
OAEP-2023-01 DOI: 10.54285/ldbc.QZSK3559

Published on LDBC’s website April 2023

Originally published privately for members of ISO/IEC JTC 1/SC32 WG3,
May to October 2018

SQL/PGQ data model and graph schema
Neo4j 2018 Contributions to WG3 (YTZ, ERF)
on SQL/PGQ data model and graph schema

These papers were originally submitted to WG3 for discussion at its YTZ (Toronto,
Canada) and ERF (Ilemanau, Germany) meetings in May and September/October
20191. This document contains three original papers, reproduced without
modification.

1 ISO/IEC
JTC1/SC32 WG3
YTZ-034

“Property Graph Data
Model for SQL”

Neo4j SQL
working group

r2
2 May 2018

2 ISO/IEC
JTC1/SC32 WG3
ERF-043

“SQL/PG graph schema
and join syntax
mapping examples”

Peter Furniss,
Individual Expert
Contribution
(member of Neo4j
SQL working
group)

27
September
2018

3 ISO/IEC
JTC1/SC32 WG3
ERF-044r1

“Property Graph Data
Model Concepts and
Terms”

Alastair Green,
U.S.A. National
Expert
(member of Neo4j
SQL working
group)

r1
30 October
2018

1 Revisions to WG3 papers may be dated later than the meeting concerned

1

LDBC Open Access to External Papers

In this series, Linked Data Benchmark Council makes papers published originally for
a restricted audience available for open access.

These papers are of interest to our members and the public, and are concerned with
topics that relate to the work of LDBC. They are published with the permission of
their copyright holders, which may have been given by a licence grant.

This collection of three papers is relevant for the work of the LEX (LDBC Extended
GQL Schema) Working Group.

These papers have the character of technical reports: they have not been submitted
to or accepted via peer review by an established scholarly publication.

Permission to publish is given by the grant of an ASL 2.0 licence for each of these
papers by the copyright holder Neo4j Inc. This grant is included in the text of each
paper as reproduced here.

The attribution statements for each paper is included in its text, and the reader’s
attention is drawn to those statements.

2

https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf
https://ldbcouncil.org/docs/papers/LDBC-Work-Charter-WC-2022-02--LDBC-Extended-Graph-Schema--LEX--Work-Charter.DOI.10.54285_ldbc.VSBC2149.pdf

ANSI INCITS sql-pg-2018-0003r2

Property Graph Data Model for SQL

Title Property Graph Data Model for SQL
Authors Neo4j SQL working group 1

Status Outline partial draft of initial working document on SQL PGQ
Date 24 April 2018

Date of r1 24 April 2018

Sub-editorial changes

Date of r2 2 May 2018
Correct over-restriction on sharing of property names in Label Sets,
strengthens References and comparison of PGDM model variants.

Copyright © 2018, Neo4j Inc. Please see last page of this document for Apache 2.0 licence grant​.

Contents

1. Summary

2. References

3. Purpose of a Property Graph Object in SQL

4. The SQL Property Graph Data Model

5. Remarks on the Property Graph Data Model
5.1. Graph Entities without Properties
5.2. Explicit Entity Identifiers Removed
5.3. Closed-world Schema
5.4. Label Sets and Inheritance

6. UML Graph Schema Metamodel (Property Graph Data Model)

7. An ITI and openCypher contribution from Neo4j Inc.

1 Current members of the Neo4j SQL working group are: Tobias Lindaaker, Stefan Plantikow, Petra
Selmer, Peter Furniss, Alastair Green.

1

ANSI INCITS sql-pg-2018-0003r2

1. Summary

We present a revised version of the section ​“SQL Property Graph Data Model”​ in
[sql-pg-2017-0029]​.

The meta-metamodel of such a Graph Schema and of a Graph Object, as new entities in the
SQL Information Schema, is shown in UML.

This contribution forms the basis for a second (forthcoming) paper on mapping existing
tabular data in a SQL store into a Graph Object.

Readers may also find the graph metamodel representation proposed in
[openCypher-CIR-2018-307]​ interesting and useful in understanding the model presented in
this paper.

That “ASCII Art” representation is another view of the kind of ​Graph Schema ​or ​Property
Graph Data Model ​defined here​. ​It reflects a separate proposal documented in
[openCypher-CIR-2018-311]​, which allows use of Cypher patterns in SQL without the need
for syntax “quoting”.)

The ASCII Art schema representation allows the definition of Label Sets, which is an
important step in forming a Graph Schema.

2

https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/89358/sql-pg-2017-0029-SQL-Property-Graph-Representations-Draft-0.3.pdf
https://github.com/opencypher/openCypher/issues/307
https://github.com/opencypher/openCypher/issues/311

ANSI INCITS sql-pg-2018-0003r2

2. References

[Foundation:2016] Jim Melton (ed), “ISO International Standard (IS)
Database Language SQL- Part 2: SQL/Foundation”,
ISO/IEC 9075-2:2016

[sql-pg-2017-0029] Peter Furniss, Alastair Green, “SQL Property Graph
Representations”, July 2017

[openCypher-CIR-2018-307] Neo4j Cypher Language Group, “‘ASCII Art’ graph
schema”, March 2018

[sql-pg-2017-0036]

Alastair Green, “Remarks on [sql-pg-2017-0032r1]
‘Comments on sql-pg-2017-0029’”, July 2017

[sql-pg-2017-0047r1]

Peter Furniss, Alastair Green, Petra Selmer, “SQL
Graph Query Procedures” (with corrigenda),
August/October 2017

[openCypher-CIR-2018-311] Neo4j SQL Working Group, “Syntax modifications to
Cypher path patterns to permit use in SQL”, April 2018

[Cypher 9] Neo4j Cypher Language Group, “Cypher Query
Language Reference, Version 9”, 2018

[PGQL 1.1​] Oracle, “PGQL 1.1 Specification”, 2018

[GCORE] Angles et al., “G-CORE: A Core for Future Graph Query
Languages”, pre-print of paper accepted for SIGMOD
2018

3

https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/89358/sql-pg-2017-0029-SQL-Property-Graph-Representations-Draft-0.3.pdf
https://github.com/opencypher/openCypher/issues/307
https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/89977/sql-pg-2017-0036-Remarks.on.Fred.Oskar.comments.pdf
https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/92115/sql-pg-2017-0047r1-SQL-Graph-Query-Procedures.pdf
https://github.com/opencypher/openCypher/issues/311
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
http://pgql-lang.org/spec/1.1/
https://arxiv.org/pdf/1712.01550

ANSI INCITS sql-pg-2018-0003r2

3. Purpose of a Property Graph Object in SQL

The purpose of a property graph object is to provide an operand or a result of a property
graph function. Such a function, however surfaced in SQL syntax, is an operation that
accepts as input one or more graphs.

In ​[sql-pg-2017-0047r1]​ we proposed one such function, GRAPH_TABLE, that can be used
to illustrate this point.

Drafting Note

We also proposed that graph objects be exposed as cell values with a type called
GRAPH_REFERENCE.

We have subsequently come to the view that the simplest way to create a reference
to a graph is to create a named Information Schema object, analogous to a table.
(We referred to this possibility in Appendix B, p30 of the cited document, where we
also suggested the syntactic impact that might have on GRAPH_TABLE.)

In the interests of making progress on initial property graph extensions to SQL we are
focussing on the option of named graph objects, and that is reflected in this paper.

4

https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/92115/sql-pg-2017-0047r1-SQL-Graph-Query-Procedures.pdf

ANSI INCITS sql-pg-2018-0003r2

4. The SQL Property Graph Data Model

Simplifying, constraining and making fully logical the data model defined in the section ​“SQL
Property Graph Data Model”​ in ​[sql-pg-2017-0029]​, we define a ​Property Graph Data
Model​ for SQL as follows.

1) A ​Property Graph​ is a directed multigraph , whose vertices or nodes form a set of 2

Nodes​, and whose edges or arcs or relationships form a set of ​Edges​. The Nodes
and Edges of a graph are, taken together, the ​Entities​ of the graph.

2) Each Edge has one ​Start Node​ and one ​End Node​.

3) The Direction of an Edge is from Start Node to End Node: synonymously, the Start
Node is the tail and the End Node is the head.

4) The term ​Graph​ is used hereafter as a synonym for Property Graph. A Graph is more
than a directed multigraph in the following respects.

5) A Graph has a ​Name,​ which is an identifier that follows the rules for naming
user-defined Tables. A Graph Name can be qualified by the database and schema in
which the Graph is defined, giving a triple-element name like that of a Table.

