
OAEP-2023-02 DOI: 10.54285/ldbc.EPWQ6741

Published on LDBC’s website April 2023

Originally published privately within Neo4j Inc, October 2019
Published with permission by LDBC as document LEX-014, modified for public
availability by Neo4j, and previously Made available to LEX WG members.

Introduction to GQL Schema design
Neo4j Inc., October 2019, LDBC LEX-014

1

LDBC Open Access to External Papers

In this series, Linked Data Benchmark Council makes papers published originally for
a restricted audience available for open access.

Such papers are of interest to our members and the public, and are concerned with
topics that relate to the work of LDBC. They are published with the permission of
their copyright holders, which may have been given by a licence grant.

This presentation is relevant for the work of the LEX (LDBC Extended GQL Schema)
Working Group.

These papers have the character of technical reports: they have not been submitted
to or accepted via peer review by an established scholarly publication.

Copyright Ⓒ 2019-23 Neo4j Inc.

Express permission to publish has been given by the copyright holder.

Linked Data Benchmark Council by the terms of our LDBC membership agreement
and the IP policies contained therein hereby licences this presentation Attribution 4.0
International (CC BY 4.0), in accordance with our Byelaws.

2

https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf
https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf
https://creativecommons.org/licenses/by/4.0/legalcode

LEX-014
“Introduction to GQL Schema design”

This summary presentation was created by the Neo4j
Query Languages Standards and Research team in 2019 for discussion within Neo4j Inc.

The team’s members during the time this working design was produced were
Hannes Voigt, Petra Selmer, Stefan Plantikow, Tobias Lindaaker, Peter Furniss, and Alastair Green.

1

This presentation has been contributed to LDBC by Neo4j Inc. in February 2023,
to help the work of the LDBC Extended GQL Schema (LEX) Working Group,

under the terms of the LDBC Membership Agreement.

Introduction to GQL Schema design

Copyright © 2019 Neo4j Inc.

2

THIS PRESENTATION REPRESENTS PRELIMINARY DISCUSSION
WITHIN Neo4j Inc. THE MATERIAL PRESENTED HERE IS INTENDED FOR
INFORMATION PURPOSES ONLY AND MAY OR MAY NOT BE
INCORPORATED INTO ANY FUTURE PRODUCT.

Target: A UML class diagram in ASCII Art “schema patterns”
Node and relationship patterns that look like query patterns, gathered into a graph schema or type.
“Draw” the LDBC SNB data model with a keyboard.

3

An Entity-Relationship model and corresponding schema graph
The “Ullman drinking model” from the original version of Stanford’s class on data modelling, rendered
as a graph model, where Neo4j node labels and “relationship types” are used as element type names. A
schema graph.

[HTPS Querying Graphs]

4

http://www.hpts.ws/papers/2017/graph.pdf

Model, schema and instance
A data model describes the kinds of values that
can be held in a collection of information, and the
way those values can be named, structured and
related. It states general rules about information
content, which are independent of business domain
and application. A query language is defined with
respect to a data model.

A schema is a set of rules which constrain the data
model to cater for a specific business domain or
application. It is like a “set builder”: it defines the
kinds of data allowed or occurring in a specific
collection of information. A query language may
take advantage of schema information.

An instance is a a specific collection of
information, which conforms to the data model
and is described by a schema. It can be an operand
or product of query language programs.

5

On the term “schema”
We will use the term schema in two ways

Generically, as a concept, as already stated

A schema is a set of rules which constrain the
data model to cater for a specific business
domain or application. It is like a “set builder”: it
defines the kinds of data allowed or occurring in
a specific collection of information. It is a
predicate over the domain of the data model.

Specifically, in a way that resembles SQL:

A GQL schema is a directory in a GQL catalog
which contains one to many named graphs (data,
possibly accessed and maintained by one or more
views) and one to many graph types, which are
used to partially or wholly constrain those
graphs. Such a directory plays the role of a
generic schema, but also catalogs instances.

6

The GQL-environment, and a schema’s place within it

7

GQL-environment

GQL-catalog

GQL-catalog content

GQL-service

Catalog procedure
Schema
Schema
Schema Schema

Graph typeGQL-data
Base Graph

GQL-agent via
GQL-client

procedure
C

Data procedure

Base Graph
Base graph

Graphs/views

GQL-agent via
GQL-client

GQL is a property Graph Query Language: elements and attributes
A property graph attaches attributes (data values) to topological values (nodes and edges), and the whole
graph (graph attributes). Collectively, graph attributes, nodes and edges form a set of graph elements.

Attributes are the fields of content records: the attributes encode the information content associated with each
topological element.

An attribute has a name, a type and a value. The type of an attribute determines the set of its possible values.

There is a set of types called property types (atomic types like integer, float, string, date, boolean, and
parametric collection types which can be instantiated with an atomic type), each of which defines multiple
possible values. An attribute whose type comes from this set is a property.

An attribute can also be of the UNIT type. That marks an attribute as a label or tag, with a single, unmodifiable,
inaccessible value.

