subtype of the two types. 

WG3:MMX-070

2020-06-12 35



 

Discussion 
Under strict conformance semantics an equivalent way of describing the semantics of optional 
attributes is to replace them with a set of simple types that describe all possible allowed 
patterns.  For this we define the notion of generated content types for a certain marked content 
type m = (𝜅, M), denoted as gct(m), and which is defined such that gct(m) = { { (a ↦ 𝜏) | (a ↦ 𝜏) ∈ 
𝜅, a ∈ M ⋃ A } | A ⊆ dom(𝜅) \ M }. We now transform a marked graph-type core C to a 
graph-type core C’ where: 

1. the simple vertex types in C’ are { vertex(𝜅’) | vertex(m) ∈ C, 𝜅‘ ∈ gct(m) } and 
2. the vertex types in C’ are { edge(𝜎, 𝜅, 𝜏) | edge(m1, m, m2) ∈ C, 𝜎 ∈ gct(m1), 𝜅 ∈ 

gct(m), 𝜏 ∈ gct(m2)  }. 
 
Example 
Consider the following vertex type: 
 
(:City Place Capital? { name STRING, url URL? }) 

 
Formally this is vertex(m) with m = (𝜅, M) such that 

● 𝜅  = { City ↦ label, Place ↦ label, Capital ↦ label, name ↦ string, URL ↦ URL} 
● M = {City, Place, name}. 

 
Then it holds for m that: 
gct(m) = {  
   { City ↦ label, Place ↦ label, name ↦ string}, 
   { City ↦ label, Place ↦ label, Capital ↦ label, name ↦ string}, 
   { City ↦ label, Place ↦ label, name ↦ string, URL ↦ URL}, 
   { City ↦ label, Place ↦ label, Capital ↦ label, name ↦ string, URL ↦ URL}, 
} 
 
When we map these content types to vertex types, we get: 
 
(:City Place { name STRING }) 

(:City Place Capital { name STRING }) 

(:City Place { name STRING, url URL }) 

(:City Place Capital { name STRING, url URL }) 
 
End example 
 
Unfortunately describing the semantics of optional attributes this way does not work for the 
semantics of graph-type cores based on conformance and combinatorial conformance. This is 
illustrated by the following examples. 
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Begin example 
 
For conformance-based semantics, consider the following graph-type core: 
 
(:City Place { name STRING, url URL? }) 

 
After rewriting this becomes: 
 
(:City Place { name STRING, url URL }) 

(:City Place { name STRING }) 

 
However, under conformance-based semantics this graph-type core is equivalent with: 
 
(:City Place { name STRING }) 

 

This graph-type core is not equivalent with the original since it does not require the url property 
to be of type URL. 
 
For combinatorial semantics consider the following graph-type core: 
 
(:Manager { name STRING, birthdate STRING? }) 

(:Engineer { name STRING, birthdate INTEGER? }) 

 
After rewriting, this becomes: 
 
(:Manager { name STRING, birthdate STRING }) 

(:Manager { name STRING }) 

(:Engineer { name STRING, birthdate INTEGER }) 

(:Engineer { name STRING }) 

 
This graph-type core, however, allows the following graph, which is not allowed by the original 
graph-type core: 
 
(:Manager Engineer{ name=”Theobald” , birthdate=19801207 }) 

 
End example 
 
Another reason to prefer a direct semantics for element types with optional attributes are the 
semantics of graph constraints. Consider for example the following type declaration: 
 

$city = (:City Place Capital? { name STRING, url URL? }) 

 
And assume the following key constraint that refers to this type: 
 

WG3:MMX-070

2020-06-12 37



WHERE (c : $city) REQUIRE c.name IDENTIFIES c

Here (c : $city) denotes a graph matching pattern consisting of a single vertex pattern
where c is a variable that can match any vertex of type city. It would not be correct to replace
this constraint with a set of similar constraints where in each the type city is replaced with a
different one of the vertex types generated by the type city. A similar observation can be made
for cardinality constraints. It seems therefore preferable to describe directly what it means to 
belong to the type $city.

Yet another reason to give a direct semantics for element types with optional attributes is that it 
makes it harder to determine the computational tractability of schema validation. Rewriting such 
a type to the generated simple types can exponentially blow up the schema, which will lead to a 
very inefficient implementation when naively implemented, whereas the direct semantics leads 
more easily to an efficient implementation. 
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Executive Summary 
We motivate and discuss the syntactic representation and semantic interpretation of 
meta-properties in Property Graphs. Our proposal adds to the PG data model, and necessitates 
changes to the query language for matches, inserts and updates. 
 
Meta-properties are motivated by common needs of annotating or qualifying assertions, which 
often are encoded on Property Graph properties, for example associating a valid time range 
during which the properties annotated are considered true in the real word. 
 
This discussion paper proposes the desired CRUD behavior in the language layer, and two 
implementation approaches: (a) record type and (b) algebraic property graphs (APG). Both are 
compatible with the existing Property Graph definition. The option (a) extends the property type 
with a record type that intuitively represents a tree data structure, where nodes represent 
property values, and their descendants represent meta-properties. The option (b) extends the 
graph elements definition by including properties, thus properties can naturally be associated 
with properties. 
 
An example user journey is crafted to demonstrate two approaches, with tentative syntax to 
better convey the idea. 

Introduction 
The definition of Property Graph data model in [GQL:DATA MODEL] which can be phrased as 
follows as in [LDBC PGS-B:BAS-01r1]: 

A property graph is defined as consisting of (1) a set of vertices such that each vertex has 
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some associated vertex content, (2) a set of edges such that each edge has an associated (a) 
tail vertex, (b) edge content and (c) head vertex. The tail and head vertices of each edge must 
be in the set of vertices, and the content that is associated with vertices and edges is a finite 
record that maps attribute names to attribute values. Both vertices and edges are assumed to 
be represented by an abstract identity, and so it is possible that a graph contains two vertices 
with the same content, and two edges that have the same tail vertex, head vertex and 
content. 

 
The formal definition of Property Graph we use in this document is as follows: 

Definition: A property graph is a tuple G = (V, E, A, 𝜌, 𝛼) where 

● V is a set of vertex identities, 
● E is a set of edge identities, 
● A is a set of attribute identities such that V, E and A are pairwise disjoint, 
● 𝜌 : E → (V × V) maps each edge identity to a pair of vertex identities 
● 𝛼 : A  → ((V ⋃ E) ⨉ A  ⨉ V) maps each attribute identity to a triple containing (1) the 

element that it is an attribute of, (2) its name and (3) its value. Every attribute identity 
in A is identified by the first two components.  

 
Specifically, In [GQL:EWD V4], the description related to property  in Property Graph can be 1

summarized as: A graph has a set of zero or more nodes or edges. Each node or edge 
comprises zero or more properties. For each property, there is a name which is an identifier that 
is unique within the node or edge, and a value which can be any property value type. The 
property value type is defined as “the super type of all property values of any graph element of 
GQL-data.” in [GQL:EWD V4]. 
 
Furthermore, the [GQL:DATA MODEL] explains: 

... the definition of a GQL graph data model proposed below is equivalent to the union of the 
data models of the following languages: Cypher, PGQL, SQL/PGQ, GSQL, and 
Tinkerpop/Gremlin. Put another way, these data models are all restricted editions of the GQL 
data model proposed. 
 
We are aware of two exceptions to this statement by Tinkerpop which allows for  
  1. properties on properties, and  
  2. multiple properties of the same name and type on an element.  
 
We believe that the first case could be most easily handled by allowing nesting of records, 
and the second by the use of collections as or within property values. Alternatively, these 

1 Note in this document, the term ‘attribute’ and ‘property’ are used interchangeably. 
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cases could be expressed using graph structures to represent trees rooted in an element. We 
would welcome other opinions regarding such features. 

 
This paper we primarily focus on addressing the issues in the first exception above, namely 
“properties on properties” which we call “meta-properties” in this document, with the motivation 
described in the section below. 
 
The authors agree with the rendition of multiple property values as a named collection whose 
elements are of a specified type. The rest of this paper does not address that point further.  

Motivating use cases 
Some areas where meta-properties can be useful are: 

● Provenance. Systems that operate over data collected from a large number of unvetted 
sources must track property value provenance in order to justify or rank the contribution 
of independent sources. 

● Fuzzy and trust. The fuzzy and trust areas, although having different meanings, can be 
represented in a similar manner e.g. the annotation as a value between 0 and 1. 

● Valid time. Any value of property can be valid over different periods of time. That can be 
represented as a set of disjoint time intervals that represent each a period of time when 
the property value was valid. 

● Timestamp for the last update (This is slightly different than full temporal support) 
● Units (feet, meters, pounds, kilograms, etc.) 
● Location (Latitude, Longitude and associated coordinate reference system) associated 

with information? 
 
Here we expand two of the use cases below to further illustrate the motivation. 

Wikidata qualifiers 

The core concept of the Wikidata data model [WIKIDATA:STATEMENT], 
[WIKIDATA:QUALIFIER] can be described as the following: 

● Statements are used for recording data about an item 
● Statements consist of (at least) one property-value pair 
● Statements can be further annotated or contextualized with additional values, as 

well as optional qualifiers, references, and ranks 

 
In Wikidata, qualifiers are used extensively. The example below from [WIKIDATA:QUALIFIER] 
shows two measurements of the population of Berlin, at two points in time, with two different 
estimation processes modelled using qualifiers. 
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Berlin (item) 
    population (property) → 3,500,000 (property value) 
        point in time (qualifier) → 2005 (qualifier value) 
        determination method (qualifier) → estimation process (qualifier value) 
    population (property) → 3,440,441 (property value) 
        point in time (qualifier) → 2010 (qualifier value) 
        determination method (qualifier) → census (qualifier value) 

 

Mapping to the GQL Property Graph data model, statements can be represented as either 
edges or node properties. For example, the two statements (a) “Berlin is the capital of Germany” 
and (b) “Berlin has a population of 3.5 million”, using GQL pattern syntax (see 
[WIKI:GQL_PATTERN] for an overview, [GQL:EWD V4] for the details), can be represented as 
(Berlin) -[:CAPITAL_OF]-> (Germany), and (Berlin { population: 3.5 million }) repectively.  
 
For edges, qualifiers can be modelled using edge properties. For example, to add a qualifier 
“since 1871” to the statement “Berlin is the capital of Germany”, one can do the following: 
(Berlin) -[:CAPITAL_OF { since: 1871 }]-> (Germany). But for node properties, there is no 
native way of representing qualifiers; ‘population’ is already a property and properties on 
properties is not yet supported in GQL Property Graph. 

Valid time 

Valid time [WIKI:VALID_TIME] is used to represent the time period during which the assertions 
are considered true. It can naturally be represented as properties on edges, indicating the time 
period when the edge assertion is considered true. See the diagram below from [G-CORE], the 
edge labelled 205 has a property indicating its starting time. Using GQL pattern syntax, the 
assertion can be encoded as (105) -[205 { since: 2014-1-12 }]-> (106). 
 
However, the same could be applied to properties. For example, for the node labeled 104, the 
employer property could also be qualified with a ‘since’ value. Since the ‘employer’ is already a 
property on the node, further qualifications of it can not be represented natively in GQL Property 
Graph yet. 
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Source: [G-CORE] 

Requirements 
From the user cases above, we have the following requirements distilled: 

Must-haves 

1. Any extensions to the PG data model should not break existing work. 
2. Support for meta-properties of simple or complex-valued properties. 
3. Meta-properties should be queryable similar to regular properties. 
4. The typing system should be able to control which metaproperties are allowed where 

and what their values are. This applies both at the graph schema level and within the 
property values. 

Nice-to-haves 

5. Support for meta-properties of components of complex values (e.g. record attributes, list 
elements, map keys or map values). For example, an Address property which is broken 
down to street number, name and city could have meta-properties at the level of the 
Address record as a whole, but also at the level of each constituent components. 
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Overview of the proposals 
The highlevel ideas are: 

● Conceptually properties and their meta-properties can be viewed as a tree structure.  
● The structure has the shape of { property name: value { meta-property name: value } } 

where the component { meta-property name: value } annotates the property “property 
name: value”. 

● The depth of meta-properties is arbitrary, i.e., meta-properties can also attach to 
meta-properties. For example, such a structure is allowed: { property name: value { 
meta-property name_1: value { meta-property name_2: value } } } where the component 
{meta-property name_2: value } annotates the meta-property “meta-property name_1: 
value”. The depth is implementation-dependent. 

● Meta-properties can be accessed similarly to regular properties, and can be used in 
CRUD operations. 

 
There are two perspectives of the tree structure representation: 

● Perspective 1 uses a complex data type to represent the tree structure, conceptually 
similar to JSON or XML documents. With this, meta-properties can be simply handled by 
an addition to the value type system. 

● Perspective 2 views properties as a first-class graph element with their own identities. 
Just like other graph elements such as nodes and edges, properties can attach to 
properties, thus fulfill the meta-property requirements. 

 
Though the two perspectives represent distinct trains of thought, with different origins, which 
lead to a set of behaviors which is largely or wholly the same.  To the extent that these two 
perspectives have been discussed as “alternatives” it has been perceived that the behaviors 
manifested by perspective 1 subsume those of perspective 2. We will examine whether this is 
actually the case in more detail later.  

Detailed description of the proposals 
In this section we first describe the meta-properties from the query language’s perspective, 
including Data Definition Language (DDL), Data Query Language (DQL) and Data Manipulation 
Language (DML). Note the language syntaxes proposed are for illustration only, and open for 
discussion. In addition, the DDL syntax used is conceptually aligned to the [GQL:DDL] though 
does not necessarily strictly conform to it. 
 
We then focus on the formal definitions of meta-properties which hopefully will also shed light to 
implementation choices. 
 
 

9 



WG3:MMX-072 

 

Query language 

Simple-valued properties 

DDL 
It’s possible to attach meta-properties on node or edge properties with simple values. 
 
In the example below, the node property ‘population’ with the INTEGER type can have a 
meta-property named ‘point_in_time’ with the type ‘DateTime’. 
 

CREATE GRAPH TYPE Stats { 
  (City :City { name STRING, population INTEGER { point_in_time DateTime } } 
} 

 
It’s also possible to attach meta-properties to meta-properties. In the example below, the 
‘confidence_score’ meta-property is attached to the meta-property ‘point_in_time’. 
 

CREATE GRAPH TYPE Stats { 
  (City :City  
        { name STRING,  
          population INTEGER { point_in_time DateTime { confidence_score FLOAT } } 
        }) 

} 

 
Meta-properties on edge properties behave exactly the same as meta-properties on node 
properties. In the example below, for the edge type ‘ContainedBy’, there is a meta-property 
‘provenance’ for the edge property ‘since’. 
 

CREATE GRAPH TYPE Stats { 
  (City  :City  { name STRING }) 
  (State :State { name STRING }) 
 

  (City)-[ContainedBy :CONTAINED_BY  
                      { since INTEGER { provenance STRING } } ]->(State) 
} 

 
The rest of the document will skip edge meta-properties for simplicity. 
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DML 

Insert  

It’s possible to insert a property and its meta-properties in the same statement. The same 
applies to meta-properties on meta-properties. In the example below, the node property 
‘population’, the meta-properties ‘point_in_time’  and ‘confidence_score’ are inserted in the 
same statement. 
 
Input graph: 

// empty 

 
Query: 

INSERT (n:City  
        {  
          name: "Berlin",  
          population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } }  

        }) 
RETURN n 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

Update 

A meta-property can be updated together with the regular property it’s attached to: 
 
Input graph: 

(:City {  
   name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

UPDATE (n:City { name = "Berlin", population = 3.5M }) 
SET n.population = 3.5M { point_in_time: 2005 { confidence_score: 1.0 } } 

 
One can also use the dot notation to directly update meta-properties: 
 
Query: 
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UPDATE (n:City { name = "Berlin", population = 3.5M }) 
SET n.population.point_in_time.confidence_score = 1.0 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 1.0 } } 
 }) 

Meta-property variables  
A meta-property can also be updated using meta-property variables. In examples below, a 
variable is associated with the property ‘point_in_time’ and the update operations can be directly 
applied to the variable. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

// Update the meta-property 'point_in_time' by the meta-property variable $mp. 

UPDATE (:City { name = "Berlin", population { mp:point_in_time } }) 
SET mp = 2005-5 { confidence_score: 0.99 } 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005-5 { confidence_score: 0.99 } } 
 }) 

Delete 

When deleting a property, all meta-properties attached to it will be deleted.  
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 
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MATCH (n:City { name = "Berlin" }) 
REMOVE n.population 

 
Resulting graph: 

(:City { name: "Berlin" }) 

Meta-property variables 
You can also delete a meta-property using a meta-property variable: 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

// Delete the meta-property 'point_in_time' using the meta-property variable $mp. 

MATCH (:City { name = "Berlin", population { mp:point_in_time } }) 
REMOVE mp 

 
Resulting graph: 

(:City { name: "Berlin", population: 3.5M }) 

 
Since a meta-property variable can be associated with a meta-property at any depth, you can 
also do the following: 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

// Delete the meta-property 'confidence_score' using the 

// meta-property variable $c. 

MATCH (:City { name = "Berlin",  
               population { point_in_time { c:confidence_score } } 
             }) 
REMOVE c 
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Resulting graph: 

(:City { name: "Berlin", population: 3.5M { point_in_time: 2005 } }) 

DQL 

Read 

When reading a property, regardless if there are meta-properties attached to it, only the 
property value will be returned. The same applies to a meta-property; reading it should just 
return the value, not the meta-properties attached to it. One of the motivations is to keep the 
behaviors backward compatible. 
 
