
LDBC
Cooperative Project

FP7 – 317548

D4.4.1 Use Case Analysis and
Classification of Choke Points

Coordinator: [Irini Fundulaki]
With contributions from: [Eva Daskalaki, Giorgos Flouris,

Vassilis Papakonstantinou, Nikos Minadakis]
1st Quality Reviewer: Norbert Martinez (UPC)
2nd Quality Reviewer: Venelin Kotsev (ONTO)

Deliverable nature: Report (R)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: M12

Actual delivery date: M12

Version: 1.0

Total number of pages: 69

Keywords: Linked Open Data, RDF, RDFS, OWL reasoning, instance matching, ETL

LDBC Deliverable D4.4.1

Abstract

The purpose of this deliverable is to identify and describe the main challenges, named choke points faced by
existing RDF engines in the tasks of reasoning, instance matching and ETL processing. The identification of
a choke point involves understanding the most important challenges that current state-of-the-art systems face
in their respective tasks, in order to be included as (hidden) challenges in benchmarks; the ultimate goal is to
encourage systems to address these challenges, thus stimulating and encouraging technological progress. For
our analysis, we used real-world datasets from the semantic publishing and the life sciences domains, as well
as state-of-the-art tools in the respective areas of RDF reasoning, instance matching and ETL processing.

Page 2 of (69)

Deliverable D4.4.1 LDBC

Executive Summary

This is the first deliverable for WP4 Semantic Choke Point Analysis of the LDBC project, which focuses
on choke points related to three specific semantical tasks namely reasoning, instance matching and ETL
processing. The purpose of this deliverable is to identify and discuss the main challenges, named choke
points, faced by existing state-of-the-art systems for the aforementioned tasks; these choke points will be
used for the upcoming benchmark designs due on M24 of the project (to be described in Deliverables D4.4.2,
D4.4.3 and D4.4.4).

To identify the choke points for each task, we used the available state-of-the-art systems, as well as
appropriate datasets from the Semantic Publishing Domain (as provided by the respective Task Force) and
the life sciences domain. The identification of a choke point involves understanding the most important
challenges that current systems face in their respective tasks, in order to be included as (hidden) challenges
in the benchmarks that we will design; the ultimate goal is to encourage systems to address these challenges,
thus stimulating and encouraging technological progress.

Chapter 4 discusses a set of choke points that are related to reasoning, which, in our context, refers to the
identification and use of information that is not explicit in the dataset but can be inferred by the semantics
of the used RDFS/OWL constructs.

The dataset used for our study on the reasoning choke points was the BBC dataset, which is a dataset from
the Semantic Publishing Domain (provided by the respective Task Force) and is described in Section 2.1. The
BBC ontologies were relatively simple (used mainly the RDFS rdfs:subClassOf, rdfs:subPropertyOf and
rdf:type RDFS built-in properties), so in order to identify reasonably hard cases (choke points) we enriched
them with additional OWL constructs from the owl 2 rl [20] fragment. In addition, the data level of the BBC
dataset was enriched by generating additional data using the generator described in Deliverable D2.2.2 [9].
The RDF engines used for running our reasoning choke points analysis was Virtuoso [40] and OWLIM [36],
which are presented in Sections 3.1.1, 3.1.2 respectively.

The reasoning choke points are essentially queries which involve (either in their formulation, or in the
accessed data) reasoning-intensive constructs, essentially forcing the query engine to perform RDFS/OWL
reasoning in order to answer correctly the query. This is different from the objective of deliverable D2.2.1 [10],
where reasoning was not considered and the emphasis was on choke points related mostly to query opti-
mization of queries that did not involve reasoning (e.g., complex large join queries). In our analysis we
measured whether the RDF engines correctly implemented the reasoning semantics of the various constructs
(conformance choke points).

Chapter 5 discusses the choke points for the instance matching task. Instance matching (also referred to
as record linkage [16], duplicate detection [7], entity resolution [1], and object identification in the context
of databases [22]) refers to identifying instances that correspond to the same real world object.

