
Supporting Dynamic Graphs and Temporal Entity
Deletions in the LDBC Social Network Benchmark’s

Data Generator
Jack Waudby

Newcastle University, School of Computing
j.waudby2@newcastle.ac.uk

Benjamin A. Steer
Queen Mary University London

b.a.steer@qmul.ac.uk

Arnau Prat-Pérez
Sparsity Technologies

DAMA UPC
aprat@ac.upc.edu

Gábor Szárnyas∗
Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

szarnyas@mit.bme.hu

ABSTRACT
Many data processing pipelines operate on highly-connected
data sets that can be efficiently modelled as graphs. These
graphs are rarely static, but rather change rapidly and often
exhibit dynamic, temporal, or streaming behaviour. During
the last decade, numerous graph benchmarks have been
proposed, which cover a significant portion of the features
required in practical use cases. However, whilst these bench-
marks often contain some update operations, none of them
include complex deletions, which makes it challenging to test
the performance of graph processing systems under such
operations. To address this limitation, we have extended
the LDBC Social Network Benchmark (SNB) by introducing
lifespan attributes for the creation and deletion dates of its
entities. We have defined constraints for selecting these dates
from intervals that ensure that the graph always satisfies the
cardinality constraints prescribed by the schema and other
semantic constraints of the social network domain. We have
implemented the proposed lifespans in the SNB generator.

ACM Reference Format:
Jack Waudby, Benjamin A. Steer, Arnau Prat-Pérez, and Gábor
Szárnyas. 2020. Supporting Dynamic Graphs and Temporal Entity
Deletions in the LDBC Social Network Benchmark’s Data Generator.
In 3rd Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA)

∗Alsowith theMTA-BME Lendület Cyber-Physical Systems Research Group.

GRADES-NDA’20, June 14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 3rd Joint International Workshop on Graph Data Management Experiences
& Systems (GRADES) and Network Data Analytics (NDA) (GRADES-NDA’20),
June 14, 2020, Portland, OR, USA, https://doi.org/10.1145/3398682.3399165.

(GRADES-NDA’20), June 14, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3398682.3399165

1 INTRODUCTION
Recognizing the potential value that can be extracted from
rich, highly-connected data sets, organizations often comple-
ment their existing data processing pipelines with dedicated
graph processing systems such as graph databases [7], graph
analytical frameworks [4], and graph streaming engines [6].
While this trend has led to an abundance of graph processing
systems in the last decade, the maturity and performance of
these system is often questionable. To stimulate competition
between vendors and allow fair comparison of their systems,
several benchmarks have been proposed to capture realistic
graph processing workloads, including those of the Linked
Data Benchmark Council (LDBC). LDBC’s Social Network
Benchmark (SNB) suite [2] defines two workloads: Interac-
tive [14] targets transactional systems with queries accessing
a small portion of the database and insert operations, while
the current version of the Business Intelligence [29] workload
features complex aggregation-heavy operations for graph-
based decision support but no updates. These workloads
require a significant portion of features in graph systems
that are relevant in popular applications (such as social net-
working, fraud detection, and recommendation). However,
they still lack a number of features, most crucially transac-
tional delete operations necessary for handling fully dynamic
graphs are common [25] and legally required by the EU’s
General Data Protection Regulation (GDPR) regulation [26].

Challenge for systems. To support deletions, graph process-
ing systems need to solve numerous technical challenges:
(1) Users should be able to express deletion operations us-

ing the database API, preferably using a high-level
declarative query language with clear semantics [15].

(2) Deletion operations limit the algorithms and data struc-
tures that can be used by a system. Certain dynamic

https://doi.org/10.1145/3398682.3399165
https://doi.org/10.1145/3398682.3399165


GRADES-NDA’20, June 14, 2020, Portland, OR, USA Waudby, Steer, Prat-Pérez and Szárnyas

Figure 1: Partial LDBC social network schemadepicted using aUML-like notation, focusing on the dynamic part of
the graph (non-lifespan attributes and irrelevant entity types in the static part are omitted). In the dynamic part of
the graph, all node types and all ⊗ edge types with many-to-many cardinality between two dynamic node types have
individual lifespan attributes. The ◆ containment edges get their lifespan attributes from the contained endpoint
(whose lifespan attributes are constrained by the container endpoint). ⊕ hasCreator follows the semantics of
containment edges (even though it does not express an explicit containment relation). ⊛ hasModerator is a one-
to-many edge that is treated separately depending on the Forum category (see Section A.1). The ⊙ edges between a
dynamic and a static node get their lifespan attributes from their dynamic endpoint.

graph algorithms are significantly more expensive to
recompute in the presence of deletes [23] or only sup-
port either insertions or deletions but not both [24]. A
number of updatable matrix storage formats only sup-
port efficient insertions but not deletions [12]. Mean-
while some graph databases might be able to exploit
indexes to speed up deletions [7].