In the example below, though it has a meta-property ‘point_in_time’, reading property 
‘population’ will only return the population value, without its meta-properties. The 
meta-properties need to be explicitly requested. Dot notation is tentatively used to navigate to 
the meta-properties from properties in this document. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.population, n.population.point_in_time 

 

Binding table: 

population population.point_in_time 

3.5M 2005 

 

Options are provided if the qualified values are desired. In the example below, we use the 
tentative syntax of property / meta-property name followed by “.*” to indicate that the qualified 
values are desired. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 
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// Read the qualified value of 'population' 

MATCH (n:City { name = "Berlin" }) 
RETURN n.population.* 

 

Binding table: 

population.* 

3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 

Filtering 

A meta-property can be used in filtering conditions (predicates) just like a regular property, as 
illustrated below. 

Comparison 

A meta-property can be used in comparison. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

MATCH (n:City { population.point_in_time = 2005 }) 
RETURN n.name 
 

// Equivalent query using WHERE clause. 

MATCH (n:City) 
WHERE n.population.point_in_time = 2005 
RETURN n.name 

 
Binding table: 

name 

“Berlin” 

Existence 

A meta-property can be used in existence tests for filtering. 
 
Input graph: 

(:City  
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 { name: "Berlin",  
   population: 3.5M { point_in_time: 2005 { confidence_score: 0.99 } } 
 }) 

 
Query: 

// Match nodes that have a property named 'population' with  

// a meta-property named 'point_in_time'. 

MATCH (n:City { population { point_in_time } }) 
RETURN n.name 

 
Binding table: 

name 

“Berlin” 

Collection-valued properties 
For a collection-valued property, meta-properties can be associated to the property, or individual 
elements in the collection. 

DDL 
In the example below, the collection-valued property “zip_code” has two types of 
meta-properties: (1) the meta-property “point_in_time” on the property level, (2) the 
meta-properties “creation_tine” for the individual elements. 
 

CREATE GRAPH TYPE Stats { 
  (City :City  
        { name STRING,  
          zip_codes [INTEGER { creation_time DateTime }] { point_in_time DateTime } 
        }) 

} 

DML 

Insert 

When creating a collection-valued property, both meta-properties on the property level and 
individual element level can be set. 
 
Input graph: 

// empty 

 
Query: 
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INSERT (n:City  
        {  
          name: "Berlin",  
          zip_codes: [10115 { creation_time: 1962 }, 
                      10117 { creation_time: 1965 }] { point_in_time: 2005 }  

        }) 
RETURN n 

 
Resulting graph: 

(:City  
 { name "Berlin",  
   zip_codes: [10115 { creation_time: 1962 }, 
               10117 { creation_time: 1965 }] { point_in_time: 2005 }  

 }) 

Update 

Updating property level meta-properties can be done in the same way as updating 
meta-properties for simple-valued properties as explained above. 
 
Updating elements level meta-properties requires updating the entire collection-typed property: 
 
Input graph: 

(:City  
 { name "Berlin",  
   zip_codes: [10115 { creation_time: 1962 }, 
               10117 { creation_time: 1965 }] { point_in_time: 2005 }  

 }) 

 
Query: 

UPDATE (n:City { name = "Berlin" }) 
SET n.zip_codes = [10115 { creation_time: 1963 }, 
                   10117 { creation_time: 1966 }] { point_in_time: 2005 } 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   zip_codes: [10115 { creation_time: 1963 }, 
               10117 { creation_time: 1966 }] { point_in_time: 2005 }  

 }) 
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Delete 

Deleting property level meta-properties can be done in the same way as deleting 
meta-properties for simple-valued properties as explained previously. 
 
Deleting elements level meta-properties requires updating the entire property as illustrated 
below. 
 
Input graph: 

(:City { name: "Berlin",  
         zip_codes: [10115 { creation_time: 1962 }, 
                     10117 { creation_time: 1965 }] { point_in_time: 2005 } }) 

 
Query: 

UPDATE (n:City { name = "Berlin" }) 
SET n.zip_codes = [ 10115, 10117 ] { point_in_time: 2005 } 

 
Resulting graph: 

(:City { name: "Berlin", zip_codes: [ 10115, 10117 ] { point_in_time: 2005 } }) 

DQL 

Read 

Reading a collection-type property with meta-properties on elements will only return the 
collection values without the meta-properties on the elements, as illustrated below. 
 
Input graph: 

(:City  
 { name "Berlin",  
   zip_codes: [10115 { creation_time: 1962 }, 
               10117 { creation_time: 1965 }] { point_in_time: 2005 }  

 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.zip_codes, n.zip_codes.point_in_time 

 

Binding table: 

zip_codes zip_codes.point_in_time 
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[10115, 10117] 2005 

 
To read meta-properties on elements, “.*” operator is needed: 
 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.zip_codes.* 

 
Binding table: 

zip_codes.* 

[10115 { creation_time: 1962 },  
 10117 { creation_time: 1965 }] { point_in_time: 2005 } 

Filtering 

Property level meta-properties can be used in filtering conditions.  
 
Note in this proposal we defer the discussion of filtering using element level meta-properties. 
 
Input graph: 

(:City  
 { name "Berlin",  
   zip_codes: [10115 { creation_time: 1962 }, 
               10117 { creation_time: 1965 }] { point_in_time: 2005 }  

 }) 

 
Query: 

MATCH (n:City { zip_codes.point_in_time = 2005 }) 
RETURN n.name 
 

// Equivalent query. 

MATCH (n:City) 
WHERE n.zip_codes.point_in_time = 2005 
RETURN n.name 

Record-valued properties 

DDL 
It’s possible to attach meta-properties to both the property level and components level of a 
record-valued property. In the example below, the ‘since’ property is attached to the ‘mayor’ 
property level, while the two ‘last_edit’ meta-properties are attached to the components 
‘first_name’, and ‘last_name’ respectively. 
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CREATE GRAPH TYPE Stats { 
  (City :City  
        { name STRING,  
          mayor {  
            first_name STRING { last_edit UINT64 },  
            last_name  STRING { last_edit UINT64 } 
          } { since DateTime } 
        }) 

} 

DML 

Insert 
It’s possible to insert a record-valued property, with meta-properties at components level and 
property level specified. 
 
Input graph: 

// empty 

 
Query: 

INSERT (n:City {  
          name: "Berlin", 
          mayor: {  
            first_name: "Michael" { last_edit: 1420070400 } ,  
            last_name:  "Müller"  { last_edit: 1420070400 } } {  
              since: 2014-12-11 } 
            } 
          }) 
RETURN n 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 } ,  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

Update 

A meta-property can be updated together with the property it’s attached to: 
 
Input graph: 
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(:City { name: "Berlin" }) 

 
Query: 

UPDATE (n:City { name = "Berlin" }) 
SET n.mayor = {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

Meta-property variables  
A meta-property can also be updated by using meta-property variables. In examples below, a 
variable is associated with the property ‘mayor’ and the updating operations are directly applied 
on the variable. The operations can also be directly applied to the variable ‘ms’ for the 
meta-property ‘since’. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

 
Query: 

UPDATE (:City { name = "Berlin", mayor { ms:since } }) 
SET ms = 2014-12 

 
Resulting graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
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     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12 } 
 }) 

Delete 

When deleting a property, all meta-properties attached to it will also be deleted. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12 } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
REMOVE n.mayor 

 
Resulting graph: 

(:City { name: "Berlin" }) 

 
You can also delete a meta-property directly: 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12 } 
 }) 

 
Query: 

MATCH (:City { name = "Berlin" }) 
REMOVE m.mayor.since 

 
Resulting graph: 

(:City {  

22 



WG3:MMX-072 

  name: "Berlin", 
  mayor: {  
    first_name: "Michael" { last_edit: 1420070400 },  
    last_name:  "Müller"  { last_edit: 1420070400 }  
  } 
}) 

Meta-property variables 
You can also delete a meta-property directly using a meta-property variable: 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12 } 
 }) 

 
Query: 

MATCH (:City { name = "Berlin", mayor { ms:since } }) 
REMOVE ms 

 
Resulting graph: 

(:City {  
  name: "Berlin", 
  mayor: {  
    first_name: "Michael" { last_edit: 1420070400 },  
    last_name:  "Müller"  { last_edit: 1420070400 }  
  } 
}) 

DQL 

Read 

It’s possible to read record-valued properties, without any meta-properties associated. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
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     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.name, n.mayor 

 

Binding table: 

name mayor 

“Berlin” { first_name: "Michael", last_name: "Müller" } 

 
It’s also possible to read record-valued properties together with their meta-properties using ‘.*’. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.name, n.mayor.* 

 

Binding table: 

name mayor.* 

“Berlin” {  

  first_name: "Michael" { last_edit: 1420070400 },  
  last_name:  "Müller"  { last_edit: 1420070400 }  
} { since: 2014-12-11 } 

 
It’s possible to read specific components of record-valued properties without meta-properties 
associated. 
 
Input graph: 

(:City  
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 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.name, n.mayor.first_name 

 

Binding table: 

name mayor.first_name 

“Berlin” "Michael" 

 
It’s also possible to read specific components of record-valued properties with their 
meta-properties. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   mayor: {  
     first_name: "Michael" { last_edit: 1420070400 },  
     last_name:  "Müller"  { last_edit: 1420070400 }  
   } { since: 2014-12-11 } 
 }) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.name, n.mayor.first_name.* 

 

Binding table: 

name mayor.first_name.* 

“Berlin” "Michael" { last_edit: 1420070400 } 

Disambiguation 
Since meta-properties and record values have similar proposed behaviors, it’s possible to 
introduce ambiguities. For example, in the DDL below there is a node with a record-valued 
‘score’ property. The record has a field called ‘confidence’. The property has a meta-property, 
which is also called ‘confidence’. 
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DDL 

CREATE GRAPH TYPE Stats { 
  (City :City  
        { score {  
            livability FLOAT,  

            confidence FLOAT   // confidence about the city 
          } {  
            confidence FLOAT   // confidence about the `score` 
          }}) 
} 

Read 

Since the record-valued ‘score’ property has a field ‘confidence’, and it also has a meta-property 
called ‘confidence’. Just by using “score.confidence”, it’s impossible to distinguish the two 
cases. 
 
Input graph: 

(:City {  
  name: "Berlin", 
  score: { value: 42, confidence: 1 } { confidence: 0.9 } 
}) 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
// Which one the 'confidence' is referring to? The record field or the 

meta-property? 

RETURN n.score.confidence 

 
To disambiguate, we propose to use ‘@’ to access meta-properties, “.” to access record field 
while “#” or “#*” to access both values and their meta-properties: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.score.confidence, n.score.* 

 
Binding table: 

score.confidence score.* 

1 { value: 42, confidence: 1 } 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
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RETURN n.score@confidence, n.score@* 

 
Binding table: 

score@confidence score@* 

0.9 { confidence: 0.9 } 

 
Query: 

MATCH (n:City { name = "Berlin" }) 
RETURN n.score#*, n.score# 

 
Binding table: 

score#* score# 

{ value: 42, confidence: 1 } { 
  confidence: 0.9  
} 

{ value: 42, confidence: 1 } { 
  confidence: 0.9  
} 

 

Formal definitions 
As mentioned previously, the meta-properties are informally viewed as a tree structure. There 
are two perspectives regarding how the tree structure is constructed. Here we present both and 
compare them. 

Perspective 1: Record type 
This proposal is based on the ideas that (a) for any property value, we can annotate it with a 
record describing meta-properties, and (b) for complex property values, we can do this at any 
level for any component of the values. 

Examples 
In the following example, ‘population’ value is annotated by the meta-property ‘point_in_time’ 
and ‘point_in_time’ can be further annotated by the meta-property ‘confidence_score’ as 
highlighted below: 
 

CREATE GRAPH TYPE Stats { 
  (City :City  
        { name STRING, 
          population INTEGER { point_in_time DateTime { confidence_score FLOAT } } 
        }) 
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} 

 
In the following example, elements in ‘zip_code’ are annotated by the meta-property 
‘creation_time’ as highlighted below: 
 

CREATE GRAPH TYPE Stats { 
  (City :City  
        { name STRING, zip_codes [INTEGER { creation_time DateTime }] }) 
} 

Formal definition 
We generalize the set of property values V  to the set of annotated property values V@ to 
include annotated values. This is done based on a generalisation of the given basic types and 
type constructors, as follows. 
 

Definition: The set of annotated attribute types Tattr
@

 is recursively defined as a type of the 
form type1@type2 where type1 is either a basic type, a record type with fields that have all 
annotated attribute types, or a collection type parameterized with annotated attribute types 
and type2 is a record type where all field types are again of annotated attribute types. 

 

Definition: The semantics of an annotated attribute type type in Tattr
@

 is denoted as 
⟦type⟧ and consists of pairs of attribute values, denoted as v@w, and co-inductively (i.e., 
following the same induction as the definition of annotated attribute types) defined such that 
v@w ∈ ⟦type1@type2⟧ if and only if v is of type type1 and w is of type type2.  

 
The proposal then simply consists of requiring annotated attribute types for all attributes in a 
schema. Note that this also accounts for unannotated values since these are described by an 
annotated attribute type of the form type@{}, i.e., a type with an empty annotation record.  
 
Note that annotated attribute types can be arbitrarily nested, but cannot be of the form 
((type@{...})@{...}). However the definition does explicitly allow indirect nesting of annotations 
and nesting in the record type describing the annotation. We do allow for example: 

● Integer@{ confidence : Real@{} } 
An integer with a confidence annotation. 

● Integer@{ confidence : Real@{ confidence-editor : String@{} } } 
An integer with a confidence annotation, which in turn is annotated with who edited that 
annotation. 

● Set[String@{ confidence : Real@{} }]@{ set-editor : String@{} } 
A set of strings, where each string is annotated with confidence, and the set as a whole 
is annotated with who edited the set. 
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● Set[String@{ confidence : Real@{ confidence-editor : String@{} } }]@{ set-editor : 
String@{} } 
A set of strings, where each string is annotated with a confidence level, where this 
confidence is annotated with who edits it, and the set as a whole is annotated with who 
edits the set. 

 
NOTE: Also here we could restrict the nesting depth of annotations within annotations. Since we 
do not do so, we can have properties of properties of properties, et cetera. 

Examples 

Type Example values 

STRING 
 
STRING@{} 

“Berlin” 

INTEGER@{ point_in_time: DateTime } 2.5M 
 
2.5M { point_in_time: 2005 } 

Set[INTEGER {  
  creation_time: DateTime  
}]@{  
  point_in_time: DateTime 
} 

[10115 { creation_time: 1962 },  
 10117 { creation_time: 1965 }] {  
  point_in_time: 2005  
} 
 
[10115 { creation_time: 1962 },  
 10117 { creation_time: 1965 }] 
 
[10115 { creation_time: 1962 },  
 10117] 
 
[10115, 10117] 
 
null { point_in_time: 2005 }  

{ first_name: STRING }@{  
  since: DateTime  
} 

{ first_name: “Michael” } {  
  since: 12/2004  
} 
 
{ first_name: “Michael” } 
 
null { since: 2004-12 } 

Observations 
In this section we compare the Record Type approach against the aforementioned 
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requirements: 
1. Any extensions to the PG data model should not break existing work. 

[Yes] The Record Type approach simply extends property value types. 
2. Support for meta-properties of simple or complex-valued properties: 

[Yes] The property value types can support both types. 
3. [Yes] Meta-properties should be indexable and queryable just like regular properties. 
4. The typing system should be able to control which metaproperties are allowed where 

and what their values are. This applies both at the graph schema level and within the 
property values. 
[Yes] The type definition of the Record Type can control it. 

5. Support for meta-properties of components of complex values (e.g. record attributes, list 
elements, map keys or map values). For example, an Address property which is broken 
down to street number, name and city could have meta-properties at the level of the 
Address record as a whole, but also at the level of each constituent components. 
[Yes] For complex types such as Address that have sub-components, meta-properties 
can be attached to them. In fact the meta-properties can be attached to any level of the 
nested structure. 

 

Perspective 2: Algebraic Property Graphs 
This proposal is based on the idea from [APG] that at the property graph level we lift the notion 
of property to the level of element, by which we mean here that (a) it is represented in the model 
by an abstract identity, like vertices and edges are, (so attributes that have the same name and 
value can be distinct) and (b) that it can have properties, like vertices and edges can. We do 
disallow that properties are directly or indirectly properties of themselves. 

Examples 
We will use the example graph below to clarify the idea: 

(:City  
 { name: "Berlin",  
   population: 3.5M {  
     point_in_time: 2005 { writer: "admin" },  
     provenance: "wikipedia"  
  } 
 }) 

 
From the APG’s perspective, the graph above is modelled with six graph elements: the #1 is the 
city node, the rest are the properties and meta-properties. Each graph element has an identity. 
The identity is represented as $variable for convenience. 
 
The graph element #1 city has the identifier $n, and there are two properties attached to it which 
are $nn and $np, which is property ‘name’ and ‘population’ respectively. There are no properties 
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attached to the property $nn. For $np, there are two properties attached to it: $np1 and $np2. 
Furthermore, the property $np11 is attached to the property $np1. 

1. $n                                         // node 
2. $nn:   <$n    name           "Berlin">     // property 
3. $np:   <$n    population     3.5M>         // property 
4. $np1:  <$np   point_in_time  2005>         // meta-property 
5. $np2:  <$np   provenance     "wikipedia">  // meta-property 
6. $np11: <$np1  writer         "admin">      // meta-meta-property 

 
Note to model the collection-typed properties, the APG approach has the option of using 
multi-valued properties, in addition to collection-typed values. With this option, meta-properties 
can be attached to each element. 
 