For the instance matching choke points analysis, we used the OpenPHACTS datasets and golden standards
(called linksets in the OpenPHACTS documentation) provided by the OpenPHACTS [35] FP7 European
Project; a detailed description of this dataset and golden standards is provided in Section 2.2. Golden
standards were put together by experts (curators) in the domain of pharmacology; the results of the tested
systems were compared against such golden standards to evaluate their performance, i.e., how well they
managed to match the input datasets. The systems we chose to evaluate in this deliverable were LIMES [21]
and SILK [14, 15, 44], both of which are open source and publicly available. The systems are presented in
Sections 3.2.1 and 3.2.2.

Our analysis of the instance matching choke points targeted on identifying cases where the tested systems
perform poorly in the matching task (with respect to the golden standards). We ran tests under various
parameterizations of the tested tools and measured the efficiency and effectiveness of these tools, as well as
the quality of the results with respect to the golden standards. The metrics used for measuring the quality of
the results were the standard metrics of precision, recall and F-measure.

In Chapter 6 we discuss the choke points for the extract, transform and load (abbreviated as ETL)
processes. ETL techniques involve reshaping the data in various ways, e.g., by merging data that refer to the
same resource together, or by making value-based changes, or by making structural changes.

Page 3 of (69)

LDBC Deliverable D4.4.1

As in the case of the instance matching task, we used the OpenPHACTS dataset for testing the different
systems that perform the extraction and transformation of relational data to RDF. Loading of the result to
the RDF database was made using the Virtuoso RDF engine. The tested systems for the ETL choke points
were D2R [3], Triplify [38] (presented in Sections 3.3.2 and 3.3.1 respectively) and Virtuoso Views [43] .

Our choke points analysis consisted in identifying transformations that would stress the tested systems.
In particular, the input to the process was the OpenPHACTS data, which were stored in a relational MySQL
database. For the case of D2R and Triplify, the extract process consisted in reading the relational database,
expressing the relational information using RDF triples and dumping the result to RDF files in the disk. The
extraction process involved also some transformations, which were performed using appropriate mappings
or mapping queries, depending on the system. The Virtuoso RDF engine was subsequently used to load
the result (RDF data) to an RDF database (load). For the case of VirtuosoViews, the extract and transform
process was performed within the Virtuoso database engine using adequate mapping files, and essentially
consisted in generating non-materialized views in the Virtuoso database.

Page 4 of (69)

Deliverable D4.4.1 LDBC

Document Information

IST Project Number FP7 – 317548 Acronym LDBC
Full Title LDBC
Project URL http://www.ldbc.eu/
Document URL http://www.ldbc.eu:8090/display/PROJECT/

Deliverable+summary
EU Project Officer Carola Carstens

Deliverable Number D4.4.1 Title Use Case Analysis and Classification
of Choke Points

Work Package Number WP4 Title Semantic Choke Point Analysis

Date of Delivery Contractual M12 Actual M12
Status version 1.0 final �

Nature Report (R) � Prototype (P) � Demonstrator (D) � Other (O) �

Dissemination Level Public (PU) � Restricted to group (RE) � Restricted to programme (PP) � Consortium (CO) �

Authors (Partner) Irini Fundulaki, Eva Daskalaki, Giorgos Flouris, Vassilis Papakonstantinou,
Nikos Minadakis (FORTH)

Responsible Author Name Irini Fundulaki E-mail fundul@ics.forth.gr
Partner FORTH Phone +302810391725

Abstract
(for dissemination)

The purpose of this deliverable is to identify and describe the main challenges,
named choke points faced by existing RDF engines in the tasks of reasoning,
instance matching and ETL processing. The identification of a choke point
involves understanding the most important challenges that current
state-of-the-art systems face in their respective tasks, in order to be included as
(hidden) challenges in benchmarks; the ultimate goal is to encourage systems
to address these challenges, thus stimulating and encouraging technological
progress. For our analysis, we used real-world datasets from the semantic
publishing and the life sciences domains, as well as state-of-the-art tools in the
respective areas of RDF reasoning, instance matching and ETL processing.