6) Every Entity has one to many ​Labels​ (which are string identifiers). An implementation
must define the maximum number of Labels​ ​allowed for Nodes and for Edges, which
in each case may be a finite positive integer, or infinity.

7) Each Label can have zero to many ​Properties​ associated with it.

8) An Entity cannot have two Labels each of which has a Property of the same name,
unless each of those properties has the same data-type . 3

9) A ​Property​ is a named typed value, whose type is any valid SQL type, and which
may be optional or mandatory for any given Node or Edge.

10) A ​Non-Null Property​ is an optional property which has a null value.

11) A ​Property Name​ must be unique within the set of Property Names associated with
a Label.

12) A Label can have one or more ​Entity Keys​. An ​Entity​ ​Key ​is a set of mandatory
Properties whose values, taken together, form a set, an ​Entity​ ​Key Value​.

13) If a Node has a Label, and that Label has an Entity Key, then that Entity Key acts as
a ​Node Key​. The Entity Key Value of a Node Key for a given Node cannot equal the

2 A ​multigraph​ is one where there can be multiple edges between two nodes and where an edge can
connect a node to itself (a ​loop​). Every edge in a ​directed graph​ has a tail and a head, and the
direction flows from the tail to the head.

3 For this to be useful, the properties should have the same application semantic.

5

https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/89358/sql-pg-2017-0029-SQL-Property-Graph-Representations-Draft-0.3.pdf

ANSI INCITS sql-pg-2018-0003r2

Entity Key Value of any other Node with the same Label . An implementation may 4

choose not to support Node Keys.

14) If an Edge has a Label, and that Label has an Entity Key, then that Entity Key acts as
an ​Edge Key​. The Entity Key Value of an Edge Key for a given Edge cannot equal
the Entity Key Value of any other Edge with the same Label. An implementation may
choose not to supports Edge Keys.

15) If an Entity has more than one Label then all of its Labels are called a ​Label Set​.
The union of all of the Properties of all the members of a Label Set is a set called a
Label Set Properties​. It follows that each Property of such an Entity has a name
which is unique. To achieve this, if two or more Labels in the Labet Set have a
property of the same name, then (if the data-type of each such property is identical)
the Label Set Properties will have only one property with that name . 5

16) The set of Non-Null Properties which is a subset of the Label Set Properties of an
Entity (of a Node, or of an Edge) is a set called the ​Non-Null Properties​. The set of
values of all the members of the Properties Present is the ​Non-Null Properties
Values​.

17) For any two Nodes which have the same Label, the corresponding Non-Null
Properties may be equal or different. If equal, then the corresponding Non-Null
Properties Values for the same two Nodes may be equal or different. The set of
Nodes in a Graph having a given Label therefore maps to a multiset of ​Node
Non-Null Properties ​and to a multiset of ​Node Non-Null Properties Values​.

18) For any two Edges which have the same Label, the corresponding Non-Null
Properties may be equal or different. If equal, then the corresponding Non-Null
Properties Values for the same two Edges may be equal or different. The set of
Edges in a Graph having a given Label therefore maps to a multiset of ​Edge
Non-Null Properties ​and to a multiset of ​Edge Non-Null Properties Values​.

4 Node and Edge Keys are candidate or unique keys. The concepts of primary key and foreign key to
do not exist in the property graph data model, where relationships are expressed explicitly by edges.
They can be relevant in assisting ​mappings​ between the relational and property graph data models.

5 The coalescence of properties that have the same meaning in more than one Label is equivalent to
the effect of creating a “mix-in” interface in Java, to take an analogy.

6

ANSI INCITS sql-pg-2018-0003r2

5. Remarks on the Property Graph Data Model

5.1. Graph Entities without Properties

Graphs, which can express structure without data values, may have no properties on a
particular kind of Edge or Node. This is common and unremarked for Edges, and less
common for Nodes, but Nodes which are linked to form purely structural models are found in
the wild.

A Table in SQL must have at least one column. This extends from base tables to views
(given the same restriction on the results of SELECT).

Labels, for this reason are logically distinct from Tables, and cannot always be represented
by a Table, unless the model (artificially) forces at least one property to be added to every
Label.

A View in SQL cannot have a primary key or uniqueness constraint. Therefore, not all Tables
can have unique keys. Labels should have the ability to have candidate keys (unique keys).
This is a second reason for distinguishing Labels from Tables.

Therefore, it is, in our view, preferable to express a Graph Object as being conformant with a
Graph Schema, which implements a metamodel consistent with the overall Data Model
(schema metamodel) described here, and to express optional mappings from Tables to
Labels to give a Graph view over existing data, than to force the use of Tables as the
building blocks of a Graph Schema, not least because this would preclude the creation of
Graph Objects that do not derive from nor are directly mapped to Table data.

5.2. Explicit Entity Identifiers Removed

Node identifiers and Edge Identifiers (Entity Identifiers) have been removed in this revised
version of the data model. Their presence in ​[sql-pg-2017-0029]​ was a mistake, influenced
by implementation tactics in existing SQL property graph implementations like SQLServer.

[Cypher 9]​ also contributes to this erroneous thinking by making a function available which
gives a unique edge identifier or node identifier for an entity accessible via a binding
variable, and by defining the identity of two node references in terms of identifier equality.

[PGQL 1.1]​ does not define identifiers as an inherent part of the data model. Conversely,
[GCORE]​ makes identifiers central to its data model.

However, at a logical level, each Node and each Edge is a member of a set (like each row in
a table is a member of a set of rows), and is therefore unique, whatever the number or value
of its properties. Two entities with identical Label Sets and identical values of the Label Set
Properties are still two distinct entities, just as two rows in a Table are distinct tuples.

7

https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/89358/sql-pg-2017-0029-SQL-Property-Graph-Representations-Draft-0.3.pdf
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf
http://pgql-lang.org/spec/1.1/
https://arxiv.org/pdf/1712.01550

ANSI INCITS sql-pg-2018-0003r2

At the same time the same two entities, viewed in terms of their Label Sets and values of
their Label Set Properties, form a multiset. SQL uses this angle of view when it describes
the data content of a Table as a “multiset of rows” ​[Foundation:2016​].

It is not necessary for the specification of graph query semantics, or for the definition of
Labels, or for the definition of the data model in terms of structural relationships (edges
between nodes), to use the concept of Entity Identifier. It is only necessary to define a
function, that may or may not be available in the syntax of any graph manipulation
sub-language, that allows for the comparison of two Entity references and evaluates to either
“identical: the same Entity”, or “not identical: different Entities”.

Row identifiers are not part of the core SQL tabular data model, for the same reasons.

5.3. Closed-world Schema

Note that the data model defined above

a) prevents data being held in a property graph in Properties whose type is not defined
by the Information Schema

b) prevents data in a Property for a given Label from having more than one type.

These constraints corresponds to the fact that SQL Information Schema is a closed-world
model, which extends (modulo Polymorphic Table Functions) to column-typing. This allows
schema-based type inference during the course of projection or expression evaluation.

Unlike Cypher, SQL property graphs will have mandatory schema (will be “schema strict”),
and will not permit heterogeneous property typing.

Cypher’s data model is “schema optional” and does allow types of a given property name to
vary. The SQL Property Graph Data Model defined here is therefore a proper subset of
Cypher’s . In particular a Cypher read or data update query can operate unchanged over a 6

graph conforming to this SQL Property Graph Data Model.

5.4. Label Sets and Inheritance

If the relationship between a type (class) of Start Node, a type of Edge and a type of End
Nodes is defined in terms of Label Sets (i.e., where the Label Set is the type), then it is
possible to say things like: “All Persons are either Residents or Visitors, for the purpose of a
census; Any Person may be present in a Town, on the night of the census.”

6 There is a proviso: openCypher has not yet formalized the concepts of Node Keys and Relationship
Keys. Node Keys are present in Neo4j Cypher. Neo4j favours introducing both kinds of Entity Key in
Cypher, but that depends on a more general expansion of schema features in Cypher.

8

ANSI INCITS sql-pg-2018-0003r2

It therefore follows that the relationship or edge ​[PRESENT_IN] ​can connect nodes of type
(Person)​ and ​(Town)​, and that it is not possible to be a ​(Person)​ without being a
(Resident | Visitor)​. This allows the semantic effect of a supertype, like ​(Person)​, with
respect to to a subtype, like ​(Resident)​ or ​(Visitor)​, to be expressed without explicitly
describing it as an inheritance relationship.