(3) Distributed graph databases need to employ specialized
protocols to enforce consistency of deletions [30].

Challenge for benchmarks. Due to their importance and
challenging nature, we found it necessary to incorporate
delete operations into LDBC benchmarks. However, doing
so is a non-trivial task as it impacts on each component in
the benchmark workflow: workload specifications, data gen-
eration, parameter curation, and the workload driver. This
paper focuses on the challenge of generating deletion opera-
tions within LDBC’s synthetic data generator, specifically, to
extend the generator with support for dynamic entities. Dy-
namic entities have a creation date and a deletion date, which
together comprise an entity’s lifespan. Once generated this
allows for the extraction of deletion operations, which can
be utilized by LDBC workloads. Supporting the generation
of dynamic entities poses numerous challenges:

(1) Validity. The generator should produce valid lifespans,
where each generated dynamic entity guarantees that
(a) events in the graph follow a logical order: e.g. in a
social network, two people can become friends only
after both persons joined the network and before either

person leaves the network, (b) the graph never violates
the cardinality constraints prescribed by its schema,
and (c) the graph continuously satisfies the semantic
constraints required by the application domain (e.g. no
isolated comments in a social network).

(2) Realism. The generator should create a graph with a
realistic correlations and distribution of entities over
time. For example, in a social network the distribution
of activity is non-uniform over time, real-world events
such as elections or controversial posts can drive spikes
of posts and unfollowings respectively [19]. In addi-
tion, deletions can be correlated with certain attributes:
e.g. the likelihood a person leaves the network may
be correlated with their number of friends [18]. Also,
there are often temporal correlations between entity
creation and deletion: e.g. posts have an increased
chance of deletion immediately following creation
compared to after a 3 month period.

(3) Scalability. A graph with dynamic entities should be
generated at scale (up to billions of edges).

The main contribution of this paper is to address validity,
with realism, scalability, and the extraction of deletion oper-
ations left for future work – we briefly discuss our intended
approach in Section 4. To ensure validity, we have defined
constraints that describe the permissible intervals for select-
ing creation and deletion dates of the graph entities in the
LDBC SNB’s social network graph (Section 2).



Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC SNB’s Data Generator GRADES-NDA’20, June 14, 2020, Portland, OR, USA

2 LIFESPAN MANAGEMENT
In this section, we define the the constraints for generating
dynamic entities in a social network. Each dynamic entity
gets a lifespan, represented by two lifespan attributes, a cre-
ation date and a deletion date. We first briefly review the data
generator, introduce our notation and define the parameters
of the generation process. Then, we define the semantic con-
straints which regulate the participation in certain relation-
ships along with the constraints for selecting intervals. We
illustrate an application of these with two examples, shown
in Figure 2 and Figure 3.

Graph schema. The LDBC Datagen component [20, 21] is
responsible for generating the graph used in the benchmarks.
It produces a synthetic dataset modelling a social network’s
activity. Its graph schema has 11 concrete node types con-
nected by 20 edge types, and its entities (nodes/edges) are
classified as either dynamic or static (Figure 1). The dynamic
part of the graph comprises of a fully connected Person
graph and a number of Message trees under Forums.

Notation. To describe lifespans and related constraints, we
use the following notation. Constants are uppercase bold, e.g.
NC. Entity types are monospaced, e.g. Person, hasMember.
Variables are lowercase italic, e.g. pers, hm. Entities are sans-
serif, e.g. P1,HM. For an entity 𝑥 , ∗x denotes its creation date,
while †x denotes its deletion date. In most cases, both the
creation and the deletion date are selected from an interval,
e.g. ∗x ∈ )︀𝑑1, 𝑑2) means that entity x should be created
between dates 𝑑1 (inclusive) and 𝑑2 (exclusive). The selected
creation and deletion dates together form an interval that
represents the lifespan of its entity. If any of the intervals
for selecting the lifespan attributes of an entity are empty,
i.e. 𝑑2 ≤ 𝑑1, the entity should be discarded. As illustrated
later, this interval is often used to determine the intervals
where the creation and deletion dates of dependant entities
are selected.

Parameters. Weparameterize the generator as follows. The
network is created in 2010 and exists for 10 years at which
point the network collapses (NC = 2020). Data is simulated
for a 3-year period, between the simulation start, SS = 2010
and the simulation end, SE = 2013. In order to allow win-
dowed execution by the LDBC SNB driver [14] (used for multi-
threaded and distributed operation), we define a sufficiently
large amount of time that needs to pass between consecutive
operations on an entity as Δ = 10s.