Input graph: 

(:City  
 { name: "Berlin",  
   population: [ 
     3.5M {  
       point_in_time: 2005 { writer: "admin" },  
       provenance: "wikipedia"  
     }, 
     3.4M { 
       point_in_time: 2010 { writer: "admin"} 
       provenance: "wikipedia" 
     }  

 }) 

 
Which is modelled in AGP as: 

1. $n                                               // node 
2. $nn:        <$n     name           "Berlin">     // property 
3. $np1:       <$n     population     3.5M>         // property 
4. $np11:      <$np1   point_in_time  2005>         // meta-property 
5. $np12:      <$np1   provenance     "wikipedia">  // meta-property 
6. $np111:     <$np11  writer         "admin">      // meta-meta-property 
7. $np2:       <$n     population     3.4M>         // property 
8. $np21:      <$np2   point_in_time  2010>         // meta-property 
9. $np22:      <$np2   provenance     "wikipedia">  // meta-property 
10.$np211:     <$np21  writer         "admin">      // meta-meta-property 

 
Similar to the previous example, graph element #1 is the city node and #2 is the name of the 
city. Elements #3 - #6 are the first population property and its meta-properties, while elements 
#7 - #10 are for the second population property. 
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Note that in this example, there are no collection-typed values; they are modelled using 
multi-valued properties, thus is in bag semantics. 

Formal definition 

Definition: A property graph with meta-properties is a tuple G = (V, E, A, 𝜌, 𝛼) where 

● V is a set of vertex identities, 
● E is a set of edge identities, 
● A is a set of attribute identities such that V, E and A are pairwise disjoint, 
● 𝜌 : E → (V × V) maps each edge identity to a pair of vertex identities 
● 𝛼 : A  → ((V ⋃ E ⋃ A) ⨉ A  ⨉ V) maps each attribute identity to a triple containing (1) 

the element that it is an attribute of, (2) its name and (3) its value, so that an attribute 
cannot directly or indirectly be its own attribute. 

 
For the property values we assume that they are typed under the type mechanism described 
earlier and so the schema will specify for each property a type from the set of attribute value 
types Tattr. 
 
NOTE: In this definition, there can be multiple properties with the same name attached to the 
same element, which essentially enables the multi-valued properties semantics. Furthermore, 
without restriction, it can even allow multiple properties with the same name and value attached 
to the same element. We view this as a generalization of the multigraph semantics. 

Observations 
In this section we compare the APG approach against the aforementioned requirements: 

1. Any extensions to the PG data model should not break existing work: 
[Yes] The AGP approach extends the Property Graph element definition by including 
properties in addition to nodes and edges so that properties can also attach to properties 
in addition to nodes and edges. 

2. Support for meta-properties of simple or complex-valued properties: 
[Yes] The property value types can support both types. 

3. [Yes] Meta-properties should be indexable and queryable just like regular properties. 
4. The typing system should be able to control which metaproperties are allowed where 

and what their values are. This applies both at the graph schema level and within the 
property values. 
[Yes] For each property type, the type of elements it can attach to can be defined. 

5. Support for meta-properties of components of complex values (e.g. record attributes, list 
elements, map keys or map values). For example, an Address property which is broken 
down to street number, name and city could have meta-properties at the level of the 
Address record as a whole, but also at the level of each constituent components. 
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[Partially yes] For properties with complex types such as Address that have 
sub-components, properties can only be attached to the property level, not to the 
sub-components. However, for collection types, APG is able to model meta-properties 
on elements using multi-valued properties. 

Summary 

Main results and contributions 

In this paper we have discussed the necessity of meta-properties in Property Graph. A few 
real-world use cases are presented to further clarify the importance of the construct. We have 
also put forward a preliminary proposal of the DDL and CRUD behaviors of meta-properties. 
 
We have explained two perspectives of the formulations of meta-properties: record type and 
algebraic property graphs. The record type approach extends the Property Graph type system 
by including annotated attribute types. Besides solving the meta-properties problem in the 
paper, it has potential application in other domains. The algebraic property graphs approach 
extends the graph element definition by including properties so that properties can also be 
attached to properties, in addition to nodes and edges. 
 
We have compared the two perspectives. 

Observations 

Here we summarize the behaviors of the two perspectives: 

Requirements Record type APG 

1, Any extensions to the PG data model should not break 
existing work. 

Yes Yes 

2, Support for meta-properties of simple or complex values. Yes Yes 

3, Meta-properties should be indexable and queryable just like 
regular properties. 

Yes Yes 

4, The typing system should be able to control which 
metaproperties are allowed where and what their values are. 

Yes Yes 

5, Support for meta-properties of components of complex values Yes Partially 
yes 
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Open questions 
1. We have proposed a pseudocode notation for meta-properties, only for non-normative 
explanatory purposes. To put meta-properties into practice, a special syntax should be 
developed. 
2. We do not refer to specific data types in this proposal. But we assume that annotations can 
be of the same data type as property values. 

Conclusion 
Expressivity and useability are fundamental to the adoption of a data model. By extending the 
Property Graph data model to include meta-properties, the proposals in this document enable a 
variety of new use cases, and have laid a solid foundation for future advances. 

Appendix I 

More use cases 

Temporal annotations 

Example 1 
Example from [ANNOTATED RDF]: 
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Example 2 
Example from [TEMPORAL RDF]: 
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Fuzzy annotations 
Example from [ANNOTATED RDF]: 

 

Temporal and Fuzzy annotations (Multiple types of annotations) 
Example from [ANNOTATED RDF]: 
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GS Cardinality and Keys Report 
4a) GS-Keys Overview 
Angela Bonifati, Andrea Calì, Stefania Dumbrava, George Fletcher, Alastair Green, Keith Hare, 
Jan Hidders, Borislav Iordanov, Victor Lee, Bei Li, Wim Martens, Filip Murlak, Josh Perryman, 
Sławek Staworko, Gabor Szarnyas, Dominik Tomaszuk 

Executive Summary 
A proposal for property graph key constraints is put forward, based on industry use-cases, the 
scientific literature, and in-depth debate within a subteam of the LDBC PGSWG consisting of 15 
senior industry and academic experts.  We propose a key constraint model based on the classic 
notion of equality-generating dependencies, which generalizes the standard notion of key 
constraint in earlier data models.  Key constraints can be defined on all first-class citizens of a 
property graph: node objects, relationship objects, and path objects. 

In this model, a key constraint KC consists of a graph pattern P, a set S of “selector” elements in 
P and a “target” element t in P.  KC holds on a property graph G if and only if, for any two 
matches m1 and m2 of P in G, if m1(s) = m2(s) for every element s of S, then it must be the case 
that m1(t) = m2(t). 

For example, suppose P is a pattern which just selects nodes x labeled Person, S= 
{x.employeeID}, and t = x.  This is a key constraint on node objects which states that 
employeeID property values uniquely identify Person nodes, i.e., for any two Person nodes, if 
they have the same employeeID, then they must be the same node. 

The model is generic in the sense that it is independent of the language for specifying graph 
patterns P and the semantics of matching graph patterns in property graphs.  The choice of 
pattern language and pattern matching semantics are design decisions, balancing expressivity 
and computational complexity.  

We recommend conjunctive regular path queries (CRPQ) as pattern language and 
homomorphic matching semantics.  CRPQ is the language of subgraph pattern matching 
queries where edges of patterns are path queries defined by regular expressions over edge 
labels.  An example in a social network property graph: retrieve all people x, y, and z such that 
there is a path from x to y using only Knows and/or Likes edges, and a path from y to z using 
only Follows edges.  

This combination of language and semantics permits highly expressive key constraints while 
maintaining good computational behaviour. For example, the model can describe constraints 
that arise from translating relational key constraints (using reasonable relational-to-graph 
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translations), yet the validation problem (i.e., determining whether or not a given property graph 
satisfies a given key constraint) is in polynomial time for a large subclass of CRPQ which covers 
over 99% of graph patterns observed in practice.  

Introduction 
This document presents a working consensus proposal on key constraints for property graphs 
for the LDBC PGSWG.  This document is the outcome of ten conference calls augmented with 
offline discussions on Basecamp, in the period January-May 2020. The proposal is grounded in 
a review of the scientific literature and a study of graph key mechanisms used in contemporary 
systems and frameworks, and reflects in-depth discussion and debate within a subteam of the 
LDBC PGSWG consisting of 15 senior industry and academic experts. 

We motivate and give an informal presentation of the proposal, highlighting main results and 
contributions, observations, and points for further investigation.  This document is a companion 
to “4b) GS-Keys Formal”, which provides a theoretical foundation to the proposal and eliminates 
any ambiguity that may arise in the informal presentation. 

Use cases / requirements 
In the following, “attributes” refers to the properties and labels which can be associated with 
property graph objects, i.e., the properties and labels of nodes, edges, and paths.  

We make the following design decisions/requirements.  This scoping supports all key constraint 
mechanisms/use-cases appearing in current practical property graph database systems. 

1. The formalism should support defining key constraints for node objects, edge objects, 
and path objects.  Furthermore, the formalism should be extensible and not critically rely 
on the initial scoping to node, edge, and path objects. 

Rationale.  We work in the property graph data model, where nodes, edges, and paths 
are first-class citizens.  We leave the topic of more complex objects (e.g., arbitrary 
subgraphs) open for later discussion. 

2. We view key constraints as a variety of equality-generating dependencies (EGD).  In its 

classical formulation, an EGD is a dependency of the form  

∀ X (if 𝛗(X) then x1 = x2) 

where (a) 𝛗(X) is a conjunction of atomic formulas, all with variables among the variables 
in X, (b) every variable in X appears in 𝛗(X), and (c) x1 and x2 are distinct variables in X.  1

1 For more details see https://doi.org/10.1007/978-0-387-39940-9_1273 and 
https://en.wikipedia.org/wiki/Equality-generating_dependency  
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An atomic formula is of the form P(x1, …, xk), where P is a k-ary relational symbol, and 
x1, …, xk are variables, not necessarily distinct.  

As an example, the following EGD implies that name is a “superkey” for the binary 
relation employee(name, dob):  

∀ x, y, z (if (employee(x, y) & employee(x, z)) then y = z). 

Recall that, as a special case of EGDs, a superkey of a relation r on relation schema R = 
{A1, …, An} is a subset K ⊆ R such that for any distinct tuples t1 and t2 in r there is an A 
in K such that t1[A] ≠ t2[A].  2

Rationale.  Primary keys, candidate keys, and superkeys in the entity-relationship model 
and relational database model are EGDs.   We follow standard intuition of developers 3

and modelers about the notion of “key”, accumulated over 4+ decades of practitioner 
experience with these classic models.  

3. We have two types of basic ingredients for defining key constraints: 
a. Attribute-values of objects can be compared, both implicitly (e.g., we can check 

if x.price = y.price or we can check if x.price < y.price) and explicitly (e.g., we can 
check if x.price = 27 or we can check if the label of an edge x is “worksAt”). 

b. Object identities can be implicitly compared for equality (e.g., for variables x and 
y bound to objects, check whether or not x = y).    Object identifiers can not be 
explicitly observed/compared (e.g., we can not check if x = 27, where x is an 
object variable bound, say, to a node). Furthermore, we do not require that object 
identities and object identifiers can be compared using non-equality predicates 
(e.g., we do not require that checking x < y is possible for object variables x and 
y). 

Rationale.   It is clear that we need to support observation/comparison of attribute values 
(i.e., object label values, object property values).  Object identifiers (i.e., the physical 
identity values of objects) are system/implementation specific, whereas the logical notion 
of object identity is central in defining key constraints for property graphs. Implicit 
comparison of object identities for equality is a weak form of reasoning over object 
identity which is strong enough for our purposes.  We can not conceive of a practical use 
case where a key constraint formalism should support reasoning about the internal 
system-dependent identifiers of objects.  

2 This is the definition of “key” as given in Section 1.3 of David Maier, The Theory of Relational 
Databases, Computer Science Press, 1983.  http://web.cecs.pdx.edu/~maier/TheoryBook/TRD.html  
3 Note that in this proposal we do not discuss any notion of “primary” key constraints, in the sense of 
primary keys for the relational model.  Similarly, we do not make a distinction between “constraints” and 
“assertions”, nor do we consider practical policies for enforcing key constraints.  We just focus here on 
mechanisms for specifying key constraints (and not for determining which keys are primary and 
when/how keys should be enforced). 
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4. We adopt homomorphic matching semantics (instead of isomorphic matching semantics) 
for the graph patterns used in defining key constraints. 

Rationale.  While isomorphism based semantics give a little bit of additional 
expressiveness, this comes at a rather serious cost of computational complexity (i.e., 
checking if a key constraint holds becomes harder). We have not yet seen a use case 
that would justify this additional cost. 

Possible computational complexity issues are: (1) unordered subtree inclusion under 
isomorphic semantics becomes NP-complete; and we usually assume such problems 
(problems where we can exploit tree-structure) to be tractable and (2) even finding 
injective matches of paths is a difficult problem - it’s NP-complete in general and even for 
short paths the technical machinery to do it “efficiently in theory” is very heavy (e.g. color 
coding).  

5. We aim for a simple key constraint formalism which (1) is expressive enough to capture 
and generalize key constraint mechanisms currently used in practice, yet (2) applies 
Occam’s razor.  

Rationale.  We balance a visionary design for the future of property graph key 
constraints, with a design with good potential for practical impact.  

Overview of proposal 
We propose a key constraint model based on the classic notion of equality-generating 
dependencies, which generalizes the standard notion of key constraint in earlier data models. 
Key constraints can be defined on all first-class citizens of a property graph: node objects, 
relationship objects, and path objects.  Intuitively, a key constraint is (a) a graph pattern, 
together with (b) a target element of the pattern and (c) a set of “selector” elements of the 
pattern which constrain the identity of the target. 

The model is generic in the sense that it is independent of the language for specifying graph 
patterns and the semantics of matching graph patterns in property graphs.  The choice of 
pattern language and pattern matching semantics are design decisions, balancing expressivity 
and computational complexity.  

As a core, we recommend conjunctive regular path queries (CRPQ) as pattern language and 
homomorphic matching semantics.   CRPQ is the language of subgraph pattern matching 4

queries where edges of patterns are path queries defined by regular expressions over edge 
labels.  An example in a social network property graph: retrieve all people x, y, and z such that 
there is a path from x to y using only Knows and/or Likes edges, and a path from y to z using 
only Follows edges.  

4 See Section 3.1.3 of Querying Graphs, Bonifati et al., Morgan & Claypool, 2018, 
https://perso.liris.cnrs.fr/angela.bonifati/pubs/book-Bonifati-et-al-18.pdf 
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This combination of language and semantics permits highly expressive key constraints while 
maintaining good computational behaviour.  In particular, the validation problem for key 
constraints (i.e., given a key constraint and a property graph determining whether or not the 
property graph satisfies the key constraint) is in polynomial time for a large class of CRPQs 
covering over 99% of graph patterns observed in practice.   5

Detailed description of the proposal in English accompanied with 
examples  
A key constraint KC consists of a graph pattern P, a set S of elements in P (i.e., a set of node 
variables, edge variables, path variables, and properties of nodes, edges and paths -- used as 
“selectors”), and a target element t in P.  KC holds on a property graph G if and only if, for any 
two matches m1 and m2 of P in G, if m1(s) = m2(s) for every element s of S, then it must be the 
case that m1(t) = m2(t). 

For example, suppose P is a pattern which just selects nodes x labeled Person, S= 
{x.employeeID}, and t = x.  This is a key constraint on node objects which states that 
employeeID property values uniquely identify Person nodes, i.e., for any two Person nodes, if 
they have the same employeeID, then they must be the same node. 

In the rest of this section we (1) further detail our proposal with additional in-depth examples, 
many of which are given in the scenario of the LDBC Social Network Benchmark ; (2) 6

summarize initial results on the computational complexity of validating key constraints; and, (3) 
discuss the relationships between key constraints in the relational model and our model for 
property graph key constraints. 

A formal specification of the proposal and further technical discussion can be found in the 
companion document “4b) GS-Keys Formal”. 

Key constraint for nodes 

1. [using properties only] The “name” property should be a key of countries. More precisely, 
the name property of a country node should identify the country node.  Here, we have 
the graph pattern P = {Country(x)}, selector set S ={x.name}, and the target t=x.  

We will abbreviate this as  

Country(x): x.name → x. 

In pseudocode, we have 

5 See Angela Bonifati, Wim Martens, Thomas Timm: Navigating the Maze of Wikidata Query Logs (WWW 
2019) and Angela Bonifati, Wim Martens, Thomas Timm: An analytical study of large SPARQL query 
logs. VLDB J. 29(2): 655-679 (2020). 
6  For the LDBC SNB schema, see Figure 2.1 on page 13 of https://arxiv.org/abs/2001.02299  
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WHERE (x:Country) 

REQUIRE x.name IDENTIFIES x 

In other words, given any two nodes n1 and n2 labeled Country, if they have the same 
value for the property name, then it must be the case that n1 = n2. 

2. [using edges only] Forums can be identified by the posts that they contain, i.e., knowing 
a post, the forum that contains it is uniquely identified: 

(x, y, z), Forum(x), containerOf(y), Post(z): z → x. 

In pseudocode, we have 

WHERE (x:Forum)-[y:containerOf]->(z:Post) 

REQUIRE z IDENTIFIES x 

In other words, given any two nodes n1 and n2 labeled Forum, if they both have a 
containerOf edge to the same Post, then it must be the case that n1 = n2. 