The topology of a graph can be viewed without reference to data values (an “unattributed graph”). Tabular
representations of collections of data values can be extracted from a graph, thereby losing their structural
context.

A mixed view of structure and data can also be taken (for example identifying or retrieving paths with associated
attribution). Property graphs therefore straddle the pure graphs of RDF and the tuple-centric model of SQL.

8

The GQL property graph data model
The property graph data model determines the kinds of types that users can define or use in a graph schema.

The GQL data model is an optionally directed, attributed multigraph

● A graph, and each of its nodes and edges, has a possibly empty set of typed attributes
● A set of attributes has two disjoint subsets, each possibly empty: its labels and its properties, which

are divided by their types, as detailed in the previous slide
● An edge may be directed (one endpoint plays the role of tail, the other of head), or an edge may be

undirected (neither endpoint has such a role)
● There can be many edges between two nodes

9

GQL Schema proposal at a glance

10

CREATE GRAPH SocialNetwork (
(Person {name::STRING, dob::DATE}),
(City {name::STRING}),

(Person)-[LivesIn]->(City),
(Person)=[Knows]=(Person)

)

Undirected edges are
envisioned as being
supported vendor-
optional in GQL

LivesIn

Knows

CityPerson

GQL Schema proposal in one slide

Create a graph type with a name.
Define zero to many labels, and zero to many properties, using a similar pattern to one you would use in a Cypher MATCH or
CREATE clause. That defines a content type.
You can optionally give that content type a name, but you don’t have to. If your content type has one label then it gets the
same type name automatically. A graph itself can have a content type (“graph attributes”).
You can also plug your content type declaration (or the name of one) inside () for node types, or inside one of the three
parts of a relationship pattern ()-[]->() to define a relationship type.

You can define some keys, if you want. Then you can create a named graph of that type.

11

CREATE GRAPH TYPE SocialNetwork (
CONTENT TYPES

Person :Person {name::STRING, dob::DATE}
NODE TYPES

(p::Person) KEY K_Person_personId (p.personId)
(:City {name::STRING})

EDGE TYPES
(Person)-[:LIVES_IN]->(City),
(Person)-[:Knows]->(Person)

)

CREATE DATABASE GlobalSocialNetwork

CREATE GRAPH
GlobalSocialNetwork.EuropeanSocialNetwork

OF SocialNetwork

CREATE DATABASE GlobalSocialNetwork
GRAPHS

GlobalSocialNetwork, // default graph type
EuropeanSocialNetwork::SocialNetwork

GQL Schema proposal in five slides (1) Node types and relationship types

If you plug a content type into an element type (node type, relationship type) with a name, but no label, then a label is
automatically induced. If you specify a label, but no name, then you automatically get a named type.

Types are defined by a combination of properties and labels. You can have zero to many labels on nodes; in Neo4j you could
restrict to exactly one “label” (reltype) on relationships. In either case you can have zero to many properties. The
combination of properties and labels is the type. Names are just aliases for these structural types.

Relationship types define triplet patterns. But if you want a type that only uses the arc between the endpoints, you can say
()-[ArcType]->(). That is the equivalent of using a reltype as a type in e.g. schema security definitions.

12

CREATE GRAPH TYPE SocialNetwork (
CONTENT TYPES

Person :Person {name::STRING, dob::DATE}
NODE TYPES

(p::Person) KEY K_Person_personName (p.name)
(:City {name::STRING})

RELATIONSHIP TYPES
(Person)-[:LIVES_IN]->(City),
(Person)-[:Knows]->(Person)

)

Explicitly named type Person is characterized by its
structural contents, a label and a property

Label :City induces named type
City if we set up a default in the
session or the product to work
that way, or mark the type as
LABEL IMPLIED BY TYPE NAME.

GQL Schema proposal in five slides (2) Subtyping

A content type, an element type (node or relationship type), and a graph type can all be subtyped. Having subtypes means
that we can use the supertype to make schema statements that are true for all the subtypes.

All managers, employees, directors, consultants and officers of Neo4j are bound to take GDPR seriously. That statement can
be made once with reference to the supertype “Neo4j agents”.

Cypher queries operate in the same way: if you MATCH (p:Person) then you get the nodes with that label, but also all the
ones with the :Natural and :Corporate labels. We want schema patterns to behave like query patterns.

This is good for familiarity (symmetry) and it’s good for conciseness.

You can also subtype graphs, so one extends another. That is used to define the different levels of schema. 13

CREATE GRAPH TYPE CompanyGraph (
Neo4jAgent {name::STRING}, // is not instantiable, just a content type
(GDPRRegulations {date::DATE}), // these are instantiable node types
(Employee <: Neo4jAgent), (Manager <: Neo4jAgent),
(Director <: Neo4jAgent), (Officer <: Neo4jAgent),
(Consultant <: Neo4jAgent), (ProfessionalAdvisor <: Neo4jAgent),
// this is one relationship type declaration, implying many
// instantiable relationship types, one per subtype of Neo4jagent
(/* defaults to SUBTYPE OF */Neo4jAgent)-[TRAINED_ON {date::DATE}]->(GDPRRegulations)

)

GQL Schema proposal in five slides (3) Strict, lax, no … schema

Schema is designed so that you can have sealed (or final) graph types that cannot be extended: this gives you closed schema
like SQL. You can also have graph types that are not sealed, and can be extended. Unsealed or “open graphs” have to be the
default because the default graph has to be extensible, so Neo4j’s schema-free design is the GQL default (modulo the
presence of undirected edges in the GQL data model).