2.1 General Rules
In this section, we define general rules that must be satisfied
by all entities in the graph. In subsequent sections, we refine
these with domain-specific constraints. For a node n1, we
always require that:

● ∗n1 ∈ )︀SS, SE), the node must be created between the
simulation start and the simulation end.
● †n1 ∈ )︀∗n1 + Δ, NC), the node must exist for at least Δ
time and must be deleted before the network collapse.

To enforce referential integrity constraints (i.e. prevent
dangling edges), the lifespan of edge e between nodes n1 and
n2 must always satisfy the following criteria:
● ∗e ∈ )︀max(∗n1,∗n2), min(†n1,†n2, SE)), in other
terms, the edge must be created no sooner than both
of its endpoints but before any of its endpoints are
deleted.
● †e ∈ )︀∗e + Δ, min(†n1,†n2)), i.e. the edge must exist
for at least Δ time and deleted no later than any of its
endpoints.

To further refine the constraints for edges, we distinguish
between two main cases.

(1) The endpoints of edge e are existing node n1 and node
n2 which is inserted at the same time as the edge:
● ∗e = ∗n2
● †e = min(†n1,†n2). In case of edges with containment
semantics (node n1 contains n2 through edge 𝑒), node
n2 must always be deleted at the same time as edge e,
therefore †e = †n2 and †n2 ≤ †n1.

(2) In other cases, the edge must be created when both its
endpoints already exist and deleted no later than them:
● ∗e ∈ )︀max(∗n1,∗n2) + Δ, min(†n1,†n2, SE))
● †e ∈ )︀∗e + Δ, min(†n1,†n2))

These constraints capture the “minimum” (i.e. most re-
laxed) set of constraints that must be enforced in all domains.
Next, we introduce additional constraints specific to our
social network schema.

2.2 Person
A Person p is the avatar a real-world person creates when
they join the network. A Person joins the network, ∗p, dur-
ing the simulation period and they leave the network, †p,
during the network lifetime:
● ∗p ∈ )︀SS, SE)
● †p ∈ )︀∗p + Δ, NC)

For the edges of Person nodes pointing to a static node
(isLocatedIn, studyAt, workAt, and hasInterest), we as-
sign the creation and deletion date from ∗p and †p, resp.

2.2.1 Knows. The knows edge connects two Persons 𝑝𝑖 and
𝑝 𝑗 that know each other in the network. The intervals where
the creation and deletion dates can be generated in are illus-
trated in Figure 2b and defined below:
● ∗knowsi,j ∈ )︀max(∗p𝑖 ,∗p𝑗) + Δ, min(†p𝑖 ,†p𝑗 , SE))
● †knowsi,j ∈ )︀∗knowsi,j + Δ, min(†p𝑖 ,†p𝑗))



GRADES-NDA’20, June 14, 2020, Portland, OR, USA Waudby, Steer, Prat-Pérez and Szárnyas

P1 ∶ Person P2 ∶ Person

∗P1: Feb 22 2010

†P1: Jul 26 2014

∗P2: Mar 07 2010

†P2: Oct 17 2012

knows1,2 ∶ Knows

∗knows1,2: Dec 01 2011

†knows1,2: Jun 05 2012

(a) An instance of a knows edge connecting two Person nodes.
Creation and deletion dates are shown for each entity.

SS NCSE

P1

P2

∗knows1,2max(∗P1,∗P2)+Δ min(†P1,†P2, SE)
Δ
†knows1,2∗knows1,2 + Δ min(†P1,†P2)

Δ
knows1,2

(b) Illustration of the intervals in which the creation ● and
deletion ● dates can be selected. Thick black lines represent
entity lifespans and thin grey lines represent valid inter-
vals that dates can be selected in; ● indicates the selected
times (spanning the lifespan interval of the given entity). On
the thin grey lines, thicker sections represent the minimal
amount of time that must pass before selecting a value. In
case of creation dates, this is used to ensure that the depen-
dant entity exists for at least Δ time. In case of deletion dates,
it is used to ensure that the entity exists for at least Δ time.

Figure 2: Example graph and its intervals.

2.3 Forum and Message
The rules for Forum and Message nodes along with their
edges are given in Section A.1 and Section A.2, respectively,
and illustrated in Figure 3.

3 RELATEDWORK
Graph generators. A recent survey [11] studied 38 graph

generators, finding that only 4 of them supported generating
updates and, intriguingly, even these generators only yield
insertions and simple deletions at best. LinkBench [3] defines
primitive delete operations targeting a single node or a sin-
gle edge. XGDBench [13] defines an operation that deletes
a single node. The Social Network Intelligence BenchMark
(SIB) [9] (a precursor to LDBC SNB) requires the deletion of
individual nodes (posts/photos). Finally, the LDBC SNB’s In-
teractive workload [14] only uses insert operations and does
not define any deletions.