3. [using properties and edges] Cities are identified by their name and the country they are 
in. More precisely, this means that the combination of the name property of a city node, 
with the country node to which it has an isPartOf edge, identifies the city node:  

(x,y,z), City(x), isPartOf(y), Country(z): x.name, z → x. 

In pseudocode, we have 

WHERE (x:City)-[y:isPartOf]->(z:Country) 

REQUIRE x.name, z IDENTIFIES x 

In other words, given any two nodes n1 and n2 labeled City, if they have the same value 
for the property name and both have an isPartOf edge to a common node n3 labeled 
Country, then it must be the case that n1 = n2. 

Key constraints for edges 

1. [using from/to nodes] There is only one isPartOf edge from a given country to a given 
continent, i.e., the identity of an isPartOf edge from a country to a continent is 
determined by the country and the continent. More formally, this actually means that 
there is at most one isPartOf edge from a given country to a given continent: 

(x,y,z), Country(x), isPartOf(y), Continent(z): x, z → y. 

In pseudocode, we have 

WHERE (x:Country)-[y:isPartOf]->(z:Continent) 

REQUIRE x, z IDENTIFIES y 
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In other words, given any two edges e1 and e2 labeled isPartOf, if they have the same 
source node ns labeled Country and the same target node nt labeled Continent, then it 
must be the case that e1 = e2. 

2. [using from/to nodes and edge properties] People can study at the same university in 
different years, but for a given year, the studyAt edge between a person and a 
university is unique. Rephrased, this means that, in a given year, the information that a 
person studies at a given university is stored only once. More precisely, if you have a 
studyAt edge from a person to a university, then this edge is identified by the person, 
the university, and the year: 

(x,y,z), Person(x), studyAt(y), University(z): x, y.year, z → y. 

In pseudocode, we have 

WHERE (x:Person)-[y:studyAt]->(z:University) 

REQUIRE x, y.year, z IDENTIFIES y 

In other words, given any two edges e1 and e2 labeled studyAt, if they have the same 
source node ns labeled Person, the same target node nt labeled University, and have 
the same value for the property year, then it must be the case that e1 = e2. 

Key constraints for paths 

Suppose that companies directly and indirectly transfer money between each other (initiated by 
a transfer activity), and it is crucial (e.g., for auditing) that chains of transfer between companies 
are unique.  For a given transfer, the transferID property value of each edge in the transfer 
chain must be the same as the ID property value of the transfer activity.  We express these 
requirements as a key constraint on paths: 

(a, x, c1), (c1, v (Transfer {transferID = a.ID})*, c2),  
Activity(a), initiatedBy(x), Company(c1), Company(c2): c1, c2 → v. 

In pseudocode, we have 

WHERE (a:Activity)-[x:initiatedBy]->(c1:Company)-/v <([:Transfer {transferID: a.ID} ])*> /->(c2:Company) 
REQUIRE c1, c2 IDENTIFIES v 

Computational complexity of key constraints 

Our preliminary work on characterizing the computational complexity of key constraints has 
focused on the problem of validation i.e., checking that a given property graph satisfies a set of 
key constraints. An important objective was to limit the implementation overhead and explore 
approaches that rely on the available database infrastructure, and the query engine in particular. 
Our findings are very encouraging: validation w.r.t. a key constraint is reduced to evaluation of a 
double query that consists of a join of two copies of the pattern used in the key constraint, 
combined with a filter condition consisting of a single inequality of the target terms. 
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Example. Recall the constraints that requires Forums are identified by the posts they contain, 
i.e., every post is contained in at most one forum: 

WHERE (x:Forum)-[containerOf]->(z:Post) 

REQUIRE z IDENTIFIES x 

The corresponding double query identifies the posts that are contained in more than one forums 
(i.e., identifies violations of the key constraint): 

MATCH (x:Forum)-[containerOf]->(z:Post)<-[containerOf]-(x’:Forum) 

WHERE x != x’ 

RETURN z, x, x’ 

We have investigated key constraints whose pattern has a tree-like shape (is acyclic) since we 
believe that such patterns will be most commonly employed in practice. We found that although 
the corresponding double query has no longer a tree-like shape, its structural complexity will 
nevertheless remain small and will have a relatively low impact on the cost of its evaluation. The 
double query can be also beneficial for error reporting as it allows to identify fragments of the 
property graph that violate the key constraint. However, more research is needed to investigate 
ranking methods for presenting violations in an order of relevance/seriousness and methods for 
aggregating violations that share the same underlying error. 

Expressive Power: Graph key constraints versus Relational key constraints 
We describe how key constraints in graphs relate to those in relational databases. In order to do 
so, we need to assume a translation from relational to graph data. So, assume that we translate 
from the relational model to graphs using a standard translation which is based on pseudo-ER 
diagrams and which we sketch here: 

1. RELATIONS. For every relation R we introduce a node type N_R with properties that 
contain only those attributes that are not part of any foreign key.  

2. FOREIGN KEYS. For every foreign key FK we introduce an edge type E_FK between 
corresponding node types.  

3. KEY ATTRIBUTES (or uniqueness constraints, UCs). If an attribute of a key (or UC) of a 
relation R is part of a foreign key FK, then the corresponding attributes need not be 
present in the node type N_R but will be present in a node type reachable by a path 
starting with the edge type E_FK. 

In this case, key constraints from the relational model can be captured in the property graph 
model, using patterns that are conjunctions of paths (conjunctions of patterns of the form 
(..)-[..]->(..)-[..]->(..)) that all start with the same node variable and otherwise share no variables. 
If one uses another standard translation (the Chen-ER based mapping), then one also needs a 
variation of these patterns that have an edge at the centre instead of a node. In both cases the 
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patterns are tree-shaped, so the resulting graph key constraints can be validated in polynomial 
time.  

If the relational constraints involve both primary keys and foreign keys, then it may be necessary 
to have REQUIRE EXACTLY ONE conditions on the graph side. (These constraints are 
currently not in our proposal, but will be considered when we work on cardinality constraints.) If 
only primary keys are present, then these conditions are not required. 

For further details on the relationships between graph key constraints and relational key 
constraints, see the companion document “4b) GS Keys, Formal”. 

Summary 

Main results and contributions 

We have introduced a model for specifying key constraints on property graphs.  The model 
balances expressivity and computational complexity, covering contemporary use-cases in 
practice as well as aiming to support future applications of property graph systems.  We 
establish that our proposal is practical, in both its ability to express sophisticated key constraints 
on nodes, edges, and paths (including constraints arising from mapping relational data with 
uniqueness constraints and foreign key constraints into the property graph model), as well as in 
its well-behaved computational properties. 

Observations 

We have also considered alternative semantics of matchings of patterns used in key 
constraints. We have found the standard homomorphism semantics to be most natural and 
enjoying attractive computational properties. Isomorphism-based semantics comes with a very 
high computational cost and a semantics based on graph simulations, while having very low 
computational complexity may be unintuitive and lead to modeling errors.  

Open Questions 

1. In practice, graph patterns are typically of low complexity, e.g., tree-shaped or with 
limited cyclic structure.  As we have already observed in our preliminary study of the 
validation problem, such structural complexity has important implications for 
computational costs associated with key constraints.  Further study here is needed to 
make finer-grained recommendations balancing expressivity and computational 
complexity.  Similarly, study of richer graph pattern languages beyond CRPQ should be 
undertaken. 
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2. In our model, we could extend the target from a single target to a complex target, 
towards more expressive constraints.   We leave this open for future discussion. 7

Similarly, further study is needed on extensions/restrictions of the selector set.  

3. A number of relevant computational problems remains to be investigated. As with most 
databases, a graph database is likely to be undergoing frequent modifications, each 
modification affecting only a fraction of the database contents. Consequently, we plan to 
investigate the complexity of incremental validation beginning with a review of relevant 
works on materialized view maintenance and how its techniques can be applied for 
incremental evaluation of the double query. Schemas for property graphs may be large 
and a result of collaborative effort that may be prone to modeling errors and 
redundancies. Consequently, we intend to investigate a number of static analysis 
problems such as checking consistency and checking implication. However, such 
problems will be best studied in the presence of schema.  

4. We have introduced a pseudocode notation for key constraints, solely for non-normative 
illustrative purposes.  To put key constraints into practice, textual and graphical syntaxes 
for key constraints should be developed. 

5. Other fundamental constraints which arise in practical data modeling include cardinality 
and participation constraints.  The GS-Keys/Constraints team is now turning their 
attention to such constraints for property graphs. 

6. Note that we did not introduce the possibility of NULL property values in our model.  The 
impact of NULLs is a topic for future study. 

Conclusion 
Key constraints are fundamental in data management.  The design and deployment of key 
constraints for property graphs poses new interesting timely challenges for applications, system 
engineering, and formal study.  The core model presented in this document is put forward as a 
foundation for accelerating progress along all of these fronts. 

4b) GS-Keys Formal  
Angela Bonifati, Andrea Calì, Stefania Dumbrava, George Fletcher, Alastair Green, Keith Hare, 
Jan Hidders, Borislav Iordanov, Victor Lee, Bei Li, Josh Perryman, Wim Martens, Filip Murlak, 
Sławek Staworko, Gabor Szarnyas, Dominik Tomaszuk 

7 See, for example, Matthias Niewerth and Thomas Schwentick. “Reasoning about XML Constraints 
based on XML-to-relational mappings”, ICDT 2014: 72-83. 
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Introduction 
This document is a companion to “4a) GS-Keys Overview” and provides a formal description of 
the proposal for property graph key constraints. The goal is to provide a theoretical foundation 
to the proposal and eliminate any ambiguity that may arise in the overview document.  

Syntax 
Let  be a set of variables,  a set of attribute names,  a set of type names, and  a set ofV A T C  
constants.  

A selector is an expression of the form  or of the form , where  is a variable in  and  isx .ax x V a  
an attribute in .A   

A graph pattern is a non-empty set of atomic expressions. An atomic expression is an 
expression of one of the following forms:  

● ,p(x)t  

● ,x, , )( y z  

● ,x, y, ), )( ( r z  

● ,.a .bx ~ y  

● ,.ax ~ c  

where , , and  are variables in ;  is a type name in ;  and  are attribute names inx y z V pt T a b  
;  is a binary relational operator in the set ;  is a regular path query (RPQ) ;A ~ <, , , , , }{ ≤ = ≠ > ≥ r  8

and  is a constant in . We call the first form a “type pattern”, the second form an “edgec C  
pattern”, the third form a “path pattern”, and refer to the remaining forms as “attribute patterns”. 
Intuitively,  

●  binds to an object of type ;p(x)t pt  

●  binds to an edge  from node  to node ;x, , )( y z y x z  

●  binds to a path  (conforming to ) from node  to node ;x, y, ), )( ( r z y r x z  

●  denotes that the value  of attribute  and the value  of attribute , of the.a .bx ~ y va a vb b  
objects bound to  and , resp., satisfy the (in)equality ;x y va ~ vb  

8 See Section 3.1.1 of Querying Graphs, Bonifati et al., Morgan & Claypool, 2018, 
https://perso.liris.cnrs.fr/angela.bonifati/pubs/book-Bonifati-et-al-18.pdf 
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●  denotes that the value  of attribute  of the object bound to  satisfies the.ax ~ c va a x  
(in)equality  (in particular, following the definition of the data model, va ~ c .a blx = l  
denotes that the object bound to  has label ).x a  

Essentially, a graph pattern defines a conjunctive regular path query (CRPQ) , i.e., a 9

subgraph-matching pattern whose edges are labeled with regular expressions, with additional 
filters on objects’ attributes.  

A key constraint is an expression of the form , where:P : s̄ → t  

●  is a graph pattern,P  

● is a tuple of selectors (without repetitions), , (s , ) s̄ =  1 . . . , sn n ≥ 0  

●  is a distinguished selector called the target of the constraint,t  

such that every variable appearing in  or in  also appears in . Intuitively, a key constraintt s̄ P  
states that “target  is uniquely identified by the identities of objects and the values of attributest  
selected by  in the graph pattern .”s̄ P  

Open design issue A. We do not place any constraints on the structure of the graph pattern .P  
It is natural to consider restrictions such as the following.  

●  contains at most  atomic expressions of the form , for some fixed , andP k x, , )( y z k ≥ 0  
no atomic expressions of the form .x, y, ), )( ( r z  

○ In some contemporary graph DB systems,  when the target is a node andk ≥ 0  
 when the target is an edge.k = 1  

● The expressions the form , , and  in must form an acyclicx, , )( y z x, y, ), )( ( r z .a .bx ~ y P  
structure (i.e., the hypergraph of  is acyclic).P  

○ This allows us to control the computational complexity of constraint enforcement. 

○ For example, in Fact Based Modeling , expressions the form  andx, , )( y z  10

 must form a set of chains starting from the same variable.x, y, ), )( ( r z  

● The atomic expressions of the form  and  in  must form a singlex, , )( y z x, y, ), )( ( r z P  
connected component. 

○ If they are not, then the key probably expresses a non-intended property. 

We could also consider intuitive restrictions on , such as:s̄   

9 See Section 3.1.3 of Querying Graphs, Bonifati et al., Morgan & Claypool, 2018. 
10 http://www.factbasedmodeling.org/home.aspx  
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● selectors of the form  listed in , cannot occur in  in an atomic expression of formy s̄ P  
, i.e., key constraints defined in terms of edge identity are prohibited.x, , )( y z  

○ Adopted, e.g., by Fan et al., “Keys for Graphs.” PVLDB 8(12): 1590-1601, 2015.   11

Open design issue B. The atomic expressions over which graph patterns are constructed could 
of course be extended with additional forms (or, we could consider different query languages 
altogether). 

Semantics 
Let  be a property graph and  a key constraint . We next define when “  holds onG K P : s̄ → t K  

”, i.e., “  satisfies ”.G G K  

A homomorphism from  to  is a function  from the set of all variables appearing in  toP G m P  
the set of all objects of  (i.e, the set of nodes and edges of ) such that, for each  in G G p P   

● if  is of the form , then  has type  in .p p(x)t (x)m pt G  

● if  is of the form , then  is an edge in .p x, , )( y z m(x), (y), (z))( m m G  

● if  is of the form , then  is a path conforming to  from  to inp x, y, ), )( ( r z (y)m r (x)m (z)m  
.G  

● if  is of the form , then  holds in .p .a .bx ~ y (x).a (y).bm ~ m G  

● if  is of the form  , then  holds in .p .ax ~ c (x).am ~ c G  

A -match of object  in  is a homomorphism  from  to  such that , where K o G m P G (x)m = o x  
is the variable appearing in the target  of .t K  

-matches  and  of object  and , resp., coincide if and only ifK m1 m2 o1 o2   

1.  for each selector of the form  appearing in , and(x) m (x)m1 =  2 x s̄   

2.  for each selector of the form  appearing in .(x).a m (x).am1 =  2 .ax s̄  

 holds on  if and only if for all objects  and  in , if there exist coincident -matchesK G o1 o2 G K  
of  and  in , then  in the case when  and  in the case whereo1 o2 G o1 = o2 t = x .a .ao1 = o2  

..at = x  

Open design issue C. An alternative semantics, adopted by Fan et al. , is obtained by requiring 12

that -matches are isomorphisms; that is, that they map different variables to different objects.K  

11 http://www.vldb.org/pvldb/vol8/p1590-fan.pdf 
12 Fan et al., “Keys for Graphs.” PVLDB 8(12): 1590-1601, 2015. 
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The isomorphism semantics offers a bit more expressive power: for instance, it allows 
expressing that each node is uniquely identified by any two of its neighbours. Under the 
homomorphism semantics this can be expressed only by relying on an already imposed 
uniqueness constraint (e.g., by referring to an attribute whose value uniquely identifies nodes), 
but is not expressible in isolation. The (slightly) increased expressive power of the isomorphism 
semantics comes at a rather serious computational cost (see the next section). Instead of the 
homomorphism semantics, we could adopt an even weaker tractable notion. For example, we 
could consider simulations of  in   Simulations can be computed in time cubic in the sizeP .G  13

of the  and , but they do not give a very intuitive notion of graph matching. Overall, thisP G  
open design issue is closely related to the more general question facing the whole PGSWG, 
namely, “what does it mean for a graph to conform to a schema?”. Hence, we leave this open 
for future discussion. 

Open design issue D. We could extend the target from a single target to a complex target, 
towards more expressive constraints.  We leave this open for future discussion.  14

Complexity 
Let  be  a key constraint . Throughout this section we assume that the selectors K P : s̄ → t s̄  
and the target  only mention node and edge variables (no path variables). Let t x , )x̄ = ( 1 . . . , xk  
be the tuple of all variables occurring in (without repetitions). For any tuple  weP y , )ȳ = ( 1 . . . , yk  
write  for the graph pattern obtained from  by replacing each  with . Note that (y)P ˉ P xi yi (x)P ˉ  
is itself. Similarly,  and  are obtained by replacing each  with  in  and ,P (y)s̄ ˉ (y)t ˉ xi yi s̄ t  
respectively.  

We can cast as the tuple generating dependency  whereK (x) (y) s(x) (y) (x) (y)P ˉ ⋀ P ˉ ⋀  ˉ ˉ = s̄ ˉ → t ˉ = t ˉ  
 is a tuple of fresh variables and  stands for the conjunction of equalitiesȳ s(x) (y) ˉ ˉ = s̄ ˉ  

 for all . Consider the query obtained from  by(x) s (y)si ˉ =  i ˉ , 2, ni = 1   . . . ,  (x) (y) s(x) (y)P ˉ ⋀ P ˉ ⋀  ˉ ˉ = s̄ ˉ  
projecting out all variables apart from the ones occurring in  and . We shall call the(x)t ˉ (y)t ˉ  
resulting binary query the double query of . Validating  on property graph  amounts toP K G  
evaluating the double query on  and checking that for each pair  of returned objects,G o , )( 1 o2  

 in the case when the target  is of the form , or that  in the case when  iso1 = o2 t z .a .ao1 = o2 t  
of the form . Equivalently, we need to check that the query obtained from the double query.az  
by including an atomic expression  is not satisfied in ; that is, the returned answer t(x) (y)¬ ˉ = t ˉ G  
is empty. Thus, we have proved the following. 

