
OAEP-2023-03 DOI: 10.54285/ldbc.KKHM1756

Published on LDBC’s website April 2023

Originally published on the Github organization and public website of
opencypher.org, the openCypher open source community, under the terms of the
openCypher Contributor Agreement and the consequential Apache Software License
2.0 grant by Neo4j Inc.

Cypher schema constraints proposal
CIP2016-12-16 “Constraints syntax”, Mats Rydberg

♦

A presentation summarizing this proposal is appended

“Schema and constraints”, Mats Rydberg

First openCypher Implementers Meeting (oCIM 1) - 8 February 2017
SAP Walldorf, Germany

1

LDBC Open Access to External Papers

In this series, Linked Data Benchmark Council makes papers published originally for
a restricted audience available for open access.

Such papers are of interest to our members and the public, and are concerned with
topics that relate to the work of LDBC. They are published with the permission of
their copyright holders, which may have been given by a licence grant.

This article and accompanying presentation are relevant for the work of the LEX
(LDBC Extended GQL Schema) Working Group.

These documents have the character of technical reports: they have not been
submitted to or accepted via peer review by an established scholarly publication.

CopyrightⒸ 2019-23 Neo4j Inc.

Linked Data Benchmark Council by the terms of our LDBC membership agreement
and the IP policies contained therein hereby licences these documents Attribution
4.0 International (CC BY 4.0), in accordance with our Byelaws.

2

https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf
https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

CIP2016-12-16 Constraints syntax

Author: Mats Rydberg <mats@neotechnology.com>

Abstract

This CIP describes syntax and semantics for Cypher constraints. These are language constructs that impose
restrictions on the shape of the data graph, and how statements are allowed to change it.

Table of Contents

1. Background

2. Proposal

2.1. Syntax

2.2. Semantics

2.3. Examples

2.4. Interaction with existing features

2.5. Alternatives

3. What others do

4. Benefits to this proposal

5. Caveats to this proposal

1. Background

Cypher has a loose notion of a schema, in which nodes and relationships may take very heterogeneous forms, both in
terms of properties and in graph patterns. Constraints allow us to mould the heterogeneous nature of the property graph
into a more regular form.

2. Proposal
This CIP specifies the general syntax for constraint definition (and constraint removal), and provides several examples of

possible use cases for constraints. However, the specification does not otherwise specify or limit the space of expressible
constraints that the syntax and semantics allow.

This specification also covers the return structure of constraint commands, see Return record.

2.1. Syntax

The constraint syntax is defined as follows:

Grammar definition for constraint syntax.

References to existing grammar parts:

<SymbolicName>

<Pattern>

<Expression>

<PropertyExpression>

References to new grammar parts:

<ConstraintCommand>

<CreateConstraint>

<DropConstraint>

<ConstraintPredicate>

<Unique>

<NodeKey>

<GroupedPropertyExpression>

The REQUIRE clause works exactly like the WHERE clause in a standard Cypher query, with the addition of also supporting
the special constraint operators IS UNIQUE , IS NODE KEY , and the new <GroupedExpression> expression. This allows
for complex concrete constraint definitions (using custom predicates) within the specified syntax.

For details on IS UNIQUE , IS NODE KEY , and <GroupedExpression> , see the dedicated sections below: Uniqueness,

Node key, Grouped expression.

The term 'constraint expression' is used in the following to describe the expressions that constitute the body of the
constraint predicate.

2.1.1. Constraint names

All constraints provide the user the option to specify a nonempty name at constraint creation time. This name is

subsequently the handle with which a user may refer to the constraint, for example when dropping it. In the case where a
name is not provided, the system will generate a unique name.

2.1.2. Removing constraints

A constraint is removed by referring to its name.

Example of dropping a constraint with name foo :

2.2. Semantics

The semantics for constraints follow these general rules:

1. The constraint pattern define the constraint domain, where all elements that would be returned by a MATCH clause

with the same pattern constitute the domain, with one notable exception (see 3.).