Graph benchmarks. Several benchmarks have been pro-
posed for semantic and graph databases [10]. Some of these
perform deletions as part of their workflow but the complex-
ity of these deletions is limited. The Berlin SPARQL Bench-
mark [8] defines deletions for a single table (Offers). The

LDBC Semantic Publishing Benchmark [17] defines all its
update operations (including deletions) on a single entity
type, creative work. The Train Benchmark [28] uses the re-
sult set of each query to perform its “transformation” phase,
which includes delete operations targeting an entity and its
neighbourhood. The workload of the BG Benchmark [1] uses
simple deletions targeting comment nodes and friendship
edges. Recently, the authors of [22] extended the LDBC gen-
erator with support for lifespans encoded as integer intervals,
applied to nodes, edges, and also properties. However, all
nodes and edges were assigned a deletion date of∞ and only
some properties were assigned a finite deletion date.

4 CONCLUSION AND FUTUREWORK
In this paper, we have defined the constraints for producing
valid lifespans for dynamic entities in the graph schema of
the LDBC Social Network Benchmark [2]. These lifespans
provide a fundamental blocking block in achieving our long
term goal of incorporating delete operations into the LDBC
Social Network Benchmark suite’s workload specifications.
We have incorporated the lifespans presented in this paper
as part of the SNB data generator so that our dynamic graphs
can be generated at scale.1

Our next step is to address the issue of realism in the gener-
ation process using studies conducted on real social network
such as Facebook [5, 16], Twitter [19], and iWiW, a now-
defunct social network that operated in Hungary between
2002 and 2014 [18]. We plan to ensure realistic correlations
and distribution of entities over time using temporal graph
analysis tools [27]. Turning the temporal graph into insert
and delete operations also poses further challenges, includ-
ing the distinction between explicit deletions and implicit
deletions resulting from the cascading effect of other explicit
deletions.

ACKNOWLEDGMENTS
The authors would like to thank Peter Boncz for his sug-
gestions. J. Waudby was supported by the Engineering and
Physical Sciences Research Council, Centre for Doctoral
Training in Cloud Computing for Big Data [grant number
EP/L015358/1]. B. Steer was supported by the Engineering
and Physical Sciences Research Council and Alan Turing
Institute [grant number EP/T001569/1]. G. Szárnyas was par-
tially supported by the MTA-BME Lendület Cyber-Physical
Systems Research Group. The parameterization of the data
generator was determined with input from the the Develop-
ment and Innovation Office of Hungary (NKFIH), National
Research, grant number FK-128981.

1https://github.com/ldbc/ldbc_snb_datagen

https://github.com/ldbc/ldbc_snb_datagen


Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC SNB’s Data Generator GRADES-NDA’20, June 14, 2020, Portland, OR, USA

REFERENCES
[1] Yazeed Alabdulkarim, Sumita Barahmand, and Shahram Ghande-

harizadeh. 2018. BG: A scalable benchmark for interactive social
networking actions. Future Gener. Comput. Syst. 85 (2018), 29–38.
https://doi.org/10.1016/j.future.2018.02.031

[2] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz,
Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-
Lluís Larriba-Pey, Norbert Martínez-Bazan, József Marton, Marcus
Paradies, Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasic, Ben-
jamin A. Steer, Gábor Szárnyas, and Jack Waudby. 2020. The LDBC
Social Network Benchmark. CoRR abs/2001.02299 (2020). http:
//arxiv.org/abs/2001.02299

[3] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and
Mark Callaghan. 2013. LinkBench: A database benchmark based on
the Facebook social graph. In SIGMOD. 1185–1196. https://doi.org/10.
1145/2463676.2465296

[4] Omar Batarfi, Radwa El Shawi, Ayman G. Fayoumi, Reza Nouri, Seyed-
Mehdi-Reza Beheshti, Ahmed Barnawi, and Sherif Sakr. 2015. Large
scale graph processing systems: survey and an experimental evaluation.
Cluster Computing 18, 3 (2015), 1189–1213. https://doi.org/10.1007/
s10586-015-0472-6

[5] Eric P. S. Baumer, Phil Adams, Vera D. Khovanskaya, Tony C. Liao,
Madeline E. Smith, Victoria Schwanda Sosik, and Kaiton Williams.
2013. Limiting, leaving, and (re)lapsing: An exploration of Facebook
non-use practices and experiences. In CHI. ACM, 3257–3266. https:
//doi.org/10.1145/2470654.2466446