An “accidental”, coincidental combination of labels, where some nodes of type​ (Audited)
are also nodes of type ​(Person)​, but not all nodes of type ​(Person)​ are​ (Audited)​, can
also be expressed in this model.

This is achieved by defining Label Sets and defining “Node Edge Node” (NEN) relationships
in terms of those Label Sets.

[openCypher-CIR-2018-307]​ is a means of stating those definitions and NEN relationships
(​mutatis mutandis​ for the likely differences in Cypher and SQL DDL syntax).

The ability to state these Graph Schema constraints without regard to mappings from Tables
to Label Sets is useful in factoring different concerns in the design and programming phases
of creating Graph Objects.

9

https://github.com/opencypher/openCypher/issues/307

ANSI INCITS sql-pg-2018-0003r2

6. UML Graph Schema Metamodel (Property Graph Data Model)

10

ANSI INCITS sql-pg-2018-0003r2

7. An ITI and openCypher contribution from Neo4j Inc.

This contribution is a Deliverable under the terms of clause 2.2.1 of the Agreement for
Membership in the InterNational Committee for Information Technology Standards
(“INCITS”), a Division of the Information Technology Industry Council (“ITI”) to which Neo4j
Inc. is a party.

It is also a contribution to the ​openCypher community and like all such contributions is: 7

Copyright © 2018 Neo4j Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.opencypher.org/
 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Apache License, Version 2.0, Attribution Notice

This document is a contribution by Neo4j’s SQL working group to the openCypher
project and to the SQL standards formation process.

7 https://www.opencypher.org/

11

https://www.opencypher.org/

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

SQL/PG graph schema and join syntax
mapping examples
Author: Peter Furniss, Neo4j
Source: Individual Expert Contribution
Status: Discussion paper
Date: 27 September 2018
Revision R2: (since first sql-pg-2018-0036)

Expanded introduction with diagram showing relationship between concepts,
added text on label set aliasing, examples showing M:M mapping cases

This paper shows some examples of Graph SQL DDL for defining the Graph Schema and
mapping a graph from relational data, as currently implemented in Neo4j’s proto-product
Morpheus (which uses Cypher of Apache Spark). The mapping uses the “join syntax” which
Neo4j now prefer. It is an evolution of proposals previously submitted to the SQL/PG Ad
Hoc.

1 References
[​YTZ-033​] Jan Michels, “The Pure Property Graph Data Model”, ISO/IEC JTC1/SC32
WG3:YTZ-033 = ANSI INCITS DM32.2-2018-00091 / sql-pg-2018-0002

[LDBC SNB] ​“LDBC Social Network Benchmark (SNB) - 0.3.1”, http://ldbc.github.io/
ldbc_snb_docs/ldbc-snb-specification.pdf

[YTZ-034]​ Neo4j SQL working group, “Property Graph Data Model for SQL”, ISO/ IEC
JTC1/SC32 WG3:YTZ-034 = ANSI INCITS DM32.2-2018-00092 / sql-pg-2018-0003r2

[ERF-042] ​ Jan Michels, “The Pure Property Graph Data Model”, ANSI INCITS
sql-pg-2018-0035, ISO/IEC JTC1/SC32 WG3-ERF-042

2 Introduction

In parallel with discussions on the property graph data model and its possible representation,
Neo4j has developed an implementation of proposed syntax for “pure property graph”
definition, in the context of Cypher for Apache Spark, where Cypher co-exists with Spark
SQL. This graph metadata or graph schema capability is relevant for SQL PGQ and for a
future standalone GQL.

- 1 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

The PPG definition can, in addition, be used as the target for loading tabular data into graph
objects (which are in effect graph views over SQL tables). The mapping from SQL tables is
expressed in extended SQL DDL based on proposals previously introduced by the Neo4j
SQL working group in papers submitted to the SQL/PG ad hoc.

This paper shows some examples of the latest designs for pure property graph metadata
definition (based on labels with properties, and how those labels are used in label sets to
define the permitted semantic structure of a graph).

It also shows our proposal for a join-inspired DDL syntax to express table-to-graph
mappings.

Some of the guiding principles in the design have been:

a) If data manipulations are needed to put the data into the right “shape” for loading the
graph, these manipulations should be done by creating SQL views over the existing
database structure (tables and views).

b) The structure of the property graph (the Pure Property Graph, in the sense of
[ERF-042]) is declared prior to and independently of the specification of which SQL
tables (/views) provide the data (the mapping).

These are to some extent related. For example, since the properties of elements (nodes,
edges) with a particular label set are specified by the label definitions, there is no need to
explicitly subset the columns of a mapped table provided the names match.

The following diagram attempts to summarise the relationship between the concepts
described in [ERF-042], [YTZ-033] and this paper. The Tabular Property Graph DDL is
assumed to be an updated version of the DDL shown in [YTZ-033]

- 2 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

This document shows examples of the two boxes with heavy borders. The graph schema
DDL defines the labels and their properties, the permitted label sets for nodes and for edges
and the permitted “edge triplets”. The mapping DDL specifies which tables are drawn on to
provide the data of the graph.

The examples below do not show any use of primary or foreign key in the underlying tables.
This is partly because the relational datasource most commonly used with Morpheus is Hive,
which does not support these. In addition, if data is being loaded from views rather than
base tables, primary and foreign key will not (normally) be available.

Since Cypher is case-sensitive, the implementation will preserve case for any “graph object”
name - graph names, label names, property names even if they are not quoted. Similarly,
when it is matching column names to property names, it will match a mixed-case property
name to an all-upper column name, if there is no case-sensitive match. It will also handle
quoted names in a SQL standard fashion.

3 Label declarations

The implementation currently has two alternative styles for declaring labels and their
properties - a SQL-like style and a Cypher-like style. The former is modelled on SQL table
declarations, the latter on Cypher patterns. Both have the same capabilities, and can even
be used side-by-side.

In the examples, the Cypher-style declarations use the Cypher type system for the property
types, the SQL-style the SQL type system. In fact, either can be used in either place - an
appropriate conversion will be performed if necessary at the point of loading.
The two styles differ in how an optional (nullable) property is shown - with opposite defaults.

3.1 SQL-style label declaration
LABEL "Message"
 PROPERTIES
 ("creationDate" TIMESTAMP NOT NULL,
 "browserUsed" VARCHAR(100) NOT NULL,
 "locationIP" VARCHAR(100) NOT NULL,
 "content" VARCHAR(2000),
 "length" INTEGER NOT NULL)

3.2 Cypher-style label declaration
 LABEL (Message
 { creationDate : TIMESTAMP,

- 3 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 browserUsed : STRING,
 locationIP : STRING,
 content : STRING?,
 length : INTEGER}
)

4 LDBC Social Network example (SNB)

This is the same example as used in [YTZ-033] 3.4, to the extent of recreating the input
tables as used there, but loading data from one of the outputs of the data generation tool
(“DATAGEN”) described in [LDBC SNB]. following the same assumptions about the input
data made there. Since DATAGEN creates single files “place” and for “organisation”, views
were created to separate the subtypes. As in [YTZ-033], all but one of the relationships
(edges) are derived from link tables. The exception is the
(Forum)-[CONTAINER_OF]->(Post) relationship, where the table of posts has a column that
references the forums table.

Note that the graph schema - labels, properties, label sets and triplets, with their cardinality -
is a very close transcription of the data schema diagram (Figure 2.1) in [LDBC SNB].

4.1 Graph Schema DDL
The graph schema is declared within the graph specification, and uses Cypher-style label
declarations.

The schema contains one or more lists of label declarations, node label set and edge label
set declarations and edge triplet declarations. Label declarations are preceded by the
keyword “LABEL”, the others can be distinguished by their syntax.