Keywords Linked Open Data, RDF, RDFS, OWL reasoning, instance matching, ETL

Version Log
Issue Date Rev. No. Author Change
18/09/2013 0.1 Irini Fundulaki, Eva

Daskalaki, Giorgos Flouris,
Vassilis Papakonstantinou,
Nikos Minadakis

First version

30/09/2013 1.0 Irini Fundulaki, Eva
Daskalaki, Giorgos Flouris,
Vassilis Papakonstantinou,
Nikos Minadakis

Final version

Page 5 of (69)

LDBC Deliverable D4.4.1

Table of Contents

Executive Summary 3

Document Information 5

List of Figures 7

List of Tables 8

1 Introduction 11

2 Description of the Datasets 13
2.1 Semantic Publishing: The BBC Use Case . 13

2.1.1 BBC Ontologies . 13
2.1.2 Statistics . 18

2.2 Open PHACTS . 19

3 Description of the Systems 22
3.1 RDF Query Engines . 22

3.1.1 Virtuoso . 22
3.1.2 OWLIM . 22

3.2 Instance Matching Systems . 23
3.2.1 Limes . 23
3.2.2 Silk . 23

3.3 ETL Tools . 23
3.3.1 Triplify . 23
3.3.2 D2R . 23

4 Reasoning Choke Point Analysis 25
4.1 Outline of this Chapter . 25
4.2 Enhanced BBC Ontologies . 25

4.2.1 Property Constraints . 25
4.2.2 Class Constraints . 26
4.2.3 Cardinality Constraints . 27
4.2.4 Key Constraints . 28

4.3 Semantics of RDFS and OWL Constructs . 28
4.3.1 Summary of the RDFS and OWL Semantics . 28
4.3.2 Class and Property Subsumption . 28
4.3.3 Property Domain and Range . 29
4.3.4 Union and Intersection of Classes . 30
4.3.5 Enumeration . 30
4.3.6 Equality of Individuals . 30
4.3.7 Inverse of Properties . 31
4.3.8 Constraints on Properties . 31
4.3.9 Keys of Classes . 32
4.3.10 Property Chains . 33
4.3.11 Disjoint Classes and Properties . 33
4.3.12 Cardinalities . 34

4.4 Conformance Choke Points . 34
4.4.1 Class and Property Subsumption . 35

Page 6 of (69)

Deliverable D4.4.1 LDBC

4.4.2 Property Domain and Range . 36
4.4.3 Union and Intersection of Classes . 37
4.4.4 Conformance Choke Points for Enumeration . 38
4.4.5 Conformance Choke Points for Equality Tests . 38
4.4.6 Conformance Choke Points for Inverse of Properties 40
4.4.7 Conformance Choke Points for Constraints on Properties 40
4.4.8 Conformance Choke Points for Class Keys . 41
4.4.9 Conformance Choke Points for Property Chains . 42
4.4.10 Conformance Choke Points for Disjoint Classes and Properties 42
4.4.11 Conformance Choke Points for Cardinalities . 43

4.5 Conformance Choke Points Results . 44
4.5.1 Class and Property Subsumption . 44
4.5.2 Property Domain and Range . 44
4.5.3 Union and Intersection of Classes . 45
4.5.4 Enumeration . 45
4.5.5 Equality . 45
4.5.6 Class Keys, Property Chains, Inverse Properties . 45
4.5.7 Constraints on Properties . 46
4.5.8 Disjoint Classes and Properties . 46
4.5.9 Cardinalities . 47

5 Instance Matching Choke Point Analysis 48
5.1 Evaluation Criteria and Choke Points Identification . 48
5.2 Test Cases . 50
5.3 Experimental Set Up . 52
5.4 Experimental Results . 53

5.4.1 Precision, Recall and F-measure . 53
5.4.2 Run Times . 56
5.4.3 Scalability . 56
5.4.4 Support Matching with Thesaurus . 57
5.4.5 Reasoning functionalities . 57
5.4.6 Concluding Remarks . 57