[6] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and
Torsten Hoefler. 2019. Practice of Streaming and Dynamic Graphs:
Concepts, Models, Systems, and Parallelism. CoRR abs/1912.12740
(2019). http://arxiv.org/abs/1912.12740

[7] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer,
Michal Podstawski, Claude Barthels, Gustavo Alonso, and Torsten
Hoefler. 2019. Demystifying Graph Databases: Analysis and Taxon-
omy of Data Organization, System Designs, and Graph Queries. CoRR
abs/1910.09017 (2019). http://arxiv.org/abs/1910.09017

[8] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL
Benchmark. Int. J. Semantic Web Inf. Syst. 5, 2 (2009), 1–24. https:
//doi.org/10.4018/jswis.2009040101

[9] Peter Boncz, Minh-Duc Pham, Orri Erling, Ivan Mikhailov, and Yrjana
Rankka. 2013. Social Network Intelligence BenchMark. (2013). https:
//www.w3.org/wiki/Social_Network_Intelligence_BenchMark

[10] Angela Bonifati, George H. L. Fletcher, Jan Hidders, and Alexandru
Iosup. 2018. A Survey of Benchmarks for Graph-Processing Systems. In
Graph Data Management, Fundamental Issues and Recent Developments.
Springer, 163–186. https://doi.org/10.1007/978-3-319-96193-4_6

[11] Angela Bonifati, Irena Holubová, Arnau Prat-Pérez, and Sherif Sakr.
2020. Graph Generators: State of the Art and Open Challenges. CoRR
abs/2001.07906 (2020). https://arxiv.org/abs/2001.07906

[12] Federico Busato, Oded Green, Nicola Bombieri, and David A. Bader.
2018. Hornet: An Efficient Data Structure for Dynamic Sparse Graphs
and Matrices on GPUs. In HPEC. IEEE, 1–7. https://doi.org/10.1109/
HPEC.2018.8547541

[13] Miyuru Dayarathna and Toyotaro Suzumura. 2014. Graph database
benchmarking on cloud environments with XGDBench. Autom. Softw.
Eng. 21, 4 (2014), 509–533. https://doi.org/10.1007/s10515-013-0138-7

[14] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, An-
drey Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz.
2015. The LDBC Social Network Benchmark: Interactive Workload. In
SIGMOD. ACM, 619–630. https://doi.org/10.1145/2723372.2742786

[15] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and

Hannes Voigt. 2019. Updating Graph Databases with Cypher. PVLDB
12, 12 (2019), 2242–2253. https://doi.org/10.14778/3352063.3352139

[16] Zoltán Kmetty and Renáta Németh. 2020. Which is your favorite music
genre? A validity comparison of Facebook data and survey data. CoRR
abs/2002.00501 (2020). https://arxiv.org/abs/2002.00501

[17] Venelin Kotsev, Nikos Minadakis, Vassilis Papakonstantinou, Orri
Erling, Irini Fundulaki, and Atanas Kiryakov. 2016. Benchmarking
RDF Query Engines: The LDBC Semantic Publishing Benchmark. In
BLINK at ISWC (CEURWorkshop Proceedings), Vol. 1700. CEUR-WS.org.
http://ceur-ws.org/Vol-1700/paper-01.pdf

[18] László Lőrincz, Júlia Koltai, Anna Fruzsina Győr, and Károly Takács.
2019. Collapse of an online social network: Burning social capital to
create it? Soc. Networks 57 (2019), 43–53. https://doi.org/10.1016/j.
socnet.2018.11.004

[19] Seth A. Myers and Jure Leskovec. 2014. The bursty dynamics of
the Twitter information network. In WWW. ACM, 913–924. https:
//doi.org/10.1145/2566486.2568043

[20] Minh-Duc Pham, Peter A. Boncz, and Orri Erling. 2012. S3G2: A Scal-
able Structure-Correlated Social Graph Generator. In TPCTC, Vol. 7755.
Springer, 156–172. https://doi.org/10.1007/978-3-642-36727-4_11

[21] Arnau Prat-Pérez. 2017. LDBC SNB Datagen: Under the hood. In
9th LDBC TUC Meeting. http://wiki.ldbcouncil.org/pages/viewpage.
action?pageId=59277315&preview=/59277315/75431942/datagen_in_
depth.pdf

[22] Shriram Ramesh, Animesh Baranawal, and Yogesh Simmhan. 2020.
A Distributed Path Query Engine for Temporal Property Graphs. In
CCGRID. IEEE/ACM.