CREATE GRAPH snb

-- graph schema definition
-- (DDL describing a pure property graph)
-- (within the graph declaration in this case

 WITH GRAPH SCHEMA (

-- labels used for nodes
 LABEL (Person
 { creationDate : TIMESTAMP,
 firstName : STRING,
 lastName : STRING,
 gender : STRING,

- 4 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 birthday : DATE,
-- these next two should be arrays, according to the
-- SNB model. This is supported but not shown here.

 email : STRING,
 speaks : STRING,
 browserUsed : STRING,
 locationIP : STRING}
),

-- organisation has two sub-types, but the properties
-- are the same for both

 LABEL (Organisation
 { name : STRING,
 url : STRING}
),
 LABEL (Company),
 LABEL (University),

-- Message has two subtypes, Post has extra (optional)
properties
 LABEL (Message
 { creationDate : TIMESTAMP,
 browserUsed : STRING,
 locationIP : STRING,
 content : STRING?,
 length : INTEGER}
),
 LABEL (Comment),
 LABEL (Post
 { language : STRING?,
 imageFile : STRING?}
),
 LABEL (Forum
 { title : STRING,
 creationDate : TIMESTAMP}
),
 LABEL (TagClass
 { name : STRING,
 url : STRING}
),
 LABEL (Place
 { name : STRING,
 url : STRING}
),
 LABEL (City),
 LABEL (Continent),
 LABEL (Country),
 LABEL (Tag

- 5 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 { name : STRING,
 url : STRING}
),

-- labels used for edges​ (following cypher convention of
 -- upper-case for edge labels, but in principle a label can
 -- be used for either or both
 LABEL (HAS_TYPE),
 LABEL (HAS_TAG),
 LABEL (IS_SUBCLASS_OF),
 LABEL (HAS_MODERATOR),
 LABEL (HAS_CREATOR),
 LABEL (REPLY_OF),
 LABEL (HAS_INTEREST),
 LABEL (CONTAINER_OF),
 LABEL (IS_PART_OF),
 LABEL (IS_LOCATED_IN),

-- some labels with properties used for edges
 LABEL (KNOWS
 { creationDate : TIMESTAMP}
),
 LABEL (HAS_MEMBER
 { joinDate : TIMESTAMP}
),
 LABEL (WORK_AT
 { workFrom : INTEGER}
),
 LABEL (STUDY_AT
 { classYear : INTEGER}
),
 LABEL (LIKES
 { creationDate : TIMESTAMP}
),

-- ​node label set declarations​. This is a “closed-world”
specification
-- no other node label sets are permitted/appear in the graph
 (Message, Post),
 (Message, Comment),
 (Continent, Place),
 (Country, Place),
 (City, Place),
 (University, Organisation),
 (Company, Organisation),
 (Tag),
 (Person),

- 6 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 (Forum),
 (TagClass),

-- ​edge label set declarations​. Since all of these are single
labels,
-- and all of them appear in at least one edge triplet, this list
-- could be omitted. This is not the case for the above node label
-- sets, as some of them have multiple labels, and so all must be
-- specified.
-- The use of brackets is strongly preferred. Although the parser
can
-- cope with an unadorned label name, that is visually confusing to
-- the human reader.
 [IS_SUBCLASS_OF],
 [LIKES],
 [KNOWS],
 [STUDY_AT],
 [HAS_INTEREST],
 [WORK_AT],
 [IS_LOCATED_IN],
 [HAS_MEMBER],
 [REPLY_OF],
 [HAS_MODERATOR],
 [HAS_CREATOR],
 [IS_PART_OF],
 [HAS_TYPE],
 [CONTAINER_OF],
 [HAS_TAG],

 -- edge triplets

-- the default cardinality <0..*> is omitted
 ("Country") - [IS_PART_OF] -> <1> ("Continent"),
 ("Forum") - [HAS_TAG] -> ("Tag"),
 ("Person") - [IS_LOCATED_IN] -> <1> ("City"),
 ("Comment") - [REPLY_OF] -> <1> ("Message"),
 ("University") - [IS_LOCATED_IN] -> <1> ("City"),
 ("Person") - [HAS_INTEREST] -> ("Tag"),
 ("TagClass") - [IS_SUBCLASS_OF] -> <1> ("TagClass"),
 ("City") - [IS_PART_OF] -> <1> ("Country"),
 ("Person") - [WORK_AT] -> ("Company"),
 ("Forum") - [HAS_MODERATOR] -> <1> ("Person"),
 ("Forum") - [HAS_MEMBER] -> <1..*> ("Person"),
 ("Message") - [HAS_CREATOR] -> <1> ("Person"),
 ("Tag") - [HAS_TYPE] -> <1> ("TagClass"),
 ("Company") - [IS_LOCATED_IN] -> <1> ("Country"),
 ("Message") - [HAS_TAG] -> ("Tag"),

- 7 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 ("Message") - [IS_LOCATED_IN] -> <1> ("Country"),
 ("Person") - [STUDY_AT] -> ("University"),
 ("Person") <1> - [LIKES] -> ("Message"),
 ("Forum") <1> - [CONTAINER_OF] -> <1..*> ("Post"),
 ("Person") - [KNOWS] -> ("Person")
-- end of graph schema declaration
)

4.2 Mapping DDL
(this would follow on in the same file as the previous DDL block - the heading is present only
to aid reader navigation)

-- DDL describing table to property graph mappings

-- mappings for nodes​, showing the node label set and input
 -- table for each. In this case, each node label set is loaded
 -- from a single table. (A single table can only supply entries
 -- for one node label set, though it can also be “re-read” to
 -- to supply relationships. In the (peculiar ?) case that some

-- table is supposed to supply to sets of nodes with different
-- label sets (but identical cardinality), a SELECT * FROM …

 -- view must be used.)

-- Since all the input tables for the node label sets are
 -- referenced in at least one relationship label set, some or

-- all of these could be omitted, and inferred from the
-- relationship mappings.

 NODE LABEL SETS (
 (University, Organisation)
 FROM "University",

 (Country, Place)
 FROM "Country",

 (Comment, Message)
 FROM "Comment",

 (Company, Organisation)
 FROM "Company",

 (Continent, Place)
 FROM "Continent",

 (City, Place)

- 8 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 FROM "City",

 (Tag)
 FROM "Tag",

 (TagClass)
 FROM "TagClass",

 (Person)
 FROM "Person",

 (Message, Post)
 FROM "Post",

 (Forum)
 FROM "Forum"
)

-- mappings for edges
 RELATIONSHIP LABEL SETS (

-- this first label set differs from the others, in that
-- one of the node tables has a reference column to the
-- other.

 (CONTAINER_OF)
 FROM "Post" edge
 START NODES
 LABEL SET (Forum)
 FROM "Forum" start_nodes
 JOIN ON start_nodes.ID = edge."forum"
 END NODES
 LABEL SET (Message, Post)
 -- edge table is also start table,

 -- each row joining to itself
 FROM "Post" end_nodes
 JOIN ON end_nodes.ID = edge.ID,

-- the “isSubclassOf” table is (effectively) a link table
-- with references to the nodes at either end.

 (IS_SUBCLASS_OF)
 FROM "isSubclassOf" edge
 START NODES
 LABEL SET (TagClass)
 FROM "TagClass" start_nodes
 JOIN ON start_nodes.ID = edge."subTagClass"
 END NODES
 LABEL SET (TagClass)

- 9 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 FROM "TagClass" end_nodes
 JOIN ON end_nodes.ID = edge."superTagClass",

-- the IS_PART_OF relationship applies to two pairs
-- of node label sets

 (IS_PART_OF)
 FROM "cityIsPartOf" edge
 START NODES
 LABEL SET (City, Place)
 FROM "City" start_nodes
 JOIN ON start_nodes.ID = edge."city"
 END NODES
 LABEL SET (Country, Place)
 FROM "Country" end_nodes
 JOIN ON end_nodes.ID = edge."country",
 FROM "countryIsPartOf" edge
 START NODES
 LABEL SET (Country, Place)
 FROM "Country" start_nodes
 JOIN ON start_nodes.ID = edge."country"
 END NODES
 LABEL SET (Continent, Place)
 FROM "Continent" end_nodes
 JOIN ON end_nodes.ID = edge."continent",

 (HAS_TYPE)
 FROM "hasType" edge
 START NODES
 LABEL SET (Tag)
 FROM "Tag" start_nodes
 JOIN ON start_nodes.ID = edge."tag"
 END NODES
 LABEL SET (TagClass)
 FROM "TagClass" end_nodes
 JOIN ON end_nodes.ID = edge."tagClass",

 (KNOWS)
 FROM "knows" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person1"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."person2",

- 10 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 (HAS_TAG)
 FROM "postHasTag" edge
 START NODES
 LABEL SET (Message, Post)
 FROM "Post" start_nodes
 JOIN ON start_nodes.ID = edge."post"
 END NODES
 LABEL SET (Tag)
 FROM "Tag" end_nodes
 JOIN ON end_nodes.ID = edge."tag",
 FROM "commentHasTag" edge
 START NODES
 LABEL SET (Comment, Message)
 FROM "Comment" start_nodes
 JOIN ON start_nodes.ID = edge."comment"
 END NODES
 LABEL SET (Tag)
 FROM "Tag" end_nodes
 JOIN ON end_nodes.ID = edge."tag",
 FROM "hasTag" edge
 START NODES
 LABEL SET (Forum)
 FROM "Forum" start_nodes
 JOIN ON start_nodes.ID = edge."forum"
 END NODES
 LABEL SET (Tag)
 FROM "Tag" end_nodes
 JOIN ON end_nodes.ID = edge."tag",