Proposition 1. Key constraints validation reduces to non-satisfaction of graph patterns with a 
single negation. 

13 See Section 7.3.3 of Data on the web, Serge Abiteboul et al., Morgan Kaufmann, 1999,  
https://pdfs.semanticscholar.org/48f9/85d15f797940473600aefedd98c9180d81b7.pdf. 
14 See, e.g.,  M. Niewerth, T. Schwentick, “Reasoning about XML constraints based on XML-to-relational 
mappings”, ICDT 2014: 72-83. 
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We can also show the converse (in a sense).  

Proposition 2. Let be a class of graph patterns that is closed under taking unary joins withC  
atomic queries (that is,  allow adding atomic expressions sharing a single variable with the 
graph pattern). Non-satisfaction of graph patterns from the class  reduces to validation of keyC  
constraints with graph patterns from class .C   

Proof. Consider a query  and let  be a node variable in . Introduce a fresh label  andQ z Q L  
modify the query so that each node mentioned in the query is required to have this label. 
Introduce another fresh label  and extend the query  so that a fresh node variable  withL′ Q z′  
label  is connected to the variable . Take the key constraint  with the resulting query asL′ z K  
the graph pattern, all variables of  as selectors and the fresh variable  as the target.Q z′  
Consider a labelled property graph . Define the modified graph  obtained by adding twoG G′  
fresh neighbours with label  to each node. We have that  satisfies the query  if and only ifL′ G Q  

 violates the key constraint K.G′  

Given that query evaluation is in general intractable (in terms of combined complexity), 
Proposition 1 does not give sufficient information about the complexity of validation. Indeed, 
because in the course of the reduction we replace the graph pattern with the double query, the 
structural properties of the query are changed. We express structural properties of a graph 
pattern  in terms of the hypergraph  of  whose nodes are the variables used in andP HP P P  
hyperedges are induced by the atomic expressions in . Even if the original graph pattern isP  
acyclic (in the sense that its hypergraph is Berge-acyclic), its double query need not be so.  

Example 1. Consider the key constraint  using an acyclic graphx, e, y), (y, f , z) , z (      : x  → y  
pattern. The corresponding double query is equivalent to x, e, y), (y, f , z), (x, e , y ), (y , f , z)(        ′  ′  ′  ′   
which is a cycle of length four.  

This example shows that the structure can get more complicated when passing to the double 
query. The good news is that we can quantify this change using the notion of tree-width, and the 
change is not dramatic. The tree-width of a graph pattern , written , is the tree-width ofQ w(Q)t  
its hypergraph ; that is, the tree-width of the Gaifman graph of , whose nodes are theHQ HQ  
nodes of  and edges connect nodes co-occurring in a hyperedge of .HQ HQ  

Proposition 3. Let  be the double query of a query  with respect to selectors  and targetQ ′ Q r̄  
. Then, .t w(Q ) w(Q)t ′ ≤ 2 · t + 1  

Proof. Consider a tree decomposition  for the query with bags of size at mostT  Q  
. (Without loss of generality we can assume that the variable used in  is presenttw(Q)d =  + 1 t  

in the root bag of .) We can construct a tree decomposition  for the double query byT T ′  Q′  
putting together two copies of  corresponding to the two copies of  that constitute . MoreT Q Q′  
precisely,  has the same structure as , and in each node we take the union of the bag fromT ′ T  

15 
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each copy of . In the double query, equalities (and attribute equalities) are introduced onlyT  
between an original variable  and its copy . Such pairs of variables will end up in the samexi yi  
bags, so the equality expression will be captured by each of these bags, and will indeed be aT ′  
tree decomposition for the double query . Bags in  will have size , which means that Q′ T ′ d2 Q′  
has tree width at most .d  w(Q)2 − 1 = 2 · t + 1  

While Example 1 shows that the double query of an acyclic graph pattern need not be acyclic, 
Proposition 3 guarantees that it will have tree-width at most 5, because acyclic graph patterns 
have tree-width at most 2. 

Remark. A tighter measure of the structural complexity of queries is hypertree-width , but for 15

graph patterns the gain is small. The reason is that  for eachw(H) tw(H) (tw(H) )t + 1 ≥ h ≥  d
1 + 1  

hypergraph  with only at most -ary hyperedges, and the hypergraphs of every graph patternH d  
has only at most 3-ary hyperedges.  

Graph patterns of bounded tree-width can be evaluated in polynomial time. Combining 
Propositions 1 and 3 we get the same result for validation of key constraints.  

Corollary 1. Key constraints using graph patterns of bounded tree-width can be validated in 
polynomial time. 

In the special case of acyclic graph patterns, the algorithm is easy to visualise. The variables of 
an acyclic graph pattern can be naturally arranged into a tree such that each binary atomic 
expression involves neighbouring variables, and each ternary atomic expression involves 
variables that form a path of length 2; we can assume that the variable used in the target is the 
root of this tree. We can evaluate the double query efficiently using a dynamic algorithm that 
processes the query bottom up, computing pairs of objects selected by the subquery of the 
double query induced by the subtrees rooted at the variables  and . The complexity of thexi yi  
algorithm is quadratic in the number of objects in the graph (up to logarithmic factors), which is 
optimal given that we are evaluating a binary query. This algorithm can be seen as a special 
case of the general dynamic algorithm for queries of bounded tree-width. The algorithm works 
for CRPQs as well, because the constituting RPQs can be precomputed and treated as atomic 
edges (not that this affects the number of objects in the graph). 

The computational properties of key constraints under the isomorphism semantics are much 
worse. Even finding injective matches of a path in a graph is NP-complete, as it generalizes the 
Hamiltonian Path Problem. Since Proposition 2 holds also for the isomorphism semantics, 
validation of key constraints whose graph patterns have the structure of a path would be 
intractable under the isomorphism semantics. Finding injective mappings of paths is 
fixed-parameter tractable (with the length of the path as the parameter) , but the algorithms rely 16

15 See G. Gottlob, N. Leone, and F. Scarcello, “Hypertree decompositions and tractable queries”, Journal 
of Computer and System Sciences, 209:1–45, 2002. 
16 J. Plehn, B. Voigt,  “Finding minimally weighted subgraphs”, in Graph-Theoretic Concepts in Computer 
Science, pages 18–29, 1990. 
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on heavy machinery (e.g. color coding) . On the other hand, allowing inequalities in graph 17

patterns does not invalidate the approach sketched above, as long as inequalities between 
variables are treated just like other atomic expressions (that is, potentially increasing the 
tree-width of the query). Note, however, that while the existence of an injective match of a path 
of length  can be expressed with inequalities as a query of tree-width , the polynomialk k  
algorithm for queries of bounded tree-width does not show that the existence of an injective 
match of a path of length  is fixed-parameter tractable with parameter , because it runs ink k  
time  on the graph of size .(n )Õ k n   

The approach to validation described above can be used to support rudimentary error reporting. 
Indeed, it is natural to see each pair of different nodes selected by the double query as a 
violation of the key constraint. The system could report these pairs to the user, possibly 
justifying each pair with an arbitrarily selected match of the double query. In some scenarios, 
the number of such matches might be interpreted as the strength of the evidence that the two 
elements should be merged, in the spirit of entity resolution.  

Expressiveness: Graph Key Constraints vs Relational Key 
Constraints 
We illustrate the constraints that are needed to express relational constraints by means of an 
example. Consider the following relational schema where UC represents a uniqueness 
constraint and FK a foreign key constraint. To keep the example simple we will assume there 
are no null values. 

● R1(a, b, c, d, e) with UC{a, b, c, d} and FK fk1= R1[b, c] ⊆ R2[b, c] and FK fk2 =  R1[c, 
d] ⊆ R4[c, d] 

● R2(b, c, f, g) with UC{b, c} and FK fk3 = R2[c, f] ⊆ R3[c, f] 

● R3(c, f, h) with UC{c, f} 

● R4(c, d, i) with UC{c, d} and FK fk4 = R4[d, i] ⊆ R5[d, i] 

● R5(d, i, j) with UC{d, i} 

This translates under the pseudo-ER mapping to a graph schema with the following node and 
edge types: 

r1 = :R1 {a DOM, e DOM} 

r2 = :R2 {b DOM, g DOM} 

r3 = :R3 {c DOM, f DOM, h DOM} 

17 N. Alon, R. Yuster, U. Zwick, “Color-coding”, J. ACM, 42(4):844–856, 1995. 
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r4 = :R4 {c DOM} 

r5 = :R5 {d DOM, i DOM, j DOM} 

fk1 = (r1)-[:FK1]->(r2) 

fk2 = (r1)-[:FK2]->(r3) 

fk3 = (r2)-[:FK3]->(r3) 

fk4 = (r3)-[:FK4]->(r4) 

Note that columns that are the source of a foreign key, such as {b, c} in R1 are not mapped to 
properties since they are redundant. In addition the translation requires the following graph 
constraints: 

To represent UC{a, b, c, d} for R1: 

WHERE (r1 :R1)-[:FK1]->(r2 :R2)-[:FK2]->(r3 :R3), 
      (r1 :R1)-[:FK3]->(r4 :R4)-[:FK4]->(r5 :R5) 
REQUIRE r1.a, r2.b, r3.c, r5.d IDENTIFIES r1 

To represent UC{b, c} for R2: 

WHERE (r2 :R2)-[:FK2]->(r3 :R3) 
REQUIRE r2.b, r3.c IDENTIFIES r2 

To represent UC{c, f} for R3: 

WHERE (r3 :R3) 
REQUIRE r3.c, r3.f IDENTIFIES r3 

To represent UC{c, d} for R4: 

WHERE (r4 :R4)-[:FK4]->(r5 :R5) 
REQUIRE r4.c, r5.d IDENTIFIES r4 

To represent UC{d, i} for R5: 

WHERE (r5 :R5) 
REQUIRE r5.d, r5.i IDENTIFIES r5 

To represent FK fk1: 

WHERE (r1 :R1) 
REQUIRE EXACTLY ONE f SUCH THAT (r1)-[f:FK1]->() 

18 
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To represent FK fk2: 

WHERE (r1 :R1) 
REQUIRE EXACTLY ONE f SUCH THAT (r1)-[f:FK2]->() 

To represent FK fk3: 

WHERE (r2 :R2) 
REQUIRE EXACTLY ONE f SUCH THAT (r2)-[f:FK3]->() 

To represent FK fk4: 

WHERE (r3 :R3) 
REQUIRE EXACTLY ONE f SUCH THAT (r3)-[f:FK3]->() 

To represent that properties that correspond to columns linked by FK fk1, FK fk2 and FK fk3 
must have the same value: 

WHERE (r1 :R1)-[:FK1]->(r2 :R2)-[:FK2]->(r3 :R3), 
      (r1 :R1)-[:FK3]->(r4 :R4) 
REQUIRE r3.c = r4.c 

One sees that the patterns that are necessary to capture relational keys are “octopus patterns”. 
An octopus pattern is a pattern that consists of a conjunction of path patterns (of the form 
(..)-[..]->(..)-[..]->(..) etc) that all start with the same node or edge variable and otherwise share 
no variables. An example is the pattern we see in the first constraint in the example: 

WHERE (r1 :R1)-[:FK1]->(r2 :R2)-[:FK2]->(r3 :R3), 
      (r1 :R1)-[:FK3]->(r4 :R4)-[:FK4]->(r5 :R5) 

Note that octopus patterns are acyclic, which means that the resulting key constraints can be 
validated efficiently, as discussed in the previous section.  

A more formal description of the relational-to-graph transformation that we considered is 
described next: 

1. RELATIONS. For every relation R we introduce a node type N_R with properties that 
contain only those attributes that are not part of any foreign key.  

2. FOREIGN KEYS. For every foreign key FK we introduce an edge type E_FK between 
corresponding node types.  

3. ATTRIBUTES KEY ATTRIBUTES (or UCs). If an attribute of a key (or UC) of a relation 
R is part of a foreign key FK, then the corresponding attributes need not be present in 
the node type N_R but will be present in a node type reachable by a path starting with 
the edge type E_FK. 
Things to keep in mind:  
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a. FK chains of length greater than one;
b. FK chains that visit the same relation.

4. UNDERSPECIFIED. What happens with a cyclic FK, for instance, consider
R(a,b) with UC{a}, P(a,c) with UC{a}, and two FKs R[a] ⊆ P[a] and P[a] ⊆ R[a]
A SOLUTION: an arbitrary relation is chosen and the key attribute included in the
corresponding node type.

5. REIFICATION OF BINARY RELATIONSHIPS.
Relations that are used to represent a non-functional relationship between two entities
(in Chen-like diagram) will be translated to a node type and two edges types, while a
single edge type would suffice and be potentially more natural. This is minor and one
should be able to alter the translation to handle such relations accordingly but we refrain
from doing in the interest of keeping things simple

20 
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LDBC Property Graph Schema Working Group 
Proposal for requirements, scope and roadmap 
Alastair Green, first draft 25 May, second draft 16 June 2020. 

My thanks to Bei Li, Jan Hidders and Keith Hare for their useful corrections and comments on 
the first draft. The resulting document is a proposal for discussion (including with WG3, our 
liaison partner), and a guide to some shared thoughts in the LDBC’s PGS working group, but 
does not claim to represent a formed consensus in the group.  

This group (PGS WG) began life as a self-organized group of interested researchers and 
practitioners, supportive of the GQL initiative, who met in Berlin at the close of the W3C 
workshop on graph data management standards in March 2019. 

Headed initially by Juan Sequeda (data.world), and now jointly with Jan Hidders (Birkbeck 
University of London), the PGS WG was reconstituted as an LDBC working group in July 2019, 
alongside the Existing Languages Working Group (ELWG). In February 2020 the GQL Formal 
Semantics Working Group was also chartered by the LDBC board. 

All three groups are community efforts created to support the formation of an effective GQL 
standard database language for property graph databases.  

Being part of LDBC has enabled information sharing, because of LDBC’s Category C liaison 
with WG3. This allows the LDBC working groups to comment on working documents and 
discussion papers, and to get early sight of WG3’s emerging consensus. It also allows LDBC to 
make proposals that run ahead of existing WG3 work, and to review the features and design of 
a draft GQL language through the alternative lens of formal language specification. 

The Property Graph Schema Working Group has set out to address requirements (and 
constraints) for schema, in an order, and with initial self-constraints, to allow incremental 
progress to be made.  
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LDBC Property Graph Schema Working Group 

Proposal for requirements, scope and roadmap 

Summary list 

Requirements and constraints for the PGS design of GQL schema 

R0. GQL schema is determined and constrained by the GQL standard property graph 
model. 

R1. GQL schema should provide a way of describing the topology and values to be found in 
a property graph. 

R2. While being graph specific, and without limiting innovation,  GQL schema should play 
the same broad role as an SQL schema. 

R3. GQL must define a data type system, and its schema model must harmonize with that 
type system. 

R4. GQL’s type system must not contradict the core type system of SQL. 

R5. GQL schema semantics should be described in formal mathematical terms. 

R6. GQL schema should be described in informal terms that aid intuitive understanding in 
the widest audiences. 

R7. GQL schema should be described with motivating use cases and examples. 

R8. GQL schema must have a concrete syntactic expression in a schema definition 
sub-language. 

R9. GQL schema must integrate with the GQL catalog, and the schema definition language 
must be a sub-language of the DDL used to maintain the catalog. 

R10. GQL schema should harmonize (semantically and syntactically) with the emerging 
GQL query language, and therefore with SQL/PGQ’s pattern-matching sub-language. 

R11.  GQL schema should provide a way of prescribing the topology and values to be found 
in a property graph. 

R12.  GQL schema should not be imposed as a prerequisite for the adoption of the GQL 
query language by a graph data management product. 

R13. GQL schema should reflect advances in research and industry since SQL 1999 

R14.  GQL schema should reflect and exploit the property graph data model 

R15. GQL schema should not be limited by the functionality of existing property graph data 
engines 

R16. GQL schema should be inclusive of the functionality of existing property graph data 
engines. 
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R17. Closed and open schema models should be defined as parts of a single schema 
model. 

R18. The relative market failure of SQL 1999 user-defined structured types should not be 
used to exclude subtyping a priori, but it is an object lesson. 

R19. GQL schema designs from the PGS Working Group should not be constrained or 
determined by the schedule, priorities or scope of a particular edition of GQL. 

Ordering of, and self-imposed constraints on, the work of the PGS WG in its first phase 
(January to August 2020) 

OC 0. Defining a closed (wholly prescriptive) and open (non-prescriptive) schema model 
first. 

OC 1. Defining a schema model without subtyping first. 

OC 2. Using the Extended Entity Relationship Model as a measure of scope and success 

OC3. Producing detailed contributions to WG3 and investing time in explaining and 
discussing them before expanding scope. 

OC4. Not attempting to define mappings from other schema models to the GQL schema 
model. 

OC5. Not attempting to define a pan-graph schema model to sit above the GQL schema 
model. 
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Requirements and constraints for the PGS design of GQL schema 

R0. GQL schema is determined and constrained by the GQL standard property graph 
model. 