[23] Liam Roditty. 2013. Decremental maintenance of strongly connected
components. In SODA. SIAM, 1143–1150. https://doi.org/10.1137/1.
9781611973105.82

[24] Liam Roditty and Uri Zwick. 2004. On Dynamic Shortest Paths Prob-
lems. In ESA, Vol. 3221. Springer, 580–591. https://doi.org/10.1007/978-
3-540-30140-0_52

[25] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M. Tamer Özsu. 2020. The ubiquity of large graphs and surprising
challenges of graph processing: Extended survey. VLDB J. 29, 2 (2020),
595–618. https://doi.org/10.1007/s00778-019-00548-x

[26] Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar,
and Vijay Chidambaram. 2019. Understanding and Benchmarking the
Impact of GDPR on Database Systems. CoRR abs/1910.00728 (2019).
http://arxiv.org/abs/1910.00728

[27] Benjamin A. Steer, Félix Cuadrado, and Richard G. Clegg. 2020. Raph-
tory: Streaming analysis of distributed temporal graphs. Future Gener.
Comput. Syst. 102 (2020), 453–464. https://doi.org/10.1016/j.future.
2019.08.022

[28] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2018.
The Train Benchmark: Cross-technology performance evaluation of
continuous model queries. Softw. Syst. Model. 17, 4 (2018), 1365–1393.
https://doi.org/10.1007/s10270-016-0571-8

[29] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton,
Marcus Paradies, Moritz Kaufmann, Orri Erling, Peter A. Boncz,
Vlad Haprian, and János Benjamin Antal. 2018. An early look at
the LDBC Social Network Benchmark’s Business Intelligence work-
load. In GRADES-NDA at SIGMOD/PODS. ACM, 9:1–9:11. https:
//doi.org/10.1145/3210259.3210268

[30] Jack Waudby, Paul Ezhilchelvan, Jim Webber, and Isi Mitrani. 2020.
Preserving Reciprocal Consistency in Distributed Graph Databases. In
PaPoC at EuroSys. ACM. https://doi.org/10.1145/3380787.3393675

https://doi.org/10.1016/j.future.2018.02.031
http://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1145/2470654.2466446
https://doi.org/10.1145/2470654.2466446
http://arxiv.org/abs/1912.12740
http://arxiv.org/abs/1910.09017
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101
https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
https://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
https://doi.org/10.1007/978-3-319-96193-4_6
https://arxiv.org/abs/2001.07906
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1007/s10515-013-0138-7
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.14778/3352063.3352139
https://arxiv.org/abs/2002.00501
http://ceur-ws.org/Vol-1700/paper-01.pdf
https://doi.org/10.1016/j.socnet.2018.11.004
https://doi.org/10.1016/j.socnet.2018.11.004
https://doi.org/10.1145/2566486.2568043
https://doi.org/10.1145/2566486.2568043
https://doi.org/10.1007/978-3-642-36727-4_11
http://wiki.ldbcouncil.org/pages/viewpage.action?pageId=59277315&preview=/59277315/75431942/datagen_in_depth.pdf
http://wiki.ldbcouncil.org/pages/viewpage.action?pageId=59277315&preview=/59277315/75431942/datagen_in_depth.pdf
http://wiki.ldbcouncil.org/pages/viewpage.action?pageId=59277315&preview=/59277315/75431942/datagen_in_depth.pdf
https://doi.org/10.1137/1.9781611973105.82
https://doi.org/10.1137/1.9781611973105.82
https://doi.org/10.1007/978-3-540-30140-0_52
https://doi.org/10.1007/978-3-540-30140-0_52
https://doi.org/10.1007/s00778-019-00548-x
http://arxiv.org/abs/1910.00728
https://doi.org/10.1016/j.future.2019.08.022
https://doi.org/10.1016/j.future.2019.08.022
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1145/3380787.3393675


GRADES-NDA’20, June 14, 2020, Portland, OR, USA Waudby, Steer, Prat-Pérez and Szárnyas

A LIFESPAN MANAGEMENT FOR FORUM
AND MESSAGE NODES

A.1 Forum
A Forum is a meeting point where people post Messages.
There exists three categories of Forums: Wall (forumw), Al-
bum (foruma), and Group (forumg). Each Forum has a set
of Persons connected via hasMember edges, a set of Tags
connected via hasTag edges, a single moderator connected
by a hasModerator edge and a set of Messages (discussed
in Section A.2). For all Forums the outgoing hasTag edges
get their creation date and deletion date from ∗forum and
†forum, respectively.