 (HAS_INTEREST)
 FROM "hasInterest" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."member"
 END NODES
 LABEL SET (Tag)
 FROM "Tag" end_nodes
 JOIN ON end_nodes.ID = edge."interest",

 (HAS_MODERATOR)
 FROM "hasModerator" edge
 START NODES
 LABEL SET (Forum)
 FROM "Forum" start_nodes

- 11 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 JOIN ON start_nodes.ID = edge."forum"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."moderator",

 (REPLY_OF)
 FROM "replyOfPost" edge
 START NODES
 LABEL SET (Comment, Message)
 FROM "Comment" start_nodes
 JOIN ON start_nodes.ID = edge."reply"
 END NODES
 LABEL SET (Message, Post)
 FROM "Post" end_nodes
 JOIN ON end_nodes.ID = edge."post",
 FROM "replyOfComment" edge
 START NODES
 LABEL SET (Comment, Message)
 FROM "Comment" start_nodes
 JOIN ON start_nodes.ID = edge."reply"
 END NODES
 LABEL SET (Comment, Message)
 FROM "Comment" end_nodes
 JOIN ON end_nodes.ID = edge."comment",

 (LIKES)
 FROM "likesPost" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person"
 END NODES
 LABEL SET (Message, Post)
 FROM "Post" end_nodes
 JOIN ON end_nodes.ID = edge."post",
 FROM "likesComment" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person"
 END NODES
 LABEL SET (Comment, Message)
 FROM "Comment" end_nodes
 JOIN ON end_nodes.ID = edge."comment",

- 12 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 (STUDY_AT)
 FROM "studyAt" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person"
 END NODES
 LABEL SET (University, Organisation)
 FROM "University" end_nodes
 JOIN ON end_nodes.ID = edge."university",

 (IS_LOCATED_IN)
 FROM "personIsLocatedIn" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person"
 END NODES
 LABEL SET (City, Place)
 FROM "City" end_nodes
 JOIN ON end_nodes.ID = edge."city",
 FROM "companyIsLocatedIn" edge
 START NODES
 LABEL SET (Company, Organisation)
 FROM "Company" start_nodes
 JOIN ON start_nodes.ID = edge."company"
 END NODES
 LABEL SET (Country, Place)
 FROM "Country" end_nodes
 JOIN ON end_nodes.ID = edge."country",
 FROM "universityIsLocatedIn" edge
 START NODES
 LABEL SET (University, Organisation)
 FROM "University" start_nodes
 JOIN ON start_nodes.ID = edge."university"
 END NODES
 LABEL SET (City, Place)
 FROM "City" end_nodes
 JOIN ON end_nodes.ID = edge."city",
 FROM "postIsLocatedIn" edge
 START NODES
 LABEL SET (Message, Post)
 FROM "Post" start_nodes
 JOIN ON start_nodes.ID = edge."post"
 END NODES
 LABEL SET (Country, Place)

- 13 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 FROM "Country" end_nodes
 JOIN ON end_nodes.ID = edge."country",
 FROM "commentIsLocatedIn" edge
 START NODES
 LABEL SET (Comment, Message)
 FROM "Comment" start_nodes
 JOIN ON start_nodes.ID = edge."comment"
 END NODES
 LABEL SET (Country, Place)
 FROM "Country" end_nodes
 JOIN ON end_nodes.ID = edge."country",

 (HAS_MEMBER)
 FROM "hasMember" edge
 START NODES
 LABEL SET (Forum)
 FROM "Forum" start_nodes
 JOIN ON start_nodes.ID = edge."forum"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."member",

 (WORK_AT)
 FROM "workAt" edge
 START NODES
 LABEL SET (Person)
 FROM "Person" start_nodes
 JOIN ON start_nodes.ID = edge."person"
 END NODES
 LABEL SET (Company, Organisation)
 FROM "Company" end_nodes
 JOIN ON end_nodes.ID = edge."company",

 (HAS_CREATOR)
 FROM "postHasCreator" edge
 START NODES
 LABEL SET (Message, Post)
 FROM "Post" start_nodes
 JOIN ON start_nodes.ID = edge."post"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."creator",
 FROM "commentHasCreator" edge
 START NODES

- 14 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 LABEL SET (Comment, Message)
 FROM "Comment" start_nodes
 JOIN ON start_nodes.ID = edge."comment"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."creator"
)

5 Label set aliasing
In the graph schema DDL, an alias can be assigned to a node or edge label set, and this
alias can then be used in edge triplets and in the mapping ddl as a synonym for the label set.
This can be viewed as giving a single name to a type. For example, in the SNB example
above, the two “sub-types” of Message could be defined in the graph schema with:

 (Message, Post) as PostMsg,
 (Message, Comment) as CommentMsg

The edge triplet for CONTAINER_OF could then be shown as
 ("Forum") <1> - [CONTAINER_OF] -> <1..*> ("PostMsg"),

And in the mapping DDL, the mapping for nodes from table Post could be
 (PostMsg)
 FROM "Post"

And similarly in the edge mappings, such as

 (HAS_CREATOR)
 FROM "postHasCreator" edge
 START NODES
 LABEL SET (PostMsg)
 FROM "Post" start_nodes
 JOIN ON start_nodes.ID = edge."post"
 END NODES
 LABEL SET (Person)
 FROM "Person" end_nodes
 JOIN ON end_nodes.ID = edge."creator"

- 15 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

6 Example with multiple input tables for a node
label set
This example was created to show and test the case where one node label set is created
from more than one input table. In many cases, this could be handled by making a UNION
ALL of the tables, but in this case the distinguishing columns (primary keys) of the input
tables are different. Loading these as one would require creation of a new synthetic key.
Since this is what the loading will do anyway, creation of a UNION view is unnecessary. The
use of the join syntax for mappings makes clear what is intended.

Scenario: Persons are observed in towns. Persons can be settlers, who have unambiguous
idNumbers, or nomads, who do not have id numbers, but their personal name is unique
within their clan. Both have first and last names, which is all that is wanted for the graph -
which may mean there will be more than one node in the graph with the same first and last
name as another, but representing a different person. Note that the “clan” name for nomads
is part of the “key” used to identify the node in loading, but is not retained in the graph data.

The example also shows an exception to the “use views whenever possible” In the “nomads”
table, the column that will be mapped to property “first_name” is call “personal_name”. The
implementation allows simple renaming.

Both node input tables have a reference column to the town the person was observed in, so
in both cases, the node table is also the edge table.

6.1 Table creation DDL
(to show what the graph will be loaded from)

CREATE TABLE towns

(town_name VARCHAR(32) PRIMARY KEY,
 population INTEGER);

CREATE TABLE settlers
(

first_name VARCHAR(32) NOT NULL,
last_name VARCHAR(32) NOT NULL,
idNumber INTEGER PRIMARY KEY,
town VARCHAR(32) REFERENCES towns(town_name)

);

CREATE TABLE nomads
(

personal_name VARCHAR(32) NOT NULL,
last_name VARCHAR(32) NOT NULL,

- 16 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

clan VARCHAR(32) NOT NULL,
town VARCHAR(32) REFERENCES towns(town_name),

CONSTRAINT nomads_pk PRIMARY KEY (clan, personal_name)
);

6.2 Graph schema DDL

The labels and the schema are declared independently of each other and the graph
mapping. The label declarations use the SQL-style syntax. All graph object names that use
mixed case are quoted.