2. The constraint expressions defined in the REQUIRE clauses of the constraint definition must all evaluate to true , at all

times.

3. Elements for which a constraint expression evaluate to null under Cypher’s ternary logic are excluded from the

constraint domain, even if they fit within the constraint pattern.

4. The constraint expression must be deterministic and free of side effects (such as graph mutations).

2.2.1. Errors

The following list describes the situations in which an error will be raised:

Attempting to add a constraint on a graph where the data does not comply with a constraint predicate.

Attempting to add a constraint with a name that already exists.

Attempting to add a constraint that the underlying engine does not support enforcing.

Attempting to drop a constraint referencing a non-existent name.

Attempting to modify the graph in such a way that it would violate a constraint.

2.2.2. Mutability

Once a constraint has been added, it may not be amended. Should a user wish to change a constraint definition, the

constraint has to be dropped and added anew with an updated structure.

2.2.3. Grouped expression

This CIP introduces the concept of a grouped expression, consisting of one or more property expressions. A grouped
expression expresses a new value type in Cypher: a tuple type. This type exists only for the purposes of the IS UNIQUE and

IS NODE KEY operators and this CIP does not further extend its applicability.

The tuple type is composed of the types of the property expressions. These rules apply:

1. When one of the contained property expressions is null , the tuple type is also null .

2. When compared for equality to another tuple type, the comparison is equivalent to comparing the property

expressions of the tuples respectively, in a conjunction.

A wider definition is not necessary for this type to satisfy the requirements of the IS UNIQUE and IS NODE KEY
operators.

2.2.4. Uniqueness

The new operator IS UNIQUE is only valid as part of a constraint predicate. It takes as argument a grouped expression,

and asserts that it is unique across the domain of the constraint. Following on rule 3. above, elements for which the
grouped expression is null are not part of the constraint domain. In particular, in the case where the grouped expression
is a single property expression, this means that the uniqueness constraint does not hinder the existence of multiple
elements having a null value for the specified property.

Example of a constraint definition using IS UNIQUE , over the domain of nodes labeled with :Person :

2.2.5. Node key

The new operator IS NODE KEY is only valid as part of a constraint predicate. It takes as argument a grouped expression,
and asserts that two conditions hold:

1. Each property expression within the grouped expression cannot be null .

2. The grouped expression is unique across the domain of the constraint.

By way of 1. the node key constraint avoids applicability of rule 3. above. The domain of a node key constraint is thus
exactly defined as all elements which fit the constraint pattern.

Example of a constraint definition using IS NODE KEY , over the domain of nodes labeled with :Person :

The node key constraint can be equivalently expressed using a combination of the IS UNIQUE and IS NOT NULL
operators. The below example illustrates this.

Example of a constraint definition using IS UNIQUE and IS NOT NULL , over the domain of nodes labeled with :Person :

2.2.6. Compositionality

It is possible to define multiple REQUIRE clauses within the scope of the same constraint. The semantics between these is

that of a conjunction (under standard 2-valued boolean logic) between the constraint predicates of the clauses, such that
the constraint is upheld if and only if for all REQUIRE clauses, the joint predicate evaluates to true .

2.2.7. Return record

Since constraints always are named, but user-defined names are optional, the system must sometimes generate a
constraint name. In order for a user to be able to drop such a constraint, the system-generated name is therefore returned
in a standard Cypher result record. The result record has a fixed structure, with three string fields: name , definition ,

and details .

A constraint command will always return exactly one record, if successful. Note that also DROP CONSTRAINT will return a
record.

Name

This field contains the name of the constraint, either user- or system-defined.

Definition

This field contains the constraint definition, which is the contents of the constraint creation command following (and

including) the FOR clause.

Details

The contents of this field are left unspecified, to be used for implementation-specific messages and/or details.

Return record example

Consider the following constraint:

A correct result record for it could be:

2.3. Examples

In this section we provide several examples of constraints that are possible to express in the specified syntax.