Groups. Groups are public places for people that share in-
terests, any Person can create a Group forumg during their
lifespan. A Group can be deleted anytime after it was created.
● ∗forumg ∈ )︀∗p + Δ, min(†p, SE))
● †forumg ∈ )︀∗forumg + Δ, NC)

Group Moderator. The initial hasModerator hmdg is the
group creator. If the moderator leaves the group before it is
deleted a new hasModerator edge for Person p𝑗 is generated
by replacing ∗forumg with †hmdg in the intervals below.

● ∗hmdg ∈ )︀∗forumg + Δ, min(†forumg,†p, SE))
● †hmdg ∈ )︀∗hmdg + Δ, min(†forumg,†p))

Group Membership. Any Person p can become a member
of a given group. The hasMember hmg creation is generated
from the interval in which the Person and Forum lifespans
overlap. The deletion date is generated from the interval
between the membership creation date (incremented by Δ)
and the minimum of the Person and Forum deletion dates.
● ∗hmg ∈ )︀max(∗forumg,∗p) + Δ, min(†forum,†p, SE))
● †hmg ∈ )︀∗hmg + Δ, min(†forumg,†p))

Walls. Every Person p, has a Wall forumw which is created
when the Person joins the social network. The wall is deleted
when the Person is deleted.
● ∗forumw = ∗p + Δ
● †forumw = †p

Wall Moderator. Each Person has a hasModerator hmdw
edge to their wall, which gets the creation date (incremented
by Δ) and deletion date from forumw. Note, only the moder-
ator can create Post nodes on the wall and the connecting
Tag nodes are set based on the interest of the moderator.
● ∗hmdw = ∗forumw + Δ
● †hmdw = †forumw

Wall Membership. For a Person 𝑝𝑖 , all their friends 𝑝 𝑗

(Person nodes connected via a knows edge) become mem-
bers of forumw at the time the knows edge is created. Hence,

a hasMember hmw edge gets the creation date of knows incre-
mented by Δ. The deletion date is derived from the minimum
of the Forum deletion date and knows deletion date.
● ∗hmw = ∗knowsi,j + Δ
● †hmw = min(†forumw,†knowsi,j)

Albums. A Person can create multiple Albums (foruma) con-
taining a set of Photos. Albums can be created and then
deleted at any point during the lifespan of the Person.
● ∗foruma ∈ )︀∗p + Δ, min(†p, SE))
● †foruma ∈ )︀∗foruma + Δ, †p)

Album Moderator. The Person is the moderator for any
Album they create. Album ownership cannot change hence
hasModerator hmda gets the creation date (incremented by
Δ) and deletion date from ∗foruma and †foruma respectively.
● ∗hmda = ∗foruma + Δ
● †hmda = †foruma

Album Membership. Only friends p𝑖 of a Person p𝑗 can
become members of Albums created by p𝑗 . The hasMember
hma edge creation date is derived from the Album and knows
creation dates. The deletion is derived from the Forum and
knows deletion dates.
● ∗hma = max(∗foruma,∗knows𝑖, 𝑗) + Δ
● †hmw = min(†foruma,†knows𝑖, 𝑗)

A.2 Message
A Message is an abstract entity that represents a message cre-
ated by a Person. There are two Message subtypes: Post and
Comment. A Post is created in a Forum and a Comment repre-
sents a comment made by a Person to an existing Message
(either a Post or a Comment). In a Forum the set of Message
nodes form a tree with a Post node at the root and Comment
nodes for the rest.

A.2.1 Post. A Post can be created by a Person in a Forum.
Only the moderator (i.e. owner) can post on a Wall or in an
Album (hasModerator), whereas all members including the
moderator (hasMember/hasModerator) can post in a Group.
These relationships are captured with the hm variable in the
formulas. Posts are divided in three categories, regular posts,
photos, and flashmob posts.

Regular posts and photos. Regular posts capture the stan-
dard daily activity in a Group or on aWall. Photos are created
in Albums. (Interaction with Photos is limited to likes, see
details in Section A.2.3). The creation date for these is deter-
mined as follows:

∗post ∈ )︀∗hm + Δ, min(†hm, SE))
Flashmob posts. Flashmob posts are generated around

events that attract significant interest (such as elections)



Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC SNB’s Data Generator GRADES-NDA’20, June 14, 2020, Portland, OR, USA

that result in a spike in activity. These events span a 2𝜙-hour
time window centered around a specific event time, flashmob
event fme, in the middle of the window; there are 𝜙 hours
each side of the specific event time.

∗post ∈ )︀max(∗hm + Δ, fme − 𝜙 h), min(†hm, fme + 𝜙 h, SE))
The deletion dates for all categories of Posts are deter-

mined as:
†post ∈ )︀∗post + Δ, †hm)

containerOf edge. Each Post node has an incoming
containerOf edge which gets the same lifespan attributes
as the Post.

