FinBench: The new LDBC benchmark targeting financial scenario

Shipeng Qi

(with contributions from members of the FinBench Task Force)
Benchmark Overview
FinBench Motivation

• SNB, Social Network Benchmark, is designed based on social network scenarios, which is limited when applied to the financial service industry.

• FinBench objective is to design a high-quality benchmark for evaluating the performance of graph database systems in financial scenarios, e.g. anti-fraud and risk control, based on financial data patterns and query patterns.
Key Features in FinBench

- Dataset
 - PowerLaw distribution
 - Multiplicity
 - Hub Vertex

- Transaction Workload
 - Read-write query
 - Special graph patterns
 - Time-window filtering
 - Recursive path filtering
 - Truncation
Brief of the initial version

• Standard Design: all key features in proposal implemented
• Workload: Transaction Workload, including 12 complex read queries, 6 simple read queries, 19 write queries and 3 read-write queries
• Dataset: Up to SF10 scale supported
• Implementation on 3 systems: TuGraph, Galaxybase, and UltipaGraph
• Collaboration: 9 vendors in Task Force and 6 developers
Data Design and Generated Datasets

- Data Schema
- Data Distribution
- Datasets Statistics
Data Schema

Person
- id: ID
- name: String
- isBlocked: Boolean
- createTime: DateTime
- gender: String
- birthday: Date
- country: String
- city: String
- apply
- own
- guarantee
- invest
- transfer
- withdraw

Company
- id: ID
- name: String
- isBlocked: Boolean
- createTime: DateTime
- country: String
- city: String
- business: String
- description: String
- url: String
- apply
- own
- guarantee
- invest
- repay
- deposit

Account
- id: ID
- createTime: DateTime
- isBlocked: Boolean
- nickname: String
- phoneNumber: String
- email: Long String
- freqLoginType: String
- lastLoginTime: DateTime
- accountLevel: String
- transfer
- withdraw

Loan
- id: ID
- loanAmount: 64-bit Float
- balance: 64-bit Float
- usage: String
- interestRate: 32-bit Float

Medium
- id: ID
- type: String
- nickname: String
- phoneNumber: String
- email: Long String
- freqLoginType: String
- lastLoginTime: DateTime
- riskLevel: String
- signin
- repay
- deposit

Single edges from src to dst
Multiple edges from src to dst
Data Distribution: Transfer Edge

- Degree: PowerLaw Distribution
- Asymmetric directed graph
- Hub vertex: degree increases with scale
 - MaxDegree = 1000 in SF1
 - MaxDegree = 10000 in SF10
 - Larger scale to be supported

Profiling of SF0.1

- Num of accounts: 26347
- Num of transfer edges: 138209
- Average Degree: 5.245720575397579
- Average Multiplicity: 1.616574068658986
Transaction Workload

- Transaction Workload
- Time Window Filtering
- Recursive Path Filtering
- Read-Write Query
- Truncation
- Query Mix
- Transaction Workload Driver
Transaction Workload

Scenario: financial activities among accounts, persons, companies, loans and media

Queries:

- 12 complex reads: match exact patterns including cycles and trees (see next slide) starting from one or two vertices
- 6 simple reads: discover the neighbourhood of an Account node
- 19 write queries: inserts, updates, deletes (cascade deletion)
- 3 read-write queries: transaction-wrapped complex reads
Transaction Workload: Example Patterns

Cycle
[Ref: Transaction Complex Read 4]

Tree
[Ref: Transaction Complex Read 6]

Chain
[Ref: Transaction Complex Read 11]
Time Window Filtering

- Fact: queries only look back in a limited time window
- Filtering: filter edges between `startTime` and `endTime` in traversal

Blocked medium related accounts
[Ref: Transaction Complex Read 1]
Recursive Path Filtering

Assuming: A -[e1]-> B -[e2]-> ... -> X

- Timestamp order: e1 < ... < ei
- Amount order: e1 > ... > ei

Transfer trace after loan applied
[Ref: Transaction Complex Read 8]
Read-Write Query

- Transaction-wrapped complex reads (risk control strategy)
- If the complex read matches, commit the transaction with write query. Otherwise, transaction abort

Transfer under transfer cycle detection strategy
[Ref: Transaction Read Write 3]
Truncation

- Truncate less-important edges to avoid complexity explosion when traversing
- Truncating is actually sampling
- TruncationLimit and truncationOrder is defined to ensure consistency of results.

For example, keep only the top 100 edges in order of timestamp descending
Benchmark Suite
Datasets Statistics

| Supported Scale Factor | |V| | |E| |
|------------------------|---|---|---|
| 0.01 | 8663 | 61674 |
| 0.1 | 64485 | 610658 |
| 0.3 | 192971 | 1830891 |
| 1 | 643241 | 6091820 |
| 3 | 1928439 | 18243343 |
| 10 | 6069955 | 51889416 |

FinBench datasets of SF0.01 to SF10 are published at the [Google Drive](https://drive.google.com). These datasets were all generated using csv serializers in the initial version.

Note: please see the tables in Appendix A for detailed statistics
Transaction Workload Driver

Inherited from SNB Interactive driver, the driver has 3 modes of operation, all starting with a database containing the initial data set.

1. Generate validation data set
 - single-threaded, sequential execution
 - output: validation results

2. Validate implementation
 - single-threaded, sequential execution
 - input: validation results
 - output:
 - passed/failed validation
 - if failed: expected vs. actual results

3. Execute benchmark
 - multi-threaded, concurrent execution
 - Use TCR to control the load scale
 - output:
 - passed/failed schedule audit
 - throughput (operations per second)
 - per-query performance results
Roadmap and acknowledgement
Roadmap

<table>
<thead>
<tr>
<th>Version</th>
<th>Estimated Time</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.0</td>
<td>Mid of 2023</td>
<td>• Runnable and auditable</td>
</tr>
</tbody>
</table>
| 0.2.0 | End of 2023 | • Larger scale data generation
| | | • Optimize parameter curation
| | | • Query mix profiling and design |
| 0.3.0 | 2024 | • New workload: Analytics workload |
Acknowledgement

Task Force Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipeng Qi</td>
<td>Ant Group</td>
</tr>
<tr>
<td>Bing Tong</td>
<td>CreateLink</td>
</tr>
<tr>
<td>Changyuan Wang</td>
<td>Vesoft</td>
</tr>
<tr>
<td>Yang Bin</td>
<td>Ultipa</td>
</tr>
<tr>
<td>Shenghao Zhang</td>
<td>StarGraph</td>
</tr>
</tbody>
</table>

Developers
Resources

• Specification: https://github.com/ldbc/ldbc_finbench_docs

• Benchmark Suite
 • https://github.com/ldbc/ldbc_finbench_driver
 • https://github.com/ldbc/ldbc_finbench_datagen
 • https://github.com/ldbc/ldbc_finbench_transaction_impls
 • https://github.com/ldbc/ldbc_finbench_acid

• Datasets: https://drive.google.com/drive/folders/1tURBIJE56ZNC9YvMtug31peYD5csizCa?usp=sharing

• Certification audit packages: https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-QCOl?usp=sharing