NOTE

The specification in this CIP is limited to the general syntax of constraints, and the following are simply

examples of possible uses of the language defined by that syntax. None of the examples provided are to be
viewed as mandatory for any Cypher implementation.

Consider the graph added by the statement below. The graph contains nodes labeled with :Color . Each color is

represented as an integer-type RGB value in a property rgb . Users may look up nodes labeled with :Color to extract
their RGB values for application processing. Users may also add new :Color -labeled nodes to the graph.

Owing to the duplication of the rgb property, the following attempt at adding a constraint will fail:

Now, consider the following query which retrieves the RGB value of a color with a given name :

The WHERE clause is here used to prevent an application from retrieving null values for user-defined colors where the
RGB values have not been specified correctly. It may, however, be eliminated by the introduction of a constraint asserting
the existence of that property:

Any updating statement that would create a :Color node without specifying an rgb property for it would now fail.

If we instead want to make the combination of the properties name and rgb unique, while simultaneously mandating

their existence, we could use a NODE KEY operator to capture all these requirements in a single constraint:

This constraint will make sure that all :Color nodes has a value for their rgb and name properties, and that the
combination is unique across all the nodes. This would allow several :Color nodes named 'grey' , as long as their rgb
values are distinct.

More complex constraint definitions are considered below:

Multiple property existence using conjunction

Using larger pattern

Property value limitations

Cardinality

Endpoint requirements

Label coexistence

Assuming a function acyclic() that takes a path as argument and returns true if and only if the same node does not
appear twice in the path, otherwise false , we may express:

Constraint example from CIR-2017-172

2.4. Interaction with existing features

The main interaction between the constraints and the rest of the language occurs during updating statements. Existing

constraints will cause some updating statements to fail, thereby fulfilling the main purpose of this feature.

2.5. Alternatives

Alternative syntaxes have been discussed:

GIVEN , CONSTRAIN , ASSERT instead of FOR

ASSERT , ENFORCE , IMPLIES instead of REQUIRE

ADD instead of CREATE

It is desirable for verb pairs for modifying operations to be consistent in the language, and recent discussions are (so

far informally) suggesting INSERT / DELETE to be used for data modification, thus making CREATE and DROP
available for schema modification such as constraints.

Using a prefix model for uniqueness and node keys, alike REQUIRE UNIQUE (n.a, n.b)

This was discarded in favour of the suffix model due to similarity with already existing IS NOT NULL . Prefix

operators are uncommon in Cypher.

The use of an existing expression to express uniqueness — instead of using the operator IS UNIQUE  — becomes unwieldy
for multiple properties, as exemplified by the following:

3. What others do

In SQL, the following constraints exist (inspired by http://www.w3schools.com/sql/sql_constraints.asp):

NOT NULL - Indicates that a column cannot store a null value.

UNIQUE - Ensures that each row for a column must have a unique value.

PRIMARY KEY - A combination of a NOT NULL and UNIQUE . Ensures that a column (or a combination of two or more
columns) has a unique identity, reducing the resources required to locate a specific record in a table.

FOREIGN KEY - Ensures the referential integrity of the data in one table matches values in another table.

CHECK - Ensures that the value in a column meets a specific condition

DEFAULT - Specifies a default value for a column.

The NOT NULL SQL constraint is expressible using an exists() constraint predicate. The UNIQUE SQL constraint is
exactly as Cypher’s IS UNIQUE constraint predicate. The PRIMARY KEY SQL constraint is exactly as Cypher’s IS NODE
KEY constraint predicate.

SQL constraints may be introduced at table creation time in a CREATE TABLE statement, or in an ALTER TABLE
statement:

Creating a Person table in SQL Server / Oracle / MS Access:

Creating a Person table in MySQL:

Adding a named composite UNIQUE constraint in MySQL / SQL Server / Oracle / MS Access:

4. Benefits to this proposal

Constraints make Cypher’s notion of schema more well-defined, allowing users to maintain graphs in a more regular,
easier-to-manage form.