CREATE LABEL "Town"
 PROPERTIES
 ("town_name" VARCHAR(32) NOT NULL)

CREATE LABEL "Person"
 PROPERTIES
 ("first_name" VARCHAR(32) NOT NULL,
 "last_name" VARCHAR(32) NOT NULL)

CREATE LABEL SEEN_IN

CREATE GRAPH SCHEMA "Observation"

 -- both the permitted node label sets and edge label sets
 -- can inferred from the edge triplets, so need not be
 -- stated explicitly

 ("Person") <0 .. *> - [SEEN_IN] -> <0 .. *> ("Town")

6.3 Mapping DDL

CREATE GRAPH DESERT WITH GRAPH SCHEMA Observation

-- the graph schema is referenced by name

 NODE LABEL SETS (
 (Town)
 FROM TOWNS,

 (Person)
 FROM SETTLERS,
 FROM NOMADS
 (PERSONAL_NAME AS "first_name")

- 17 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

)

 RELATIONSHIP LABEL SETS (

 (SEEN_IN)
 FROM SETTLERS edge
 START NODES
 LABEL SET (Person)
 -- edge table is also start table,

 -- each row joining to itself
 FROM SETTLERS start_nodes
 JOIN ON start_nodes.IDNUMBER = edge.IDNUMBER
 END NODES
 LABEL SET (Town)
 FROM TOWNS end_nodes
 JOIN ON end_nodes.TOWN_NAME = edge.TOWN,
 FROM NOMADS edge
 START NODES
 LABEL SET (Person)
 -- edge table is also start table,

 -- each row joining to itself
 FROM NOMADS start_nodes
 (PERSONAL_NAME AS "first_name")
 JOIN ON

start_nodes.PERSONAL_NAME = edge.PERSONAL_NAME
 AND start_nodes.CLAN = edge.CLAN
 END NODES
 LABEL SET (Town)
 FROM TOWNS end_nodes
 JOIN ON end_nodes.TOWN_NAME = edge.TOWN
)

7 Example showing M:M relationship
This example shows a mapping from relational data to a graph where the representation of
the relationships in the tables is many-to-many rather than one-to-one as in the previous
examples. One-to-many is also possible.

The input data has two tables - “officers” and “subordinates”. Both have just two fields, a
name, which is unambiguous, and a department name. Several officers and several
subordinates can . be in the same department. The graph is required to have a node for
each officer and each subordinate, with an OBEYS relationship from each subordinate to all
the officers in the department.

- 18 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

7.1 Graph DDL
The SQL-style is used fo the label declarations, with an in-line graph schema

CREATE GRAPH HIERARCHY

-- describe the pure property graph
WITH GRAPH SCHEMA (

LABEL OBEYS
 PROPERTIES
 ("department" VARCHAR(30) NOT NULL)

LABEL "Subordinate"
 PROPERTIES
 ("name" VARCHAR(30) NOT NULL)

LABEL "Officer"
 PROPERTIES
 ("name" VARCHAR(30) NOT NULL)

 -- both the permitted node label sets and edge label sets
 -- can inferred from the edge triplets, so need not be
 -- stated explicitly

 ("Subordinate") - [OBEYS] -> ("Officer")
)

7.2 Mapping DDL
(again, this follows on directly from the graph schema DDL above)

-- describe the table to property graph mappings

 NODE LABEL SETS (
 (Subordinate)
 FROM SUBORDINATES,

 (Officer)
 FROM OFFICERS
)

 RELATIONSHIP LABEL SETS (

 (OBEYS)
 FROM SUBORDINATES edge
 START NODES
 LABEL SET (Subordinate)

- 19 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 FROM SUBORDINATES start_nodes
 JOIN ON start_nodes.NAME = edge.NAME
 END NODES
 LABEL SET (Officer)
 FROM OFFICERS end_nodes
 JOIN ON end_nodes.DEPARTMENT = edge.DEPARTMENT
)

Note that the start (source) node table is also the edge table and the join for the start nodes
is just re-identifying the node that was created from that row of the table, as in the previous
example.

For the end (destination) side, the row from the edge table is matched against all of the rows
in the end table with the same department.

This processing can be described as a variation of the processing described in [ERF-042]
1.5.2 b). Instead of creating an edge, with an assigned identifer directly from each row of the
edge table, a “potential” edge (a template) is created. The template then becomes zero, one
or more edges when matched against the node tables, rather than flag the edge as
incomplete or multi-sourced.

7.3 Example data
Given the following input tables

Table OFFICERS:

NAME DEPARTMENT
Arthur alpha
Angela alpha
Brian beta
Gustav gamma
George gamma
Gertrude gamma
David delta
Diana delta

Table SUBORDINATES

NAME DEPARTMENT
Adams alpha
Atkinson alpha
Brown beta
Emmett epsilon
Erskine epsilon
Gardner gamma

- 20 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

Gershwin gamma
Goddard gamma

Then, the equivalent of the Cypher query

MATCH (s:Subordinate)-[d:OBEYS]->(o:Officer)
RETURN s.name AS subordinate, o.name AS officer,

 d.department AS department

Produces the following output

subordinate officer department
Atkinson Arthur alpha
Atkinson Angela alpha
Adams Arthur alpha
Adams Angela alpha
Brown Brian beta
Gershwin Gustav gamma
Gershwin George gamma
Gershwin Gertrude gamma
Goddard Gustav gamma
Goddard George gamma
Goddard Gertrude gamma
Gardner Gustav gamma
Gardner George gamma
Gardner Gertrude gamma

8 Self-referencing M:M example
A variation on the example above can be created where there is only a one set of nodes and
the relationship is just which of them share some attribute. We can re-use the data above,
but with a SAME_DEPT relationship among the subordinates.

If the mapping is defined with

 (SAME_DEPT)
 FROM SUBORDINATES edge
 START NODES
 LABEL SET ("Subordinate")
 FROM SUBORDINATES start_nodes
 JOIN ON start_nodes.NAME = edge.NAME
 END NODES
 LABEL SET ("Subordinate")
 FROM SUBORDINATES end_nodes

- 21 of 22 -

Graph schema and join syntax examples ISO/IEC JTC1/SC32 WG3:ERF-043
 ANSI INCITS sql-pg-2018-0036r2

 JOIN ON end_nodes.DEPARTMENT = edge.DEPARTMENT

Then there will be an edge from every node back to itself. If this is not desired, the mapping
for the end nodes can exclude such loop backs (highlighted):

 ​(SAME_DEPT)
 FROM SUBORDINATES edge
 START NODES
 LABEL SET ("Subordinate")
 FROM SUBORDINATES start_nodes
 JOIN ON start_nodes.NAME = edge.NAME
 END NODES
 LABEL SET ("Subordinate")
 FROM SUBORDINATES end_nodes
 JOIN ON end_nodes.DEPARTMENT = edge.DEPARTMENT
 ​AND end_nodes.NAME != edge.NAME

Possibly the not-equals condition should reference the start_nodes correlation name rather
than the edge, although these are the same table in this case. If they are not the same, this
additional mechanism probably is not needed.

- 22 of 22 -

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

Property Graph Data Model Concepts and Terms

Title Property Graph Data Model Concepts and Terms
Author Alastair Green, U.S.A National Expert 1

Status Discussion Paper
Date 1 October 2018
r1 30 October 2018

Copyright © 2018, Neo4j Inc. Please see last page of this document for Apache 2.0 licence grant​.

Contents

1. References

2. Introduction

3. Revised Terms
3.1. Graph Schema
3.2. Better: Graph Type

4. Additional Concepts and Features
4.1. Graph Identifier
4.2. Elements
4.3. Label Expressions and Label Sets
4.4. Label Expression Types
4.5. Label Tables or Datasets
4.6. Label Set Tables or Datasets
4.7. Imputed Tables and the Catalog
4.8. Node and Edge Keys

5. Graph Types, Edge Types, Node Types

6. Tree view of DDL declaration of a graph type

7. Named (Nominal) and Anonymous (Structural) Types

8. UML Metamodel for the Pure and Table Property Graphs

9. An ITI, ISO and openCypher/GQL contribution from Neo4j Inc.

1 Member of of the Neo4j SQL working group (Alastair Green, Hannes Voigt, Peter Furniss, Petra
Selmer, Stefan Plantikow, Tobias Lindaaker) whose other members have contributed comments
during the preparation of this paper. We don’t all agree on all of what is said, but we all feel the thrust
is correct and the points raised are important for refining the planned PGQ IWD.