Unsealed (non-final, extensible), “open” graph types let us specify the data model of the graph type that a user is defining.
(Vendors are able to choose their default graph type, so Neo4j would be able to stick with our existing data model.)

This “open graph” = “schema free” (it’s water). A sealed graph = “schema governed” (a block of ice). A graph type that
contains edge and relationship types but is not closed is “partial schema” (water and ice at 0℃).

There are two kinds of partial schema: ones that let you elaborate on the properties and labels, but enforces a rigid
structure, and ones that let you add anything. Whole graphs or any element of a graph can be closed or finalized.

Neo4j is not compelled to implement any point on that spectrum. See type lattice for graph types for another view.

14

CREATE GRAPH TYPE NEO4J_GRAPH (
(),
()-[]->() // any directed relationships

)

This is not precisely how one would
necessarily define a default model, but it
illustrates the point about extensible,
“open” types.

GQL Schema proposal in five slides (4) Subgraph views

Every node or relationship type induces some built-in subgraph views that the user does not have to define.

There is an induced subgraph view for every element type (edge type or node type), as well as a view over each
whole graph.

So if we define a node type (Employee :Person & Employee) then that names a subgraph view for all nodes with the two
labels :Person and :Employee.

A relationship type (Person)-[HAS]->(SalaryHistory) again induces a subgraph view of that name for all relationships of
that pattern. (A type that describes all relationships with a particular Neo4j reltype would look like this ()-[HAS]->()).

You can also create a user-defined subgraph view, that explicitly includes these induced views (and indeed could include
other user-defined views).

You can also say CREATE VIEW and INCLUDE subgraph views from multiple graphs. See the slide on Fabric.

15

CREATE VIEW HRGraph SUBGRAPH OF CompanyGraph (
INCLUDE (Person), (SalaryHistory)
INCLUDE (Person)-[HAS]->(SalaryHistory)

)

You can also EXCLUDE subset views
from an included larger view.

GQL Schema proposal in five slides (5) Catalog and schema

The GQL-catalog plays the role of our system graphs. It has a concept of hierarchical naming, which derives from a
hierarchy of directories, containing objects, aliases and other directories. It is deliberately analogous to a filesystem, which
is a) a very well understood pattern, and b) is flexible.

Any directory can contain objects. Catalog objects include content and graph types, graphs and views. Any object or
directory in the catalog can be aliased, by creating an alias in a directory (symlink).

Some directories are distinguished as schema directories. A schema directory must contain at least one graph and one graph
type. A user or role could be given access to a schema: there is no inbuilt relationship of that kind.

16

SET DIRECTORY Security.Roles
CREATE ROLES HR, FunctionalAdmins

GRANT CREATE ON Company.HR TO Security.Roles.FunctionalAdmins
SET DIRECTORY Conpany.HR
CREATE VIEW FunctionalGraph SUBGRAPH OF Company.CompanyGraph (

INCLUDE (Person), (SalaryHistory)
INCLUDE (Person)-[HAS]->(SalaryHistory)

)

GRANT MATCH ON GRAPH Company.HR.FunctionGraph TO Security.Roles.HR

Becomes a schema when it
has at least one graph in it

User-defined graph types sit here in the lattice

System-defined graph types
There are four abstract base four graph
types:

A NODES_GRAPH has a node type ()

DIRECTED_GRAPH adds a type ()-[]->()

UNDIRECTED_GRAPH adds a type ()=[]=()

A MIXED_GRAPH combines the last two.

A user-defined graph type subtypes one
of these types. The default supertype for a
vendor implementation will be one of the
latter three. This will determine the type of a
graph whose type is not specified explicitly.

In a system that allows only strict schema,
user-defined graph types are sealed by
default. In a system that has lax schema,
user-defined types are open by default.

17

ANY ⊤ TOP

NOTHING ⊥ BOTTOM

NODES_GRAPH

UNDIRECTED_GRAPH

MIXED_GRAPH

DIRECTED_GRAPH

“GRAPH BOTTOM” EMPTY_GRAPH

GRAPH

This is a
NEO4J_GRAPH

	LDBC Open Access to External Papers_ OAEP-2023-02 Introduction to GQL Schema design.April.2023.pdf
	LDBC-Open-Access-External-Paper-OAEP-2023-02--Introduction-to-GQL-Schema-design.DOI.10.54285_ldbc.EPWQ6741.pdf
	Neo4j 2019 -- Introduction to GQL Schema design -- LEX014.pdf