6 ETL Choke Point Analysis 58
6.1 D2R . 58

6.1.1 Extract . 58
6.1.2 Transform . 59
6.1.3 Load . 60

6.2 Triplify . 60
6.2.1 Extract . 60
6.2.2 Transform . 61
6.2.3 Load . 63

6.3 Virtuoso Linked Data Views . 63
6.4 Experiments for ETL process . 63

6.4.1 D2R . 63
6.4.2 Triplify . 63

7 Conclusion 66

Page 7 of (69)

LDBC Deliverable D4.4.1

List of Figures

2.1 Creative Work 0.9 . 14
2.2 Company Ontology 1.4 . 14
2.3 Core Concepts Ontology 0.6 . 15
2.4 CMS Ontology 1.2 . 16
2.5 Person Ontology 0.2 . 16
2.6 Provenance Ontology 1.1 . 17
2.7 Tagging Ontology 1.0 . 17
2.8 Overview Ontology 0.2 . 18
2.9 Open PHACTS Dataset Suite . 21

5.1 Instance Matching Test Cases . 51

6.1 ETL process for D2R . 64
6.2 ETL process for Triplify . 65

Page 8 of (69)

Deliverable D4.4.1 LDBC

List of Tables

2.1 BBC Ontology Characteristics . 18

4.1 Class and Property Subsumption . 29
4.2 Property Domain and Range . 29
4.3 Union and Intersection of Classes . 30
4.4 Semantics of Enumerated Classes . 30
4.5 Semantics of Equality . 31
4.6 Inverse Constraints . 31
4.7 Constraints of Properties . 32
4.8 Keys . 32
4.9 Property Chains . 33
4.10 Disjoint Classes and Properties . 33
4.11 Cardinalities . 34
4.12 Test Data for Class and Property Subsumption . 35
4.13 Rules cax-sco, scm-sco, prp-spo1, scm-spo . 35
4.14 Test Data for Property Domain and Range . 36
4.15 Rules scm-rng1, scm-rng2, scm-dom1, scm-dom2, prp-dom, prp-rng 36
4.16 Test Data for Union and Intersection of Classes . 37
4.17 Rules scm-int, scm-uni . 37
4.18 Rule cls-oo . 38
4.19 Test Data for Equality Checks . 38
4.20 Rules eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-o, eq-rep-p, eq-diff1 39
4.21 Rule prp-inv1 . 40
4.22 Rule prp-key . 40
4.23 Rules prp-ifp, prp-asyp, prp-irp, prp-trp . 41
4.24 Rule prp-spo2 . 42
4.25 Rules prp-pdw, prp-adp, cax-dw, cax-adc . 43
4.26 Rules cls-maxc1, cls-maxc2 . 43
4.27 Class and Property Subsumption Results . 44
4.28 Property Domain and Range Results . 44
4.29 Union and Intersection of Classes . 45
4.30 Enumeration Results . 45
4.31 Equality . 45
4.32 Class Keys, Property Chains, Inverse Properties Results . 46
4.33 Property Constraints Results . 46
4.34 Disjointness Results . 46
4.35 Cardinalities Results . 47

5.1 Character-based Distance Metrics . 49
5.2 Token-based Distance Metrics . 49
5.3 Special-Purpose Distance Metrics . 50
5.4 List of a subset of the transformation processes for Silk . 50
5.5 DrugBank−Targets Dataset Classes and their instances 52
5.6 ChemSpider Properties . 52
5.7 ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.9) 54
5.8 ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.8) 54
5.9 ConceptWiki/ChemSpider - Tc2 (threshold t = 0.9) 54
5.10 ConceptWiki/ChemSpider - Tc2 (threshold t = 0.8) 54
5.11 ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.1) 54

Page 9 of (69)