1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

1. References

[Foundation:2020] ISO/IEC JTC1/SC32 WG3:ERF-003
Jim Melton (ed),
“ISO International Standard (IS) Database Language SQL-
Part 2: SQL/Foundation​​”,
ISO/IEC IWD 9075-2:2020(E)

[Schemata:2020] ISO/IEC JTC1/SC32 WG3:ERF-008
Jörn Bartels, Jim Melton, (eds),
“ISO International Standard (IS) Database Language SQL-
Part 11: SQL/Schemata​​”,
ISO/IEC IWD 9075-11:2016:2020(E)

[SQL PG DM] ISO/IEC JTC1/SC32 WG3:YTZ-034
ANSI INCITS DM32.2-2018-00092
ANSI INCITS sql-pg-2018-0003r2
Neo4j SQL working group,
“Property Graph Data Model for SQL”​​, April 2018

[Graph patterns] ISO/IEC SC32/WG3:ERF-035
ANSI INCITS DM32.2-2018-00153r1
ANSI INCITS sql-pg-2018-0029r1
Fred Zemke,
“Fixed graph patterns”​​, September 2018

[PPG data model] ISO/IEC JTC1/SC32 WG3:ERF-042
ANSI INCITS DM32.2-2018-001nn
ANSI INCITS sql-pg-2018-0035
Jan Michels,
“The pure property graph data model”​​, September 2018

[Graph DDL] ISO/IEC JTC1/SC32 WG3:ERF-043
ANSI INCITS sql-pg-2018-0036r2
Peter Furniss,
“SQL/PG graph schema and join syntax mapping
examples”​​, September 2018

2. Introduction

This paper proposes ​adding​ some concepts (element keys, label expression/set types, label
and label set tables/datasets) to the pure property graph abstract data model described in
Jan Michel’s paper ​[PPG data model]​, and ​revising​ some of the terms used to describe
existing concepts in that model.

The syntax and descriptions used in Peter Furniss’ ​[Graph DDL]​ would also be affected by
the changes proposed in this paper.

2

https://isotc.iso.org/livelink/livelink?func=ll&objId=19830029&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D16656048%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19830029&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D16656048%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19832112&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D16656048%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19832112&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D16656048%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19717791&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19531187%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19717791&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19531187%26objAction%3Dbrowse%26viewType%3D1
https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/101689/sql-pg-2018-0029r1-fixed-pattern-proposal.pdf
https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/101689/sql-pg-2018-0029r1-fixed-pattern-proposal.pdf
https://isotc.iso.org/livelink/livelink?func=ll&objId=19967395&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19967395&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19967395&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

Those changes are not viewed as antagonistic to the mental model or resulting designs in
those two papers.

The resulting amended metamodel for a pure property graph and for a tabular data model is
shown as a revised version of the UML diagram presented first in ​[SQL PG DM]​.

The paper in part reflects prior submissions by Neo4j to the SQL PG Ad Hoc; in part
responds to comments raised by Romans Kasperovics of SAP and Mingxi Wu of TigerGraph
in the 25 September 2018 meeting of the INCITS D32.2 Ad Hoc for SQL Property Graph
Extensions; and in part reflects implementation work in this area using the open source
Cypher for Apache Spark project.

Terms in bold like ​elements​​ are defined terms and intended descriptors.

3. Revised Terms

3.1. Graph Schema

The structure and the values of a particular graph at a particular point in logical time (a
graph instance​​) can be thought of as being circumscribed by a ​graph schema​​, which is
metadata that describes the permitted structure and values of that graph.

The consensus of the SQL PG Ad Hoc is that no property of any element in the graph shall
exist unless the graph schema specifies that property as belonging to a label which is part of
a vertex label set or an edge label set, as defined in ​[PPG data model]​. This restriction,
which is not present in schema-optional languages like Cypher, PGQL and G-CORE, means
that SQL PGQ conforms to the closed-world schema model of SQL (modulo Polymorphic
Table Functions).

The term “graph schema” has occasionally caused confusion. From an SQL perspective, it
can be seen to clash with the notion of a catalog schema, in whose scope other objects like
tables and views are defined. On the other hand it is a well-established term in the property
graph community, being a synonym for graph metadata.

The SQL standard itself seems to embed this confusion, apparently using the term “schema”
in two ways. First, to define a catalog subdivision/container of metadata as in

mydatabase.​​myschema​​.mytable_or_view

And second, as a generic term for metadata objects, as we can see from this BNF fragment,
which treats catalog schema definition and table definition as both being “schema definition”
activities:

<SQL ​​schema​​ definition statement> ::=
 <schema definition>

3

https://isotc.iso.org/livelink/livelink?func=ll&objId=19717791&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19531187%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19967395&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

| <table definition>

| <view definition> ...

However, if we view all objects within a schema as part of the schema, then the apparent
ambiguity of the term, as used in the standard, resolves.

3.2. Better: Graph Type

An alternative term for graph schema would be ​graph type​​.

By analogy, one can define a table, and in the course of that definition lay out an anonymous
row type (or implicitly create a row type if one is not explicitly defined).

CREATE TABLE my_table (ROW (a CHAR(2),

 b INTEGER,

 c ROW (ca CHAR(2),

 cb CHAR(2))))

You could also define (SQL standard) a named user-defined structured type, or (taking
PostgreSQL​ as an example of an implementation extension) a named row type. Using
PostgreSQL syntax:

CREATE TYPE my_row (a CHAR(2),

 b INTEGER,

 c ROW (ca CHAR(2),

 cb CHAR(2))))

CREATE TABLE my_table (content my_row)

Turning back to graphs: in the syntax examples shown in ​[Graph DDL]​ we see this kind of
graph definition:

CREATE PROPERTY GRAPH snb

 WITH [[PROPERTY] GRAPH] SCHEMA

 (LABEL "Person"

 PROPERTIES (creationDate TIMESTAMP NOT NULL,

 firstName VARCHAR(255),

 lastName VARCHAR(255),

 gender CHAR(1))

If we thought of this as declaring an anonymous type in-line with creating a graph (like ROW)
then we could instead see:

CREATE [PROPERTY] GRAPH snb

 WITH [[PROPERTY] GRAPH] TYPE

4

https://www.postgresql.org/docs/current/static/rowtypes.html
https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

 (LABEL "Person" ...

 ​​/*
 more labels

 vertex label sets

 edge label sets

 edge triplets using

 source vertex, destination vertex and edge label subsets

 */

)

This is interesting, again by analogy with existing SQL, in that the metadata for a table can
be thought of as a complex row type (whether specified or inferred) and constraints.

4. Additional Concepts and Features

4.1. Graph Identifier

A graph cannot exist other than as an object viewable in the Information Schema of a
catalog ​[Schemata:2020]​. It must be defined as a part of a user-defined schema, which may
contain many graphs. The schema-qualified name of a graph object viewed by the
Information Schema of a catalog is a unique identifier for a graph within that catalog.

4.2. Elements

A graph is made up of two sets: the set of nodes (vertices) and the set of edges. The union
of those two sets can be termed a set of ​elements​​. An ​element​​ is therefore a term for a 2

node or edge, and is an object that may have labels and therefore may have properties. We
can say that there are two ​sorts​​ of elements, nodes and edges.

4.3. Label Expressions and Label Sets

Label sets​​ allow zero or more labels to be combined (conjoined) to define a set of label
identifiers and their possible properties and their names and types. Every label is considered
to be a label set with one member.

A label set is a special case of a ​label expression​​ (a concept introduced in the context of
pattern matching, see ​[Graph patterns]​), in which labels are simply conjoined. (A label set is
therefore a term for a label conjunction). A label expression allows potentially recursive
conjunction, disjunction and negation of labels and of resulting label expressions.

2 There is no well-established term in the research literature for this set, which is not interesting to
graph theorists. It is a useful term for discussing characteristics which are common to nodes and
edges in the graph data model, for example labels and properties. It is the term used by Apache
Tinkerpop and by PGQL, and seems better than the term “entity” used by openCypher, which could
be confused with an entity in an entity-relationship model (which corresponds to a type of node in a
property graph).

5

https://isotc.iso.org/livelink/livelink?func=ll&objId=19832112&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D16656048%26objAction%3Dbrowse%26viewType%3D1
https://standards.incits.org/apps/org/workgroup/dm32.2-sql-property-graphs/download.php/101689/sql-pg-2018-0029r1-fixed-pattern-proposal.pdf

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

For example, given labels ​Person​​,​ Resident​​,​ Visitor​​,​ Dog​​,​ Pet​​,​ WorkingAnimal​​,
Licensed​​ we could see several useful label expressions, like the following cases:

(Person & Resident)

(Person & Visitor)

(Dog & (Pet | Working Animal))

(Dog & WorkingAnimal & !Licensed)

The conjunction of labels is disallowed if a label in the proposed set has a property with the
same name, but a different datatype, as a property in another member of the proposed set. If
a label in the proposed set has the same name and the same datatype as a property in
another member of the proposed set then the conjunction is allowed.

4.4. Label Expression Types

A label expression (including a label set “conjoining” one label) can be associated with a
label expression type​​. A label expression type is either an intersection type, in which all
properties of all conjoined label expressions are included (apart from properties from
different labels with the same name, and therefore also with the same data type, which are
coalesced into a single property of that name and type), or a union type.