LIke everything else in GQL, the property graph model is not decided until the ink is dry 
on the final standard. And the PGS WG should propose change or innovation, even at 
the most basic level of the data model, when it can be justified.  

However, the role of a schema model and any associated schema languages is to 
describe and prescribe metamodels (application domain data models) which specialize 
the property graph data model. We need a stable definition of the data model to build 
upon. 

The property graph data model is an industrial fact, and an object of research, but is not 
yet standardized: there are many interpretations. That plurality does not mean that we 
are starting from nowhere, and one purpose of our work is to help end (complete) 
discussion on the data model, in the GQL universe of discourse. 

The property graph model was in good part defined negatively, as “not RDF”. In 
particular property graphs are not about semantics, nor are they of the Web. They are 
abstract data structures, which do not inherently hold or represent Web resources, and 
which therefore inherit no intrinsic or general notion of resource identity and 
identification. Providing the means for cataloging or discovering the semantics of their 
information content is uninteresting, or beyond the core ambitions of property graph 
technology. 

Property graphs 

i. limit the functionality of RDF by preventing graphs or graph elements being used
as nodes, edges or property values (so in a property graph it is not possible to
“make a statement about”, i.e. create an edge between two edges, or a node and
an edge, or an edge and a named graph).

ii. extend the functionality of RDF by allowing sets of properties to be associated
with both nodes and edges .1

1 The RDF* proposal extends RDF to allow properties on edges to be defined, but this is not part of the 
W3C suite of standards yet. It is true that an RDF object can be a value of a complex data type, and that 
in that sense a set of properties, or nested sets of properties, can be attached in one go to a node. In 
property graphs a node or edge is inherently a (possibly empty) set of properties and/or labels, so the 
containment or association of attributes with a graph element is a special, distinguished relationship.  
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iii. simplify the graph topology by comparison with RDF by reducing the number of 
nodes and edges by treating properties as being “off the graph”.  

iv. complicate the graph topology by allowing multiple edges between two nodes, 
and by allowing isolated nodes. 

Our starting point for a standard is to agree on some reasonable superset of all 
“wild” variants,so that GQL’s property graph data model is a conservative 
progression or extension, not an obstacle or a destructive revolution, for existing 
products and theories which self-identify as implementing or using property 
graphs.  

The process of supersetting helps the standard to leave behind accidental restrictions, 
implementation quirks, competitive differentiators, and groupthink usage assumptions. It 
also preserves common and distinguishing features. 

Languages, products and projects which have adopted the name of “property graph”, 
including Neo4j and Cypher, Tinkerpop, PGQL, TigerGraph and GSQL, and SQL-PGQ 
are all subsumed by a data model where a graph can have these features 

1. Mixed (directed and undirected) 

2. Multigraph (multiple edges between two nodes) 

3. Labels and properties are equally applicable to nodes and edges, in any quantity 

4. Properties can have a scalar value or a collection of values 

5. Properties can also have associated properties  

Equally, those features which characterize the property graph model are highlighted, 
which cannot be eroded without voiding the distinct nature of the model: 

1. Graphs, not hypergraphs, with binary, not n-ary, relationships.  

2. Nodes and edges can be attributed (have data values associated with them that 
are not nodes and edges) 

3. Attributes are not mandatory (so pure topological graphs can be stored and 
queried) 

4. Attributes can be limited to atomic types and limited in cardinality, so that a user 
can define graphs that are “pure”, where complex data structures are only 
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modelled using nodes and edges. While possible, this is an unusual usage 
pattern, because: 

5. Attributes can also be used to create data structures that are not arbitrary 
graphs, allowing the coexistence of two data models, one for graphs and 
one for attributes on graph elements.  

The last feature is what makes a property graph out of a graph.  

The not-arbitrary-graph data structures may be pretty simple (collections, records), or 
quite complex, but to create a data model distinct from pure graphs, they must be more 
complex than a single atomic value, and less complex than an arbitrary graph.  

The justification for moving some data into limited-graph data structures is that it allows 
the graph topology to stand out from the details of data items, in the same way that we 
talk about “not seeing the wood for the trees”. This has proved useful and attractive in 
the market. 

R1. GQL schema should provide a way of describing the topology and values to be found 
in a property graph. 

Property graph database products and OSS projects, and their associated languages, 
have formed a commercial and engineering reality without any standard approach or 
even a common rough consensus on schema.  

1. The main reason for this is the origin of the property graph database category as 
an outgrowth of Java libraries which model a graph data structure. (See “An 
overview of the recent history of Graph Query Languages”, WG3:YTZ-029R1, Tobias 
Lindaaker, 2018.) 

2. Starting with Neo4j [Network Engine for Objects for Java], which was forked via 
the shared Blueprints API into Tinkerpop, libraries with Java APIs a) depended 
on Java’s type system, and b) were used in programs written in a language with 
strong typing. The need for a separate type system to describe graphs as 
complex data structures was not felt strongly. 

3. Graph databases were also seen as a pragmatic way of mashing up data from 
multiple disparate sources in web servers hosting applications written in Java. 
In that environment a premium was placed on ease of integration, speed of 
development and an Agile approach to incremental feature evolution. (These 
drivers were reflected in other concurrent technologies such as JSON, and 
NoSQL movement [including the Hadoop family], which emerged and matured 
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between 2005 and 2015. The flexible datatype system of SQLite is a parallel 
manifestation.) 

4. A third reason for going “schema free” or “schema lite” was to avoid the 
complexity of the RDF schema/ontology ecosystem, which was perceived as 
entangled, Web-specific, hard for mere mortals to understand, and leading to 
over-engineered data models which are too hard to maintain. Property graphs 
just ran round all of that.  

In a second phase, property graph databases began to change.  

A. Embedded libraries were replaced by a client-server model, severing the tie 
between the application programming language and the data engine. This eroded 
the “JVM assumption” and opened the road to native language servers.  

B. Declarative query languages like Cypher and PGQL began to emerge, followed 
by SQL/PGQ and GSQL which were again important for increasing “language 
genetic diversity”. 

C. Use of property graph databases has increasingly moved into the enterprise 
mainstream, fuelled by the leading edge use of graphs as a central organizing 
principle for data in major tech services like search and social networks. Emil 
Eifrem at Neo4j describes this as the “democratization of graph data”: it’s not just 
for Google or Facebook. Network analysis in finance, telco, retail, insurance, 
biomedical, pharmaceutical, intelligence and military systems, revolving around 
natural and social behavioural pattern detection and resource optimization has 
fuelled a growth that is increasingly intersecting machine learning-based data 
science . 2

2 It is interesting to note how large a divergence there is between this growing reality and the consensus 
view of many leading figures in the database industrial-research complex, in which graph databases 
figure as an invisible or barely discernible and irritating rash on the vast posterior of the relational 
database industry. See “The Seattle Report on Database Research”, 2018, and input papers.  

The debated need for a network model, and the relationship between it and the relational model, is a very 
old discussion (see Codd, E. F. 1971. “Normalized Data Base Structure: A Brief Tutorial.” In Proceedings 
of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control, 1–17. 
SIGFIDET ’71. New York, NY, USA: Association for Computing Machinery). Suffice it to say, for our 
current purposes, that graph databases have found a place in the market aligned with Codd’s 
observations that:  

“It may be argued that in some applications the problems have an immediate natural formulation 
in terms of networks. This is true of some applications, such as studies of transportation 
networks, power-line networks, computer design, and the like. We shall call these network 
applications and consider their special needs later. The numerous data bases which reflect the 
daily operations and transactions of commercial and industrial enterprises are, for the most part, 
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All of these trends point to an increased need to have a way of capturing the shape and 
potential values of a property graph in a way that is 

a. Independent of general-purpose programming language,  

b. Relates closely to declarative querying, and  

c. Allows different kinds of users to share a common understanding of a data 
model. 

All three of these trends also bring property graph databases closer to the model of an 
SQL database.  

R2. While being graph specific, and without limiting innovation,  GQL schema should 
play the same broad role as an SQL schema. 

SQL is a massively successful standard which has generated a viable and broadly 
understood mental model of how applications interact with and use tens if not hundreds 
of database engines. GQL was motivated as a companion standard to SQL, which would 
share, or borrow and adapt, much from SQL, and avoid idle variation from SQL.  

A GQL schema facility should allow types and instances of graphs to be defined in a 
special-purpose database called a catalog, which is a common repository for all type 
and constraint (metadata) definitions, and for instance (data) declarations, using a Data 
Definition Language that is distinct from sub-languages for querying and data 
manipulation.  

R3. GQL must define a data type system, and its schema model must harmonize with that 
type system. 

A distinct database language must define the data types of the values that it stores, and 
is unlikely to be able to do so by reference to a prior standard. Schema straddles types, 
constraints and instances, and must mesh perfectly with the data type system.  

R4. GQL’s type system must not contradict the core type system of SQL. 

GQL was constitutionally motivated to be a companion to SQL, and to specifically avoid 
the mistake of W3C standards which varied at the most basic level of predefined 
(atomic) datatype definitions. 

concerned with non-network applications. To impose a network structure on such data bases and 
force all users to view the data in network terms is to burden the majority of these users with 
unnecessary complexity.” 

. 
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R5. GQL schema semantics should be described in formal mathematical terms. 

There is an attempt to describe and verify the GQL language design in formal terms, 
exemplified by the query language semantics work of the Formal Semantics Working 
Group. PGS WG participants have voiced the equal importance of formalizing 
schema/typing designs.  

R6. GQL schema should be described in informal terms that aid intuitive understanding 
in the widest audiences. 

The experience of all attempts to create a consensus on describing and defining the 
limits and shape of a complex technical field is that a combination of informal (intuitive) 
and formal methods is important for creating shared understanding and precision, 
particularly when participants come from several different primary backgrounds 
(theoretical and applied computer science, software engineering, conceptual modelling, 
end-use, standards authoring/editing etc). 

R7. GQL schema should be described with motivating use cases and examples. 

Similarly, examples revolving around motivating use cases, are important tools of 
exposition and of verification.  

R8. GQL schema must have a concrete syntactic expression in a schema definition 
sub-language. 

Examples need to show proposed semantics using shared concrete syntax. The PGS 
WG is not primarily focussed on the final syntax of a schema definition sub-language or 
languages within GQL, but is a useful testbed. It is helpful if the WG’s chosen syntax 
follows the design philosophy and emerging approaches of work in WG3, where 
possible.  

R9. GQL schema must integrate with the GQL catalog, and the schema definition 
language must be a sub-language of the DDL used to maintain the catalog.  

It is assumed that GQL schema definition language(s) will be used to maintain an 
SQL-style catalog of metadata and data objects. 

R10. GQL schema should harmonize (semantically and syntactically) with the emerging 
GQL query language, and therefore with SQL/PGQ’s pattern-matching sub-language. 

SQL/PGQ is the most mature aspect of GQL. It contains SQL-specific parts (graph views 
over tables and the GRAPH_TABLE function) and a graph pattern-matching 
sub-language based on Cypher and PGQL.  
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It solidifies the central role of node-edge ASCII line-art pattern representations in the 
projected mental model and syntactic persona of GQL. 

The patterns used for querying data have the same shape as the patterns used for 
inserting data in Cypher, and that meta-pattern can be extended naturally to schema. 
The patterns used to insert data describe graph topology and element attribution, with 
data values. The patterns needed to describe or prescribe the kind of graph topology 
and element attribution to be found in a graph are almost identical: they differ only in 
specifying data types for attributes.  

It follows that at least the abstract model of GQL schema must cleave to the abstract 
model of GQL data insertion, and that it is likely and desirable that the concrete syntax 
for schema, insertion, and query patterns will have a unified design.  

R11.  GQL schema should provide a way of prescribing the topology and values to be 
found in a property graph. 

A schema in SQL dictates the permitted content of a database. It is closed-world: no 
piece of information not modelled by a specific schema (data model) can be included as 
a data item. The TigerGraph graph database and its language GSQL share this property 
with SQL. 

There are advantages in being able to rely on an enforced closed schema for data 
modellers, and application developers, Closed schema also enables compile-time 
(static) inference of types, allowing higher degrees of query and storage optimization. 

The framing documents and the joint statement of Neo4j and TigerGraph proposing the 
Features and Scope of GQL [reference] state that GQL should be capable of imposing 
the same closed schema model as SQL, and should (by implication) therefore not 
prevent an existing product with that model from adopting GQL. Emulating SQL in this 
regard has proven market appeal for some users and customers.  

R12.  GQL schema should not be imposed as a prerequisite for the adoption of the GQL 
query language by a graph data management product. 

Conversely, the ability to operate freely without the constraints imposed by a closed 
schema is equally valuable. For some databases and/or applications, and for some 
experimental phases of other databases/applications, the imposition of closed schema is 
a burdensome overhead or is antithetical to the purpose of the designers. Products such 
as Neo4j and the OSS Tinkerpop project have operated successfully and indeed 
attracted market share, precisely because they do not demand up-front determination of 
a schema which is then enforced at runtime. 
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GQL should not be defined so as to require that a technically and commercially viable 
implementation has a closed schema model. Indeed, it should be possible to operate 
entirely without a schema. The bounding requirement on a GQL implementation is that 
the query engine can operate on data that is presented in conformance with the GQL 
property graph data model, even if the engine is entirely ignorant of any GQL 
schema model.  

This could be rephrased with equivalent effect as permitting operation of a GQL query 
engine in the presence of an open-world schema model, that is to say, a model where 
any data item can be present irrespective of all schema statements.  

R13. GQL schema should reflect advances in research and industry since SQL 1999 

SQL’s schema mode (which has not changed in a major way since SQL 1999) is not the 
last word in schema theory or practice. Over the last two decades programming 
language designers have been working to extend their type systems to incorporate a trio 
of concepts (abstract data type mixins as distinct from behavioural inheritance, a.k.a. 
data subtyping, integrated with union types and intersection types).  

This kind of work can reasonably inform GQL schema design.  

Another example is consideration of the need for, and relationship between, nominal and 
structural typing. SQL is nominal-type-centric. Should GQL follow the same model? 

R14.  GQL schema should reflect and exploit the property graph data model 

This might seem tautologous, or a restatement of R0 and R8, but is a distinct 
requirement of ambition. The property graph data model is very similar to the Entity 
Relationship Model/UML class diagrams, often supersets that of RDF, and can be used 
to approximate the fact-granularity of ORM.There is an opportunity to produce a schema 
model which exploits the richness and flexibility of the PG data model, and leverages 
work on schema or conceptual modelling for these other models. 

R15. GQL schema should not be limited by the functionality of existing property graph 
data engines 

Existing property graph engines are frequently very limited in their schema capabilities. A 
property graph schema model that minimally matches the level of schema control 
expected by SQL database users will be the product of innovative design and will not 
arise from codification of the superset of industrial practice.  
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R16. GQL schema should be inclusive of the functionality of existing property graph data 
engines. 

Any elements of schema that have made it into existing engines are valuable 
precedents.  

R17. Closed and open schema models should be defined as parts of a single schema 
model.  

No graph database today allows administrators to pick the proportions of “water” and 
“ice” they want in the mix of a graph schema. You can run free, or you can be locked 
down, but you can’t occupy a mid-point on the spectrum between those two ends, in a 
systematic, well-defined fashion.  

The concept of mandating, permitting or blocking subtyping is familiar from OO 
languages which allow classes to be abstract or concrete (instantiable), and final 
(closed) or extensible. 

We aim for a unified schema model that permits four modes of prescription: 

Not prescriptive (open): a user or application can modify a database to contain any 
object, in any combination or quantity permitted by the property graph data model. 

Selectively prescriptive (optional, or open-plus): While retaining the full freedom of the 
open model, a user can also define the type, combinations and cardinalities of some 
classes of object which can be instantiated by modification of a database, so that objects 
can be created which are checked for their conformance to rules in a user-defined 
schema.  

Partially prescriptive (extensible, or partial): Any object described by schema is 
capable, in principle, of being extended or specialized, and no object or combination of 
objects that is not at least partially described in a user-defined schema can be 
instantiated by mutation of a database. This relates to the concepts of abstract and final 
classes in OO.  

Wholly prescriptive (closed): A graph can only be created which wholly conforms to a 
set of rules (types and constraints) in a user-defined schema. This is the model of SQL. 

R18. The relative market failure of SQL 1999 user-defined structured types should not be 
used to exclude subtyping a priori, but it is an object lesson. 

User-defined structured types (UDSTs) in SQL 3 (SQL 1999) sought to import Java 
subclassing into SQL.  

12 



WG3:MMX-076 LDBC PGS:AG-12 
LDBC Property Graph Schema Working Group 

Proposal for requirements, scope and roadmap 
 

Interface mixins or struct mixins point away from behaviour (towards data structures), 
towards multiple inheritance, and are a feature expected of most modern programming 
languages (Scala, Rust, Julia, Swift, Go). 

The following proposition should be critically examined: “The baby of subtyping should 
not be thrown out with the bathwater of subclassing.”  

SQL UDSTs are interesting because they prototype a model where any expression can 
be assigned to any target value, so long as the type of the target is a super-type of the 
type of the expression, where all super- and sub-types are predefined. This should not 
be confused with a partial schema model.  

Subtyping is a syntactic compression; it is a conformance accelerator. It is not existential 
to a valid schema model. SQL-92 and GSQL show this.  

R19. GQL schema designs from the PGS Working Group should not be constrained or 
determined by the schedule, priorities or scope of a particular edition of GQL. 

The PGS WG has an opportunity to define a vision and roadmap for GQL schema.  

 

WG3 has the obligation and need to shape a schedule, influenced by priorities arising 
from implementer/vendor input and the timetable and demands of the standard formation 
process. 