LDBC Deliverable D4.4.1

5.12 ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.2) 55
5.13 ConceptWiki/ChemSpider - Tc2 (threshold t = 0.1) 55
5.14 ConceptWiki/ChemSpider - Tc2 (threshold t = 0.2) 55
5.15 A summary of the comparison for Silk and Limes . 55
5.16 Run times for Limes- Threshold 0.9 (time in seconds) . 56
5.17 Run times for Silk - Threshold 0.1 (time in seconds) . 56
5.18 Overall comparison for Limes and Silk . 57

6.1 D2R Mappings for the relational table CHEBI.AUTOGEN_STRUCTURES 58
6.2 A sample row for the relational table CHEBI.AUTOGEN_STRUCTURES 59
6.3 Resulting triples after the application of the mappings shown in Table 6.1 on the sample row

of Table 6.5 for D2R . 59
6.4 D2R A part of mappings for relational table CHEMBL.DOCS 59
6.5 A sample row for CHEMBL.DOCS relational table . 60
6.6 Resulting triple after the application of the mappings shown in Table 6.4 on the sample row

of Table 6.5 for D2R . 60
6.7 A sample row for CHEMBL.MOLECULE_DICTIONARY relation table 60
6.8 Resulting triple after the application of the inter-linkage transformation in the sample row of

Table 6.7 . 60
6.9 Triplify Mapping query for the relational table CHEBI.AUTOGEN_STRUCTURES 61
6.10 Triplify Object Properties array for the relational table CHEBI.AUTOGEN_STRUCTURES . . . 61
6.11 Resulting triples after evaluating the SQL query shown in Table 6.9 upon the sample row of

Table 6.2 . 61
6.12 Triplify Mapping query for relational table CHEBI.DOCS 62
6.13 Triplify Mapping query for the relational table MOLECULE_SYNONYMS 62
6.14 Sample rows for CHEMBL.MOLECULE_SYNONYMS relation table 62
6.15 Resulting triples after evaluating the SQL query shown in Table 6.13 in the sample rows of

Table 6.14 . 63
6.16 SQL views for Virtuoso . 64
6.17 Sample rows for CHEMBL.ASSAY2TARGET relation table . 65

Page 10 of (69)

Deliverable D4.4.1 LDBC

1 Introduction

This deliverable focuses on three semantical tasks, namely reasoning, instance matching and ETL processing.
Reasoning refers to the identification and use of information that is not explicit in the dataset but can be
inferred from the semantics of the used RDFS/OWL constructs. Instance matching (also referred to as
record linkage [16], duplicate detection [7], entity resolution [1], and object identification in the context of
databases [22]) refers to identifying instances that correspond to the same real world object. The extract,
transform and load (abbreviated as ETL) processes involve reshaping the data in various ways, e.g., by
merging data that refer to the same resource together, or by making value-based changes, or by making
structural changes.

The purpose of this deliverable is to identify and discuss the main challenges, named choke points, faced
by existing state-of-the-art systems for these tasks in order to be used for the upcoming benchmark designs.
To identify these choke points, we used the available state-of-the-art systems, as well as appropriate datasets
from the Semantic Publishing Domain (as provided by the respective Task Force in the context of LDBC) and
the life sciences domain presented in Chapter 2. The identification of a choke point involves understanding
the most important challenges that current systems face in their respective tasks, in order to be included
as (hidden) challenges in the benchmarks that we will design; the ultimate goal is to encourage systems to
address these challenges, thus stimulating and encouraging technological progress. We present the systems
we used for our experiments in Chapter 3.

Reasoning choke points are discussed in Chapter 4; towards this purpose we used the BBC dataset,
which was taken from the Semantic Publishing Domain described in Chapter 2, Section 2.1. The BBC
ontologies were relatively simple (used mainly the RDFS rdfs:subClassOf rdfs:subPropertyOf and
rdf:type RDFS built-in properties), so in order to identify reasonably hard cases (choke points) we enriched
them with additional OWL constructs from the owl 2 rl [20] fragment. The additional constructs are
described in Section 4.2. In addition, the data level of the BBC dataset was enriched by generating additional
data using the generator described in Deliverable D2.2.2 [9]. The BBC workload (also described briefly
in Deliverable D2.2.2 [9]) was used as a guide for identifying choke points that are related to the actual,
real-world usage patterns of the Semantic Publishing domain.