All label expressions can be expanded into “conjunctive normal form” (i.e. into a label set),
giving a set of label expressions that are conjunctions, and where all the associated label
types are intersection types. These can equally be termed ​label set types​​. A union type is
therefore a set of intersection or label set types.

The use of label expressions to define types enables mapping inheritance relationships
without explicitly defining type hierarchies, but also enables relationships that are arbitrary or
partial to be expressed (not all ​Person​​ node modifications are ​Audited​​, for example).

A label expression type can be associated with an element sort, in which case that type
becomes a ​vertex type​​ or an ​edge type​​ (collectively, ​element types​​).

A label expression type used for defining edge triplets would be termed a ​triplet type​​. A
triplet type used to define a triplet source vertex type or destination vertex type must, in
conjunctive normal form (viewed as a label set), be a subset of a vertex type; one used to
define a triplet edge type must be a subset of a label set edge type.

It is possible to distinguish all label expression types by their label expression definition.
However, it would be helpful to allow the naming of label expression types (which, in a form,
is shown as aliasing in ​[Graph DDL]​). This would enable naming of empty label sets, which
would give us “marker interfaces”, and it would also allow typedef-ing.

6

https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

It would also be helpful to define a ​label expression supertype ​​which could be used in
label expression types of the following forms:

Person & !(LABEL_EXPRESSION & !Person)
Person & !(& !Person)

which allows us to say “Person and only Person”.

Such a supertype could also be used to defining edge triplets where the nature of the nodes
is irrelevant, but the set of permitted edge types is restricted, or conversely where the nature
of the edges is uninteresting:

()-[REGISTERED_BY]-(Municipality) ​​-- dogs, people, cars ...
(Dog)-[]-() ​​-- dogs without relationships are not allowed ...

4.5. Label Tables or Datasets

If the set of properties of a label is called the ​label properties​​, then the values of the label
properties for an element with that label is a ​label row or record​​. The label rows of all the
elements of the same sort for a given label constitute an ​imputed​​ ​label table or dataset​​. A
label table is a multiset if there is no label key, but a set if there are one or more label keys
for that label.

An element may have multiple labels, and therefore its properties may have many
(potentially intersecting) subsets, each of which is a label row in a distinct label table.

4.6. Label Set Tables or Datasets

An element has one most-specific label expression type (the intersection type that
corresponds to a label set or conjunctive normal form label expression). The defining label
set of such a type can be referred to as an ​element label set​​ and if the set of properties of
all of the labels in its label set is called its ​element properties​​, then the values of the
element properties for an element is an ​element​​ ​row or record​​. The element rows of all the
elements of the same sort with the same element label set constitute an ​imputed label set
table​​.

A label set table is a set if all the members of the element label set that gives rise to the table
have at least one label key, but otherwise is a multiset.

A property graph is made up of a finite set of label set tables, which correspond to the vertex
types and edge types defined as metadata. It is also made up of a larger set of label tables.

The ​metamodel ​says that a graph is a set of vertex labels sets and a set of edge label sets
(which may be empty), and their associated types; the data ​model​ or ​schema​ for a concrete

7

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

graph says that those sets have defined members; the data graph or ​instance​ has a table for
each defined element type.

4.7. Imputed Tables and the Catalog

Note that the label and label set tables described above are imputed or inferred: they need
not be catalog objects and they may never be materialized in the implementation, or
projected as a result.

It would be conceivable to allow these tables to be named and used as inner objects of the
complex graph object in the catalog. However, as Fred Zemke has pointed out, a similar
effect would be created if an SQL view were constructed over a GRAPH_TABLE with a
MATCH (IS a & IS b)​​ graph query, taking the example of a node label set ​(IS a & IS
b)​​.

4.8. Node and Edge Keys

Cypher implementations (Neo4j Database, Cypher for Apache Spark) have found it useful to
define ​keys​​ for sets of nodes or sets of edges. An ​element key​​ is an optional set of
mandatory (non-null) properties, which are a subset of the properties of an element. An
element may have more than one key.

If an element of a graph has a key, then the value of the key for that element must differ from
its value for all other elements in that graph with the same element type.

A key is therefore a candidate key for a label set table. When a label set is applied to
vertices, creating a vertex type, and one or more keys are defined for that label set, then its
keys are ​vertex keys​​, when applied to edges, creating an edge type, they are ​edge keys​​,
together these are of course ​element keys​​.

The properties that constitute an element key must be a subset of the mandatory properties
of the element type.

8

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

5. Graph Types, Edge Types, Node Types

The diagram below summarizes the revised terminology (and relationships) first suggested
in this paper.

9

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

6. Tree view of DDL declaration of a graph type

7. Named (Nominal) and Anonymous (Structural) Types

In the Neo4j SQL working group we are comfortable with the idea of named types being
registered in the catalog’s Definition Schema, for any of the type objects mentioned above,
including graph types, as well as for edge triplet constraint objects.

These objects could then be attached to concrete data objects by reference during the
definition of such objects, and could be used freely to create new complex types where
appropriate. This is the approach we would prefer to see for the native, standalone GQL.

For SQL PGQ we are equally happy to start (and maybe finish) with anonymous types,
including with anonymous graph types that must be defined within a graph object definition,
in line with the approach taken for table definition (when user-defined structure types are not
employed).

In the absence of names for inner objects like element types, the use of LIKE would have to
be reserved for the highest level graph type:

10

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

CREATE [PROPERTY] GRAPH snb_today

 LIKE [[PROPERTY] GRAPH] snb_yesterday

Allowing types to be named would allow the full, recursive system of label expression types
to be expressed more economically. This could be viewed as a purely syntactic concern: it
does not affect the model. In the absence of named label set types, it would only be possible
to define element or triplet types as conjunctions, disjunctions or negations of label
expressions themselves.

The complex label type system suggested here has no effect on the pattern matching
sub-language used in MATCH, although it does provide information that would be of
potential value to an optimizing implementation. It is possible to deduce much of the
information in this model from the mappings represented by the table property graph
described in ​[PPG data model]​, which in turn can be inferred from the join syntax for
mapping tables to the pure property graph outlined in ​[Graph DDL]​. With small extensions of
the explicit graph schema or type definitions shown in the latter paper, all of the metadata
described here could be defined.

We should note that it is necessary to have user-defined label definitions that are additive to
existing table definitions to enable any mapping approach, and that this may militate in
favour of allowing label set type definitions (including in terms of other label set type
definitions), to be defined independently of the mappings.

11

https://isotc.iso.org/livelink/livelink?func=ll&objId=19967395&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19965094&objAction=Open&nexturl=%2Flivelink%2Flivelink%3Ffunc%3Dll%26objId%3D19729763%26objAction%3Dbrowse%26viewType%3D1

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

8. UML Metamodel for the Pure and Table Property Graphs

12

Property Graph Data Model Concepts and Terms ANSI INCITS sql-pg-2018-0037r1

ANSI INCITS DM32.2-2018-0177r1
ISO/IEC JTC1/SC32 WG3 ERF-044r1

9. An ITI, ISO and openCypher/GQL contribution from Neo4j Inc.

This contribution is a Deliverable under the terms of clause 2.2.1 of the Agreement for
Membership in the InterNational Committee for Information Technology Standards
(“INCITS”), a Division of the Information Technology Industry Council (“ITI”) to which Neo4j
Inc. is a party.

It is also a contribution to the ​openCypher community and like all such contributions is: 3

Copyright © 2018 Neo4j Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at https://www.opencypher.org/

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Apache License, Version 2.0, Attribution Notice

This document is a contribution by Neo4j’s SQL working group to the openCypher
project and to the SQL standard development process. It is also a contribution to the
GQL standard project incubation community.

3 https://www.opencypher.org/

13

https://www.opencypher.org/

	LDBC Open Access to External Papers_ OAEP-2023-01 SQL_PGQ data model and graph schema.April.2023.pdf
	LDBC-Open-Access-External-Paper-OAEP-2023-01--SQL_PGQ-data-model-and-graph-schema.DOI.10.54285_ldbc.QZSK3559.pdf
	ISO-IECJTC1-SC32-WG3_ytz034-Property-Graph-Data-Model-Neo4j-view.pdf
	ISO-IECJTC1-SC32-WG3_erf043-graph-schema-and-join-syntax-mapping-examples.pdf
	ISO-IECJTC1-SC32-WG3_erf044r1-PGDM-Concepts-and-Terms.pdf