The PGS WG should not attempt to second-guess the prioritization and phasing 
decisions of WG3, nor should it be limited in its thinking and outputs by those decisions.  

Ordering of, and self-imposed constraints on, the work of the PGS 
WG in its first phase (January to August 2020) 

OC 0. Defining a closed (wholly prescriptive) and open (non-prescriptive) schema model 
first. 

Without a clear understanding of what a closed schema model looks like, it is premature 
to give details of how optional or partial models would work. The design of closed 
schema should impose no constraints on operating with no schema or an open schema 
model, and to that extent open schema should also be defined in this first phase. 
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OC 1. Defining a schema model without subtyping first. 

Subtyping introduces complexity. An integrated design for subtyping-free schema 
including the data model, types system and core constraint system is the first priority. 

Subtyping is a powerful abstraction, which can reduce the footprint of a schema 
declaration in a schema definition language, and is ubiquitous in general-purpose 
programming languages. It would be wrong to exclude subtyping from a modern schema 
language. 

This is an ordering issue, not a scope issue. Subtyping will be addressed. 

OC 2. Using the Extended Entity Relationship Model as a measure of scope and success 

EER and UML class models are prevalent in conceptual data modelling. The underlying 
data model is the same as the core of the property graph data model (with the exception 
of n-ary relationships). 

SQL schema requires a conceptual-logical model mapping that is not needed in most 
situations using the property graph data model. Being able to map from EERM/UML 
models to GQL schema would be a big win for GQL. 

SQL schema does not provide support for aspects of EERM/UML that are very naturally 
allied to a property graph schema, like relationship cardinalities. 

EERM deals with common subtyping patterns that are a good test of any subtyping 
facilities proposed for GQL schema. 

OC3. Producing detailed contributions to WG3 and investing time in explaining and 
discussing them before expanding scope. 

The primary purpose of the WG is to help make a good GQL standard. The interaction 
with WG3 will take significant effort, incurring an expository and procedural overhead, 
and also requiring the evolution of a working method for both groups.  

If WG3 finds the work of the PGS WG helpful, then the PGS WG has satisfied a critical 
success criterion.  

Even if WG3 is unable to directly consume or utilize the designs of the PGS WG, it is an 
independent achievement for the working group to define such designs in a collective 
effort spanning many participants. Producing the schema equivalent of the G-CORE 
paper would be a powerful justification, on its own, for the investment of effort by PGS 
WG participants.  
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OC4. Not attempting to define mappings from other schema models to the GQL schema 
model. 

OC0, OC1 and OC3 comprise a very large and complex scope. In line with the Berlin 
workshop consensus, the property graph side of the graph data family needs to define 
its own standards before addressing standards/model mappings.  

OC5. Not attempting to define a pan-graph schema model to sit above the GQL schema 
model. 

The same applies in this regard. A model for arbitrary data types, like mm-ADT or 
Tinkerpop 4.0 or APG, may be defined, of which GQL schema is at least a partial subset. 

The PGS WG does not attempt to replicate such work. There are aspects of schema, 
such as constraints, that may be more prominent in the GQL project than in those 
efforts. Mutual awareness, and an appetite for alignment, are valuable aspirations.  
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Goal of GS-Basic
● General goal

○ Discuss alternatives for the syntax and semantics of basic property-graph
schemas / types

● Scope of current discussion:
○ Focus on graph-level (so not attribute level) data model
○ Leave inheritance aside for the moment
○ Leaven open types (at attribute level and graph level) aside for the moment
○ But to some extent subtyping is discussed
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Goal of presentation
● Provide an overview of the types of semantics for basic graph types that are

on the table in GS-Basic
● Give insight into the ongoing discussion in GS-Basic
● Getting feedback on this discussion

For the full report see:

● LDBC PGS-B:BAS-01r1 “GS-Basic Overview report”
○ A summary report with emphasis on informal explanation and examples.

● LDBC PGS-B:BAS-02r1, “GS-Basic Formal definitions report”
○ A companion report containing fully formal definitions and discussions.
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Three proposals and a concern
Proposals:

1. The at-least-one-match semantics
2. The exactly-one-match semantics
3. The homomorphism-based semantics

Concern that touches all proposals:

1. Isolation-awareness
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Basic Concepts
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Property graphs

Our concrete syntax for examples:

(v1 :Person {name = “Jan Hidders”})
(v2 :City Place {name = “London”})
(v3 :City Place {name = “Brussels”})

(v1)-[e1 :worksIn {start=“2020-01-01”}]->(v2)
(v1)-[e2 :livesIn {start=“2015-01-01”}]->(v3)
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Person

name: “Jan Hidders”

City, Place
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start: “2020-01-01”

start: “2020-01-01”

v1 v2

v3
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Element types

● Vertex types:
○ Concrete syntax: (:City Place { name STRING, url URL })
○ Equivalent to: (: {City LABEL, Place LABEL, name STRING, url URL })

■ Labels are treated as attributes with a “dummy value” lbl
■ The record type here is also referred as a content type

● Edge types:
○ (:Person { name STRING, birthdate DATE })

  -[:livesIn { start DATE}]->
(:City Place { name STRING, url URL })

○ Consists of (1) tail vertex type, (2) the content type and (3) the head vertex type.
○ Also here labels are assumed to be shorthand for a special property.
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Graph-type cores

● The set of element types that defines the core of a graph type
○ So we ignore for the moment graph constraints and graph attributes.

● No explicit inheritance or subtype declarations are considered.

Our basic concrete syntax for examples:

● (:Person { name STRING, birthdate DATE })
● (:City Place { name STRING, url URL })
● (:Person { name STRING, birthdate DATE })

-[:livesIn { start DATE}]->
(:City Place { name STRING, url URL })
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Strict semantics and non-strict semantics

● In the report we distinguish:
○ Strict conformance: no undeclared subtyping, focus on predictable size of instances
○ Non-strict conformance (or just conformance): reflects that instances of subtypes also 

conform, e.g., elements can have additional attributes and still conform.

● The current discussion focuses on strict conformance
○ But report also defines the associated non-strict conformance

● We assume predefined notions of strict conformance and conformance for 
attribute value types.
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Matching of records and record types

● Fundamental notion for determining if element conforms to a type
● Based on matching of records and record types:

○ Consider record type {street STRING, city STRING}
○ {street=“Malet st”, city=“London”} is an exact match
○ {street=“Malet st”, city=“London”, country=“UK”} is an over match
○ {street=“Malet st”} is an under match
○ {street=5, city=“London”, country=“UK”} is no match.
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Matching of vertex types

● Consider vertex type (:Person {name STRING, birthdate DATE})

● (jan1: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”})
○ is an exact match

● (jan2: {Person=lbl, name=”Jan Hidders”, birthdate=”1980-01-01”,
 nationality=”Dutch”})

○ is an over match
● (jan3: {Person=lbl, name=”Jan Hidders”})

○ is an under match
● (jan4: {Person=lbl, name=43, birthdate=”1980-01-01”})

○ is no match
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Matching of edge types

● Consider vertex type
○ (:Person { name STRING, birthdate DATE })

-[:worksIn { start DATE}]->
(:City { name STRING, url URL })

● For a vertex to be an exact match of a vertex type the following must hold:
○ The tail vertex must be an exact match of the tail type.

(:Person { name STRING, birthdate DATE })

○ The content must be a an exact match of the content type.
:worksIn { start DATE}

○ The head vertex must be an exact match of the head type.
(:City { name STRING, url URL })

● Similarly for under match and over match.
12
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Option #1: At-least-one-match
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Strict-conformance definition
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Definition #1: We say that a property graph strictly conforms to a graph-type core if for 
every element in the graph there is an element type in the core that it exactly matches.
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Strict-conformance examples (1/4)
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Graph-type core:
● (:Person {name STRING,

          birthdate DATE})
● (:City {name STRING, url URL})
● (:Person {name STRING,

          birthdate DATE })
  -[:worksIn { start DATE}]->
(:City {name STRING, url URL})

● (:Person {name STRING, 
          birthdate DATE })
  -[:livesIn { start DATE}]->
(:City {name STRING, url URL})

Graph

(v1 :Person {name=”Jan Hidders”,
      birthdate=”1980-01-01”})
(v2 :City {name=”London”,
           url=”www.london.org”})
(v3 :City {name=”Brussels”,
           url=”www.brussels.org”})
(v1)-[e1 :worksIn {start=”2020-01-01”}]->(v2)
(v1)-[e2 :livesIn {start=”2015-01-01”}]->(v3)

Strictly conforms.
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Strict-conformance examples (2/4)
Graph

(v1 :Person {name=”Jan Hidders”,
      birthdate=”1980-01-01”})
(v2 :City {name=”London”,

url=”www.london.org”})
(v3 :City {name=”Brussels”,

url=”www.brussels.org”})
(v1)-[e1 :worksIn {start=”2020-01-01”}]->(v2)

Strictly conforms

● livesIn is not instantiated, but not all types
need to be

Graph-type core:
● (:Person {name STRING,

birthdate DATE})
● (:City {name STRING, url URL})
● (:Person {name STRING,

birthdate DATE })
  -[:worksIn { start DATE}]->
(:City {name STRING, url URL})

● (:Person {name STRING,
birthdate DATE })

  -[:livesIn { start DATE}]->
(:City {name STRING, url URL})
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Strict-conformance examples (3/4)
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Graph-type core:
● (:Person {name STRING,

          birthdate DATE})
● (:City {name STRING, url URL})
● (:Person {name STRING,

          birthdate DATE })
  -[:worksIn { start DATE}]->
(:City {name STRING, url URL})

● (:Person {name STRING, 
          birthdate DATE })
  -[:livesIn { start DATE}]->
(:City {name STRING, url URL})

Graph

(v1 :Person {name=”Jan Hidders”,
             birthdate=”1980-01-01”,
             birthplace=”Deventer”})
(v2 :City {name=”London”,
           url=”www.london.org”})
(v3 :City {name=”Brussels”,
           url=”www.brussels.org”})
(v1)-[e1 :worksIn {start=”2020-01-01”}]->(v2)
(v1)-[e2 :livesIn {start=”2015-01-01”}]->(v3)

Does not strictly conform:

● v1 is over match
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Strict-conformance examples (4/4)
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Graph-type core:
● (:Person {name STRING,

          birthdate DATE})
● (:City {name STRING, url URL})
● (:Person {name STRING,

          birthdate DATE })
  -[:worksIn { start DATE}]->
(:City {name STRING, url URL})

● (:Person {name STRING, 
          birthdate DATE })
  -[:livesIn { start DATE}]->
(:City {name STRING, url URL})

Graph

(v1 :Person {name=”Jan Hidders”})
(v2 :City {name=”London”,
           url=”www.london.org”})
(v3 :City {name=”Brussels”,
           url=”www.brussels.org”})
(v1)-[e1 :worksIn {start=”2020-01-01”}]->(v2)
(v1)-[e2 :livesIn {start=”2015-01-01”}]->(v3)

Does not strictly conform:

● v1 is under match
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Option #2: Exactly-one-match
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Strict-conformance definition
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Definition #2: We say that a property graph strictly conforms to a graph-type core if for 
every element in the graph there is exactly one element type in the core that it exactly 
matches.

● Motivation:
○ Creates one-to-one correspondence between graph and graph-structure

type: elements “live” in exactly one type
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Strict-conformance example
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Graph-type core:
● $personWithLongName =

 (:Person {name VARCHAR(50)})
● $personWithShortName = 

 (:Person {name VARCHAR(15)})

Graph

● (v1 :Person {name=”Mary Anne Cunningham”}
● (v2 :Person {name=”George Walsh”}

Does not strictly conform:

● v2 strictly conforms to both types
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Is it really different?
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● What is the difference with the at-least-one-match semantics?
● None, if every attribute value strictly conforms to exactly one attribute type

○ NOTE: is not the same as all values having a unique most specific type
● Opinion in GS-Basic varies on if this assumption is valid.

○ Why it might not hold:
■ VARCHAR(n), ARRAY(n), Union types, Optional attributes

○ Why it might hold:
■ In some cases we can normalize the core so that it does for the 

types in the graph-type core, e.g.,
● union types (if not in collection types), optional attributes, 
● VARCHAR and ARRAY under certain assumptions
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Option #3: Homomorphism-based
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Intuitive motivation
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● Consider a graph-type core:
○ (:City { name STRING, url URL }) 
○ (:Person { name STRING, birthdate DATE })
○ (:Person { name STRING, birthdate DATE })

  -[:worksIn { start DATE}]->
(:City { name STRING, url URL })

● Assuming all vertex types in edge types are explicitly declared, this maps 
straightforwardly to a graph where types are the attribute values:

○ (c :City { name=STRING, url=URL }) 
○ (p :Person { name=STRING, birthdate=DATE })
○ (p)-[w: worksIn { start=DATE}]->(c)

● This implies a natural notion of homomorphism from property graphs to 
(property graphs that represent) graph-type cores.
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Graph-to-Core homomorphisms
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Property graph:

● (c1 :City {name=“London”,
           url=“london.org.uk”})

● (c2 :City {name=“Brussels”,
           url=“www.brussels.eu”})

● (p1 :Person {name=“Jan Hidders”, 
           birthdate=“01-01-1980”})

● (p1)-[w1: worksIn
      {start=“15-01-2020”}]->(c1)

● (p1)-[w2: livesIn
      {start=”15-09-2015”}]->(c2)

E.g. { c1 ↦ c, “London” ↦ STRING, c2 ↦ c, … }

Core graph:

● (c :City {name=STRING, url=URL}) 
● (p :Person {name=STRING, 

            birthdate=DATE})
● (p)-[w1: worksIn {start=DATE}]->(c)
● (p)-[w2: livesIn {start=DATE}]->(c)

Graph-to-Core Homomorphism:
A substitution of (1) vertices with vertices and (2) 
property values with a type they strictly conform 
to, that maps the property graph to the the 
schema graph.
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Strict-conformance definition
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Definition #3: We say that a property graph strictly conforms to a graph-structure type if 
there is a graph-to-core homomorphism from the property graph to the graph of the 
graph-type core.
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Is it really different? Is it a separate proposal?
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● Is there actually a difference with the at-least-one-match and the 
exactly-one-match semantics?

● These all coincide with the homomorphism-based semantics if every 
attribute value strictly conforms to exactly one attribute type

● As stated earlier: opinion in GS-Basic is divided on if this assumption is 
reasonable

● If it is not valid, validation complexity is non-tractable where it is tractable for all 
other proposals.
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Concern #1: Isolation-awareness
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Motivating example
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● Graph-type core:
○ (:Person { name STRING, birthdate DATE })
○ (:Person { name STRING, birthdate DATE })

  -[:worksIn { start DATE}]->
(:City { name STRING, url URL })

● This, under the previous semantics does not allow worksIn edges.
○ Because there is no vertex type  (:City { name STRING, url URL }

● This indicates room for a more sophisticated semantics:
○ The edge type justifies the nodes involved in the edge
○ The vertex type is only needed to justify isolated vertices.

● So under the given graph-structure type persons without work are allowed to 
exist but cities must have at least one person working in them.
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More motivation
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● In RDF the general rule is that nodes cannot exist without edges
○ This interpretation allows to enforce similar behavior for property graphs

● Permanently-isolated nodes of a given type are how you represent an 
SQL table in a GQL graph

● Conceptual data modelling methods such as Fact-Based Modeling, have 
a related notion: independent object types.
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Strict-conformance definition
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Definition #4: We say that a property graph strictly conforms to a graph-type core if 

● for every edge in the graph there is an edge type in the core that it exactly matches and
● for every isolated vertex in the graph there is a vertex type in the core that it exactly 

matches. 

NOTE: This is the isolation-aware variant of the at-least-one-match 
semantics. It is also possible to define such a variant of the 
exactly-one-match semantics and the homomorphism-based semantics.
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Strict-conformance examples (1/3)
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Graph-type core:

● (:Person { name STRING, 
 birthdate DATE })

● (:Person { name STRING, 
 birthdate DATE })

  -[:worksIn { start DATE}]->
(:City { name STRING, 
         url URL })

Graph

● (v1 :Person {name=”Jan Hidders”,
             birthdate=”1980-01-01”})

● (v2 :City {name=”London”,
           url=”www.london.org”})

● (v1)
  -[e1 :worksIn {start=”2020-01-01”}]->
(v2)

Does strictly conform
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Strict-conformance examples (2/3)
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Graph-type core:

● (:Person { name STRING, 
 birthdate DATE })

● (:Person { name STRING, 
 birthdate DATE })

  -[:worksIn { start DATE}]->
(:City { name STRING, 
         url URL })

Graph

● (v1 :Person {name=”Jan Hidders”,
             birthdate=”1980-01-01”})

Does strictly conform
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Strict-conformance examples (3/3)
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Graph-type core:

● (:Person { name STRING, 
 birthdate DATE })

● (:Person { name STRING, 
 birthdate DATE })

  -[:worksIn { start DATE}]->
(:City { name STRING, 
         url URL })

Graph

● (v2 :City {name=”London”,
           url=”www.london.org”})

Does not strictly conform:

● v2 is isolated, but does not match vertex type
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Should the semantics be isolation-aware?
● GOOD: Gives meaning to otherwise meaningless graph-structure types
● GOOD: Adds useful concept
● BAD: Adds some complexity to semantics
● GOOD/BAD: Concept can be expressed as well with (sophisticated) 

cardinality constraints
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Open Questions
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Open questions / future work
● How to define the semantics of optional attributes?
● How to define the semantics of union types?
● What is an appropriate syntax for type variables?
● What is the syntax and semantics for inheritance?
● How to introduce (partially) open types for partially open schemas?
● Which constructs can approximate conceptual data models?
● What is the semantics of undirected-edge types?
● Why and how to introduce nominal typing?
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Conclusion

38
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Conclusion
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The issues that keep us from making a single clear recommendation:

● Can we assume that every attribute value has exactly one attribute 
type it strictly conforms to?