The RDF engines we used for running our reasoning choke points analysis was Virtuoso [40] and
OWLIM [36], which are presented in Chapter 3, Sections 3.1.1, 3.1.2 respectively. Both engines represent
the current state-of-the-art in RDFS/OWL reasoning. Another interesting characteristic is that Virtuoso uses
backward reasoning, whereas OWLIM uses forward reasoning, which allowed us to evaluate our choke points
against those two different approaches in implementing RDF engines capable of executing reasoning tasks.

The reasoning choke points are essentially queries which involve (either in their formulation, or in the
accessed data) reasoning-intensive constructs, essentially forcing the query engine to perform RDFS/OWL
reasoning in order to answer correctly the query. This is different from the objective of deliverable D2.2.1 [10],
where reasoning was not considered and the emphasis was on choke points related mostly to query opti-
mization of queries that did not involve reasoning (e.g., complex large join queries). In our analysis we
measured, whether the RDF engines correctly implement the reasoning semantics of the various constructs
(conformance choke points).

For the instance matching choke points analysis discussed in Chapter 5, we used the datasets provided
by the Open PHACTS [35] FP7 European Project. Open PHACTS also provided a set of golden
standards (called linksets) which were put together by experts (curators) in the domain of pharmacology. The
results of the tested systems were compared against these golden standards to evaluate their performance,
i.e., how well they managed to match the input datasets. A description of Open PHACTS and the related
golden standards is provided in Chapter 2, Section 2.2.

For our tests we used two open source, publicly available instance matching systems, namely Limes [21]
and Silk [14, 15, 44] both presented in Chapter 3, Sections 3.2.1 and 3.2.2. We also tried to obtain the
systems that were evaluated using the Ontology Alignment Evaluation Initiative (OAEI) over the last three
years. However, the versions available by OAEI were benchmark-specific, and thus unusable for our analysis.

Page 11 of (69)

LDBC Deliverable D4.4.1

Our analysis of the instance matching choke points targeted on identifying cases where the tested systems
perform poorly in the matching task (with respect to the golden standards) under a set of evaluation criteria.
In particular, we run tests under various parameterizations of the tested systems and measured their efficiency,
as well as the quality of the results with respect to the golden standards.

The ETL choke point analysis task is discussed in Chapter 6; for this analysis we used the Open PHACTS
dataset for the instance matching task. However, only two of the ontologies that comprise Open PHACTS
were used for ETL, namely ChEMBL and ChEBI. The tested systems for the ETL choke points were
D2R [3], Triplify [38] and Virtuoso Views [43] of Virtuoso discussed in Chapter 3, Sections 3.3.2
and 3.3.1. These systems were tested for the extraction and transformation of relational data to RDF. Loading
of the result to the RDF database was made using the Virtuoso RDF engine (Section 3.1.1). Typically, ETL
produces derived data (such as mapping triples) and also involves some reasoning.

Our ETL choke point analysis consisted in identifying transformations that would stress the tested systems.
In particular, the input to the process was the Open PHACTS data, that was stored in a relational MySQL
database. The extraction process involved also some transformations that consisted in expressing exact
match links in terms of skos:exactMatch triples between ChEMBL and ChEBI, as well as aggregating
the information found in each dataset by merging the triples that refer to the same URI. Virtuoso was
subsequently used to store the obtained RDF triples (loading phase). In our analysis we measured the
performance of these tools, as well as the richness of possible transformations that can be accomplished with
each tool.

To follow this deliverable, some understanding of the RDF language [17] is required (a short introduction
appears in Deliverable 1.1.1 [8]). Also, some understanding of the SPARQL query language [23] will be
necessary (again, a short introduction can be found at Deliverable 1.1.1 [8]). Understanding RDFS and OWL
semantics is also a prerequisite to follow the reasoning part, but this semantics will be briefly presented in
Chapter 4. However, this presentation is not intended as a complete presentation of said languages; instead,
we focus only on the semantics of the relevant constructs, to be used as a point of reference for the choke
point analysis.