Additionally, this specification is deliberately defining a constraint language within which a great deal of possible concrete
constraints are made possible. This allows different implementers of Cypher to independently choose how to limit the
scope of supported constraint expressions that fit their model and targeted use cases, while retaining a common and
consistent semantic and syntactic model.

5. Caveats to this proposal

Some constraints may prove challenging to enforce in a system seeking to implement the contents of this CIP, as these
generally require scanning through large parts of the graph to locate conflicting elements.

<ConstraintCommand> ::=
 <CreateConstraint>
 | <DropConstraint> ;

<DropConstraint> ::=
 "DROP", "CONSTRAINT", <SymbolicName> ;

<CreateConstraint> ::=
 "CREATE", "CONSTRAINT", [<SymbolicName>],
 "FOR", <Pattern>,
 "REQUIRE", <ConstraintPredicate>,
 { "REQUIRE", <ConstraintPredicate> } ;

<ConstraintPredicate> ::=
 <Expression>
 | <Unique>
 | <NodeKey> ;

<Unique> ::=
 <GroupedPropertyExpression>, "IS", "UNIQUE" ;

<NodeKey> ::=
 <GroupedPropertyExpression>, "IS", "NODE", "KEY" ;

<GroupedPropertyExpression> ::=
 <PropertyExpression>
 | "(", <PropertyExpression>, { ",", <PropertyExpression> }, ")" ;

DROP CONSTRAINT foo

CREATE CONSTRAINT only_one_person_per_name
FOR (p:Person)
REQUIRE p.name IS UNIQUE

CREATE CONSTRAINT person_details
FOR (p:Person)
REQUIRE (p.name, p.email, p.address) IS NODE KEY

CREATE CONSTRAINT person_details
FOR (p:Person)
REQUIRE (p.name, p.email, p.address) IS UNIQUE
REQUIRE p.name IS NOT NULL
REQUIRE p.email IS NOT NULL
REQUIRE p.address IS NOT NULL

CREATE CONSTRAINT myConstraint
FOR (n:Node)
REQUIRE (n.prop1, n.prop2) IS NODE KEY

name | definition | details

myConstraint | FOR (n:NODE) | n/a

 | REQUIRE (n.prop1, n.prop2) IS NODE KEY |

CREATE (:Color {name: 'white', rgb: 0xffffff})
CREATE (:Color {name: 'black', rgb: 0x000000})
CREATE (:Color {name: 'very, very dark grey', rgb: 0x000000}) // rounding error!

CREATE CONSTRAINT only_one_color_per_rgb
FOR (c:Color)
REQUIRE c.rgb IS UNIQUE

MATCH (c:Color {name: $name})
WHERE c.rgb IS NOT NULL
RETURN c.rgb

CREATE CONSTRAINT colors_must_have_rgb
FOR (c:Color)
REQUIRE c.rgb IS NOT NULL

CREATE CONSTRAINT color_schema
FOR (c:Color)
REQUIRE (c.rgb, c.name) IS NODE KEY

CREATE CONSTRAINT person_properties
FOR (p:Person)
REQUIRE p.name IS NOT NULL AND p.email IS NOT NULL

CREATE CONSTRAINT not_rating_own_posts
FOR (u1:User)-[:RATED]->(:Post)<-[:POSTED_BY]-(u2:User)
REQUIRE u.name <> u2.name

CREATE CONSTRAINT road_width
FOR ()-[r:ROAD]-()
REQUIRE 5 < r.width < 50

CREATE CONSTRAINT spread_the_love
FOR (p:Person)
REQUIRE size((p)-[:LOVES]->()) > 3

CREATE CONSTRAINT can_only_own_things
FOR ()-[:OWNS]->(t)
REQUIRE (t:Vehicle) OR (t:Building) OR (t:Object)