● Do we want the semantics to be isolation-aware?
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Agenda
● Goal
● Background
● Motivating use cases
● Requirements distilled
● Proposed CRUD behaviors
● Formal definitions
● Work in progress
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Meta-properties
WG3 report: 2020-6-4

Bei Li

1
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Goal
● Share the current status of the subtrack
● Gather feedback
● Syntaxes are for illustration purposes only
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Background: property graph description
A property graph is defined as consisting of: 

(1) a set of vertices such that each vertex has some associated vertex content,

(2) a set of edges such that each edge has an associated (a) tail vertex, (b) edge content and (c)
head vertex. The tail and head vertices of each edge must be in the set of vertices.

The content that is associated with vertices and edges is a finite record that maps attribute names 
to attribute values. 

Both vertices and edges are assumed to be represented by an abstract identity, and so it is 
possible that a graph contains two vertices with the same content, and two edges that have the 
same tail vertex, head vertex and content.

* definition adopted from ISO/IEC JTC1 SC32 WG3 WG3:mmx069-LDBC_PGS-B_BAS-01
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Background: property graph definition

Definition: A property graph is a tuple G = (V, E, A, 𝜌, 𝛼) where

● V is a set of vertex identities,
● E is a set of edge identities,
● A is a set of attribute identities such that V, E and A are pairwise disjoint,
● 𝜌 : E → (V × V) maps each edge identity to a pair of vertex identities
● 𝛼 : A  → ((V ⋃ E) ⨉ A  ⨉ V) maps each attribute identity to a triple containing (1) the

element that it is an attribute of, (2) its name and (3) its value. Every attribute identity in
A is identified by the first two components.
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Motivating use case: Wikidata

Node

Property

Meta-property

Cannot be modelled natively with Property Graph
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Motivating use case: others

● Provenance
● Fuzzy and trust
● Valid time
● Timestamp
● Units
● Location
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Requirements: must-haves
1. Any extensions to the PG data model should not break existing work.
2. Support for meta-properties of simple or complex-valued properties.
3. Meta-properties should be queryable similar to regular properties.
4. The typing system should be able to control which meta-properties are

allowed where and what their values are. This applies both at the graph
schema level and within the property values.
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Requirements: optional
5. Support for meta-properties of components of complex values (e.g. record

attributes, list elements, map keys or map values).
a. For example, an Address property which is broken down to street number, name and city

could have meta-properties at the level of the Address record as a whole, but also at the level
of each constituent components.
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Simple value types
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DDL
CREATE GRAPH TYPE Stats {

  (City :City {

    name STRING, 

    population INTEGER { 

point_in_time DateTime { confidence_score FLOAT },

determination_method STRING 

    }})

} Meta-properties for ‘population’

Meta-properties for ‘point_in_time’

properties
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DML: INSERT
INSERT (n:City 

        { 

          name: "Berlin", 

          population: 3.5M { 

            point_in_time: 2005 { confidence_score: 0.99 } 

          }

        })

RETURN n
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DQL: READ
MATCH (n:City { name = "Berlin" })

RETURN n.population, n.population.point_in_time, 

       n.population.*

population population.point_in_time population.*

3.5M 2005 3.5M { point_in_time … }

Binding table
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DML: UPDATE
UPDATE (n:City { name = "Berlin" })

SET n.population = 3.5M { point_in_time: 2005 { confidence_score: 1.0 } }

UPDATE (n:City { name = "Berlin" })

SET n.population.point_in_time = 2005 { confidence_score: 1.0 }

UPDATE (n:City { name = "Berlin" })

SET n.population.point_in_time.confidence_score = 1.0
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DML: DELETE
MATCH (n:City { name = "Berlin" })

REMOVE n.population

MATCH (n:City { name = "Berlin" })

REMOVE n.population.point_in_time

MATCH (n:City { name = "Berlin" })

REMOVE n.population.point_in_time.confidence_score
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Complex value types
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DDL: collection type
CREATE GRAPH TYPE Stats {

  (City :City { 

    name STRING,

    zip_codes [INTEGER { creation_time DateTime }] {

      point_in_time DateTime 

    }})

} Meta-properties for ‘zip_codes’

Meta-properties for individual zip codes
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DML: INSERT - collection type
INSERT (n:City 

        { 

          name: "Berlin", 

          zip_codes: [10115 { creation_time: 1962 },

                      10117 { creation_time: 1965 }] { 

            point_in_time: 2005 

          }     

        })

RETURN n
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DDL - record type
CREATE GRAPH TYPE Stats {

  (City :City {

    name STRING,

    mayor { 

      first_name STRING { last_edit UINT64 }, 

      last_name  STRING { last_edit UINT64 }

    } { since DateTime })

}

Meta-properties for first / last name

Meta-properties for ‘major’
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DML: INSERT - record type
INSERT (n:City { 

          name: "Berlin",

          mayor: { 

            first_name: "Michael" { last_edit: 1420070400 } , 

            last_name:  "Müller"  { last_edit: 1420070400 } } { 

              since: 12/11/2014

            }

          })

RETURN n
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Formal definitions

21



Formal definition: perspective 1 - record type
Definition: The set of annotated attribute types Tattr

@
 is recursively defined as a type of 

the form type1@type2 where:
● type1 is one of the following :

○ a basic type
○ a record type with fields that have all annotated attribute types 
○ a collection type parameterized with annotated attribute types

● type2 is a record type where all field types are again of annotated attribute types.

Major changes: (a) introduce a new data type “annotated attribute type”. The definition of 
property graph remains unchanged.
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Examples: perspective 1

Type Example values

STRING

STRING@{}

“Berlin”

INTEGER
    @{ point_in_time: DateTime }

2.5M

2.5M { point_in_time: 2005 }
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Examples: perspective 1 cont.

Type Example values

[INTEGER@{ creation_time: DateTime }]
    @{ point_in_time: DateTime }

[10115 { creation_time: 1962 }, 10117 { creation_time: 1965 }] { point_in_time: 2005 }

[10115 { creation_time: 1962 }, 10117 { creation_time: 1965 }]

[10115 { creation_time: 1962 }, 10117]

[10115, 10117]

null { point_in_time: 2005 } 

{ first_name: STRING }
    @{ since: DateTime }

{ first_name: “Michael” } { since: 12/2004 }

{ first_name: “Michael” }

null@{ since: 12/2004 }
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Formal definition: perspective 2 - APG
Definition: A property graph with meta-properties is a tuple G = (V, E, A, 𝜌, 𝛼) where

● V is a set of vertex identities,
● E is a set of edge identities,
● A is a set of attribute identities such that V, E and A are pairwise disjoint,
● 𝜌 : E → (V × V) maps each edge identity to a pair of vertex identities
● 𝛼 : A  → ((V ⋃ E ⋃ A) ⨉ A  ⨉ V) maps each attribute identity to a triple containing (a) the 

element that it is an attribute of, (b) its name and (c) its value, so that an attribute 
cannot directly or indirectly be its own attribute. Every attribute identity in A is identified 
by the first two components. 

Major changes: (a) We in addition allow elements of A in the first component of 𝛼, (b) We 
drop the identification constraint for attributes.
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Examples: perspective 2

Identity the element that it 
is an attribute of

name value

$nn $n name “Berlin”

$np $n population 3.5M

$np1 $np point_in_time 2005

$np2 $np provenance "wikipedia"

$np11 $np1 writer "admin"

In this example, $n is a node variable.
26



Perspective 2 - observation
● Pros

○ Get multivalued properties for free, because each property has an identity, thus properties with 
the same name on the same graph element can coexist.

○ Get meta-properties on the elements of the collections for free (using multi-valued properties)

● Cons
○ Need to extend the graph elements definition in Property Graph, to include properties in 

addition to nodes and edges.
○ Cannot attach meta-properties to components of complex values
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Comparison: summary
Requirements Record type APG

1, Any extensions to the PG data model should not break existing 
work.

Yes Yes

2, Support for meta-properties of simple or complex values. Yes Yes

3, Meta-properties should be queryable just like regular 
properties.

Yes Yes

4, The typing system should be able to control which 
meta-properties are allowed where and what their values are.

Yes Yes

5, Support for meta-properties of components of complex values Yes No

28



Work in progress
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Ambiguity
CREATE GRAPH TYPE Stats {

  (City :City {

    score: { 

      livability FLOAT,     // livability score of the city

      confidence FLOAT      // confidence about the city 

    } {  

      confidence FLOAT      // confidence about the `score`

    }})

}

Which ‘confidence’ does ‘n.score.confidence’ refer to?
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Disambiguation: option 1
Distinguish the two cases:

● “.” to access values
● “@” to access meta-properties
● “#” to access both values and their meta-properties

n.score.confidence  // ‘confidence’ field of the value.

n.score@confidence  // ‘confidence’ meta-property.

n.score#            // the entire value and its meta-properties.
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Disambiguation: option 1 examples
mayor      // returns the plain value of ‘major’.
{ first_name: "Michael", last_name:  "Müller" }

mayor.*    // returns everything about ‘major’’s value.
{ first_name: "Michael" { last_edit: 1420070400 } , 

  last_name:  "Müller"  { last_edit: 1420070400 } }

mayor@*    // returns everything about ‘mayor’’s meta-properties.
{ since: 12/11/2014 }

mayor#*    // returns everything about ‘mayor’. ‘*’ is optional.
{ first_name: "Michael" { last_edit: 1420070400 } , 

  last_name:  "Müller"  { last_edit: 1420070400 } } { since: 12/11/2014 }
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Disambiguation: option 2
● Allow meta-properties on atomic values and collections.
● Meta-properties on records are represented as fields in the record prefixed 

with @.
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Comparison option 1 and option 2
Option 1

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false}

 }@{since: 4-May-2005}

}

● X.name ⇒ "Berlin”

● X.name@src ⇒ “Wikipedia”

● X.mayor.first_name ⇒ "Michael"

● X.mayor@since ⇒ 4-May-2005

Option 2

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false},

   @since: 4-May-2005

 }

● X.name ⇒ "Berlin”

● X.name.src ⇒ “Wikipedia”

● X.mayor.first_name ⇒ "Michael"

● X.mayor.@since ⇒ 4-May-2005
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Comparison option 1 and option 2
Option 1

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false}

 }@{since: 4-May-2005}

}

● X.mayor.* ⇒ {first_name: "Michael"
              @{verified: true}, 

             last_name: "Müller"

              @{verified: false}

            }

Option 2

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false},

   @since: 4-May-2005

 }

● X.mayor.* ⇒ {first_name: "Michael"
                 @{verified: true}, 

               last_name: "Müller"

                 @{verified: false}

              }
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Comparison option 1 and option 2
Option 1

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false}

 }@{since: 4-May-2005}

}

● X.mayor@* ⇒ {since: 4-May-2005}

Option 2

● X
 
 = {

 name: "Berlin”@{src: “Wikipedia”},

 population: 3.5M@{precision: .1M},

 mayor: { 

   first_name: "Michael"

           @{verified: true}, 

   last_name: "Müller"

           @{verified: false},

   @since: 4-May-2005

 }

● X.mayor.@* ⇒ {since: 4-May-2005}
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Questions?
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Design principles for key constraints
1. Should support definition of key constraints on node, edge, and path objects (but, not critically

rely on this initial scoping).

2. Key constraints are a variety of equality-generating dependencies (EGDs), of which, in the
relational world, functional dependencies (and hence super/candidate/primary keys) are a
special case.

3. Basic ingredients for defining key constraints:  object labels (aka “types”), property-values,
and object identities.

4. We adopt homomorphic matching semantics (instead of isomorphic matching semantics) for
pattern matching component of key constraints, as this matches user intuition and is
computationally well-behaved.

5. We balance a visionary design for the future of property graph key constraints, with a design
with good potential for practical impact. 2



Key constraints
A key constraint is an expression of the form

{p1 , … , pn} : {s1 , … , sm} → x
where:

● x, the target of the constraint, is of the form x or of the form x.a, where x is an 
object variable and a is an attribute name,

● {s1,...,sm} is a set of m ≥ 0 selectors on objects v and their attributes v.a, and
● {p1,…,pn} is a graph pattern

○ non-empty set of atomic expressions, i.e., expressions of the form: t(y) [type patterns],          
(y, z, w) [edge patterns], (y, (z, r), w) [path patterns], y.a θ z.b, or y.a θ c [attribute patterns]

○ essentially, a Conjunctive Regular Path Query with attribute filters

such that every variable appearing in x and {s1,...,sm} also appears in {p1,…,pn}.  
 

3



Key constraints

Intuitively, a key constraint 

{p1 , … , pn} : {s1 , … , sm} → x

states that “In the graph query defined by {p1,…,pn}, 
x is identified by 

- the identities of objects and
- values of attributes

selected by {s1,...,sm}.”

See report for full details, including formal syntax/semantics.
4



Key constraints

In other words, the key constraint 

{p1 , … , pn} : {s1 , … , sm} → x

holds on a property graph G if and only if, 

for any two matches m1 and m2 of {p1,…,pn}  in G, 

if m1(s) = m2(s) for every element s of {s1,...,sm}, then m1(x) = m2(x).

See report for full details, including formal syntax/semantics.

5



Key constraints

We will write 
{p1 , … , pn} : {s1 , … , sm} → x

in pseudocode as

WHERE p1 , … , pn 

REQUIRE s1 , … , sm IDENTIFIES x

6



Key constraints: node key example 1

[Key constraint for nodes, only reasoning about local attributes] 
The “name” property should be a key of countries. More precisely, the name 
property of a country node should identify the country node.  Here, we have the 
graph pattern { Country(x) }, selector set  { x.name }, and target x. 

WHERE (x:Country)

REQUIRE x.name IDENTIFIES x

In other words, given any two nodes n1 and n2 labeled Country, if they have the 
same value for the property name, then it must be the case that n1 = n2.

 7



Key constraints: node key example 2
[Key constraint for nodes, reasoning about both local attributes and graph topology]  
Cities are identified by their name and the country they are in. More precisely, this 
means that the combination of the name property of a city node, with the country 
node to which it has an isPartOf edge, identifies the city node.

WHERE (x:City)-[y:isPartOf]->(z:Country)

REQUIRE x.name, z IDENTIFIES x

In other words, given any two nodes n1 and n2 labeled City, if they have the same 
value for the property name and both have an isPartOf edge to a common node 
n3 labeled Country, then it must be the case that n1 = n2.

8



Key constraints: edge key example
[Key constraint for edges]
People can study at the same university in different years, but for a given year, the 
studyAt edge between a person and a university is unique.  

WHERE (x:Person)-[y:studyAt]->(z:University)

REQUIRE x, y.year, z IDENTIFIES y

In other words, given any two edges e1 and e2 labeled studyAt, if they have the 
same source node ns labeled Person, the same target node nt labeled 
University, and have the same value for the property year, then it must be the 
case that e1 = e2. 9



Key constraints: path key example
[Key constraint for paths] Suppose that companies directly and indirectly transfer 
money between each other (initiated by a transfer activity), and it is crucial (e.g., 
for auditing) that chains of transfer between companies are unique.  For a given 
transfer, the transferID property value of each edge in the transfer chain must 
be the same as the ID property value of the transfer activity.

WHERE (a:Activity)-[x:initiatedBy]->(c1:Company)-/v <([:Transfer {transferID: a.ID} ])*> /->(c2:Company)

REQUIRE c1, c2 IDENTIFIES v

In other words, given any two paths v1 and v2 , if they both have the same Company 
source node, the same Company target node, every edge along both paths has label 
Transfer and have transferID value equal to the ID value of an Activity node 
having an initiatedBy edge to the source node, then it must be the case that v1 = v2.

10



Questions
1. What is the minimally expressive fragment necessary to express schemas 

that capture E/R models or to express constraints on data imported from a 
relational database?

2. Are key constraints computationally well-behaved?

11



Can we enforce relational keys as PG key constraints?

Yes.  

The proposed model can exactly describe constraints that arise from translating 
relational primary key constraints (using natural relational-to-graph translations).

● Simple fragment, see report for details.

If foreign key constraints are also present, then we need to constrain cardinalities 
(need to be able to say “exactly one”).

● Cardinality constraints are currently the main focus of our work in the GS 
keys/constraints group.

12



Are key constraints computationally well-behaved?
Yes.

We have established that the validation problem (i.e., determining whether or not a 
given property graph satisfies a given key constraint), while intractable in general, 
is in polynomial time for a large subclass of CRPQ which covers over 99% of 
graph patterns observed in practice, namely:

tree-shaped graph patterns

Furthermore, our semantics of keys allows us to use existing query evaluation 
infrastructure for the validation problem

A subgroup is continuing this study, also for problems such as incremental 
validation, error reporting, and implication. 13



Open design issues
{p1 , … , pn} : {s1 , … , sm} → x

I. We do not place any constraints on the structure of the graph query defined by 
{p1,…,pn}.  It is natural to consider restrictions such as acyclicity, bounded size, 
connectivity, ….  

Similarly, we could constrain {s1,…,sm}, e.g., no edge or path variables.

II. We could consider richer/weaker query constructs or even completely different query 
languages for expressing queries.

III. Further basic reasoning problems should be studied, such as incremental validation, 
consistency, and implication.

IV. Better practical syntax and/or graphical notation for keys (along with the general 
graphical notation for schemas) should be studied. 14
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