A.2.2 Comment. A Comment comm is created by Person p
as a reply to Message m. Comments are only made in Walls
and Groups. Comment always occur within 𝛾 days of their
parent message.
● ∗comm ∈ )︀max(∗m,∗hm) + Δ, min(∗m +𝛾 d,†hm, SE))

● †comm ∈ )︀∗comm + Δ, min(†m,†hm))
replyOf edge. Comments always have an outgoing replyOf

edge with containment semantics, i.e. the target Message
contains the Comment. These edges get the same lifespan as
their source Comment.

A.2.3 likes. A likes edge likes can exist between Person
p and Message m. Messages can only receive likes during a
𝜇-day window after their creation at which point no more
activity is generated.
● ∗likes ∈ )︀max(∗p,∗m) + Δ, min(†p,†m,∗m + 𝜇 d, SE))
● †likes ∈ )︀∗likes + Δ, min(†p,†m))

B COMPLEX EXAMPLE
In Figure 3, a complex example graph is shown with the
corresponding intervals. Both the intervals for selecting the
creation and deletion date attributes and the selected lifespan
intervals are shown.



GRADES-NDA’20, June 14, 2020, Portland, OR, USA Waudby, Steer, Prat-Pérez and Szárnyas

F1 ∶ Forum Post1 ∶ Post C1 ∶ Comm C2 ∶ Comm

P1 ∶ Person

P2 ∶ Person

P3 ∶ Person

HMD1 ∶ hasModerator
HM2 ∶ hasMember

∗HM2: Jun 15 2010

†HM2: Jul 26 2012

HM3 ∶ hasMember

∗HM3: Dec 08 2010

†HM3: Feb 29 2012

CO ∶ containerOf ROF1 ∶ replyOf ROF2 ∶ replyOf

HC1 ∶ hasCreator

HC2 ∶
has

Cre
ato

rHC3 ∶ h
asCr

eato
r

∗C1: Dec 17 2010

†C1: Dec 18 2010

∗C2: Dec 18 2010

†C2: Dec 18 2010

∗Post1: Dec 16 2010

†Post1: Dec 12 2011

∗F1: Apr 01 2010

†F1: Oct 02 2012

∗P2: Jan 29 2010

†P2: Nov 15 2012

∗P1: Feb 08 2010

†P1: Dec 23 2016

∗P3: Jul 21 2010

†P3: Apr 17 2012

(a) Example graph with an instance of a Forum containing a Message tree of depth 3 and its Personmembers. Lifespan attributes
(creation and deletion dates) are shown for each dynamic entity. Edges in grey get their lifespan attributes as per Figure 1 and
Section A.1.

SS NCSE

P1

Δ
∗F1∗P1 + Δ min(†P1, SE)

Δ
†F1∗F1 + Δ NC
F1

P2

Δ
∗HM2max(∗F1,∗P2) + Δ min(†F1,†P2, SE)

Δ
†HM2∗HM2 + Δ min(†F1,†P2)
HM2

P3

Δ
∗HM3max(∗F1,∗P3) + Δ min(†F1,†P3, SE)

Δ
†HM3∗HM3 + Δ min(†F1,†P3)
HM3

Δ
∗Post1∗HM3 + Δ min(†HM3, SE)

Δ
†Post1∗Post1 + Δ †HM3

Post1
∗C1max(∗Post1,∗HM1) + Δ min(∗Post1+𝛾 d,†HM1, SE)

Δ
†C1∗Post1 + Δ min(†Post1,†HM1)

Δ
C1

∗C2max(∗C1,∗HM2) + Δ min(∗C1 +𝛾 d,†HM2, SE)
Δ
†C2∗C1 + Δ min(†C1,†HM2)

Δ
C2

(b) Illustration of the intervals in which the creation ● and deletion ● dates of entities can be selected. Thick black lines repre-
sent entity lifespans and thin grey lines represent valid intervals that dates can be selected in; ● indicates the selected times
(spanning the lifespan interval of the given entity). On the thin grey lines, thicker sections represent the minimal amount of
time that must pass before selecting a value. In case of creation dates, this is used to ensure that the dependant entity exists
for at least Δ time. In case of deletion dates, it is used to ensure that the entity exists for at least Δ time.

Figure 3: Example graph and time intervals for selecting lifespan attributes, creation and deletion dates.


	Abstract
	1 Introduction
	2 Lifespan Management
	2.1 General Rules
	2.2 Person
	2.3 Forum and Message

	3 Related Work
	4 Conclusion and Future Work
	Acknowledgments
	References
	A Lifespan Management for Forum and Message Nodes
	A.1 Forum
	A.2 Message

	B Complex Example