CREATE CONSTRAINT programmers_are_people_too
FOR (p:Programmer)
REQUIRE p:Person

CREATE CONSTRAINT enforce_dag_acyclic_for_R_links
FOR p = ()-[:R*]-()
REQUIRE acyclic(p)

FOR (p:Person), (q:Person)
REQUIRE p.email <> q.email AND p.name <> q.name AND p <> q

CREATE TABLE Person
(

 P_Id int NOT NULL UNIQUE,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255)

)

CREATE TABLE Person
(
 P_Id int NOT NULL,
 LastName varchar(255) NOT NULL,
 FirstName varchar(255)
 UNIQUE (P_Id)

)

ALTER TABLE Person
ADD CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)

mailto:mats@neotechnology.com
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=SymbolicName
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=Pattern
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=Expression
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=PropertyExpression
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=Command
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=CreateConstraint
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=DropConstraint
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=ConstraintPredicate
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=Unique
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=NodeKey
https://raw.githack.com/openCypher/openCypher/master/tools/grammar-production-links/grammarLink.html?p=GroupedPropertyExpression
http://www.w3schools.com/sql/sql_constraints.asp

opencypher.orgopencypher.org | opencypher@googlegroups.com

Schema and Constraints

Mats Rydberg
mats@neotechnology.com

opencypher.orgopencypher.org | opencypher@googlegroups.com

● Cypher is schema-optional

● Fits well with heterogenous data

● Makes typing and query planning harder

● Does not fit well with many existing table-based engines

● Constraints are the only tools to enforce structure in the data

Schema in Cypher is a point where we expect there to be major

developments as more actors get involved.

Schema in Cypher

2

opencypher.orgopencypher.org | opencypher@googlegroups.com

● Consistent syntax for all types of constraints (CIP)

● Re-use as much as possible from the rest of the language

● Allow for a large set of future constraints, some of which are

vendor-specific

● This allows vendors to use more strict schema when necessary

CREATE CONSTRAINT <name>
FOR <simple pattern>
REQUIRE <constraint expression>

New constraint syntax

3

https://github.com/opencypher/openCypher/pull/166

opencypher.orgopencypher.org | opencypher@googlegroups.com

● Property uniqueness constraint
➢ CREATE CONSTRAINT unique_person_names

FOR (p:Person)
REQUIRE UNIQUE p.firstName, p.lastName

● Property existence constraint
➢ CREATE CONSTRAINT person_must_have_firstName

FOR (p:Person)
REQUIRE exists(p.firstName)

Constraints, examples

4

opencypher.orgopencypher.org | opencypher@googlegroups.com

● Property value constraint
➢ CREATE CONSTRAINT roads_must_have_positive_finite_length

FOR ()-[r:ROAD]-()
REQUIRE 0 < r.distance < infinity

● Property type constraint
➢ CREATE CONSTRAINT people_schema

FOR (p:Person)
REQUIRE p.email IS STRING
REQUIRE p.name IS STRING?
REQUIRE p.age IS INTEGER?

Constraints, examples

5

opencypher.orgopencypher.org | opencypher@googlegroups.com

● Cardinality constraints
➢ CREATE CONSTRAINT spread_the_love

FOR (p:Person)
REQUIRE size((p)-[:LOVES]->()) > 3

● Endpoint constraints
➢ CREATE CONSTRAINT can_only_own_things

FOR ()-[:OWNS]->(t)
REQUIRE (t:Vehicle) OR (t:Building) OR (t:Object)

● Label coexistence constraints
➢ CREATE CONSTRAINT programmers_are_people_too

FOR (p:Programmer)
REQUIRE p:Person

Constraints, examples

6

opencypher.orgopencypher.org | opencypher@googlegroups.com

That's it!

Questions ?

	LDBC Open Access to External Papers_ OAEP-2023-04 Cypher schema constraints proposal.April.2023 (1).pdf
	Cypher.constraints.CIP.pdf
	15-30+-+Language+Evolution-+Future+Features.pdf