This deliverable is not intended to provide a full benchmark for the corresponding tasks. Instead, our
aim is to identify the related choke points, upon which the subsequent benchmark definitions will be based.
The benchmarks for the reasoning, instance matching and ETL tasks are planned to be reported in M24 of
this project, as part of future Deliverables D4.4.2, D4.4.3 and D4.4.4 respectively.

Page 12 of (69)

Deliverable D4.4.1 LDBC

2 Description of the Datasets

In this chapter, we describe the two datasets that we used for identifying the choke points for the tasks of
reasoning, instance matching and ETL. In particular, for the reasoning choke point analysis we used the
ontologies provided by BBC [27] enriched with manually added constructs from the owl 2 rl fragment [20]
as well as data automatically produced by the data generator described in Deliverable D.2.2.2 [9]. The
OpenPHACTS datasets from the life science domain were used for the data integration tasks, namely instance
matching and ETL.

We used the BBC dataset for the reasoning benchmark since (a) ontologies were made available to us,
and (b) there is a real need for reasoning intensive tasks in the Semantic Publishing use case scenario. On the
other hand, Open PHACTS datasets were more suitable for the instance matching and ETL tasks since
this data is already used in a data integration context. More specifically, in the first task necessary input
such as golden standards are available and can be used to evaluate the existing systems based on established
metrics. Open PHACTS data were available as relational data, making this collection of datasets a very
good use case for the ETL task, whereas this is not the case for the BBC use case scenario.

2.1 Semantic Publishing: The BBC Use Case

In this Section we present the BBC ontologies that we used for the reasoning choke point analysis. The
ontologies provided by the Semantic Publishing Task Force were relatively simple, in terms of the reasoning
constructs used (employed mainly the RDFS rdfs:subClassOf, rdfs:subPropertyOf and rdf:type RDFS
built-in properties) and in order to test the reasoning choke points we enriched them with additional OWL
constructs from the owl 2 rl [20] fragment. Data was generated using the enriched BBC ontologies using
the generator described in Deliverable D2.2.2 [9].

2.1.1 BBC Ontologies

In the figures of this Section, ontologies are represented as node and edge labeled directed graphs where
classes are depicted by an oval, class instances by a rhombus and properties as edges between classes and
instances, where the name of the property is the label of the edge. User defined and RDF properties (rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf) are depicted in the same manner. Cardinality constraints for
properties are also recorded on the edges at the target class. The BBC ontologies that we used for the choke
point analysis are discussed below.
CreativeWork 0.9: this ontology defines the classes and properties for creative works. Figure 2.1 shows
the classes and properties for the creative works ontology. A creative work (also called a journalistic as-
set) is something created by the publisher’s editorial team. It is not a representation of the item itself
(which could be text, a photo, a video, an audio recording, etc), rather the metadata that describes it and
its location (in an appropriate content management system). A creative work has a title, shortTitle, exactly
one description, modification and creation date (properties cwork:description, cwork:dateModified and
cwork:dateCreated respectively). Property cwork:liveCoverage indicates that the creative work is the
live coverage of an event. It has zero or more audiences (property cwork:audience), instances of class
cwork:Audience, a single format (property cwork:primaryFormat), instance of class cwork:Format. Cre-
ative works can be tagged (property tag) by anything (instance of class core:Thing), and is associated
with exactly one category (property cwork:category) that can be any URI. Properties cwork:about and
cwork:mentions are subproperties of property cwork:tag. Class cwork:Audience describes the kinds of
audience for the story presented by a creative work; instance of this class are cwork:NationalAudience,
cwork:InternationalAudience. Class cwork:Format collects all different kinds of formats of a cre-
ative work. These are cwork:PictureGalleryFormat, cwork:AudioFormat, cwork:InteractiveFormat,
cwork:VideoFormat, cwork:TextualFormat.

A creative work has exactly one thumbnail (property cwork:thumbnail). Thumbnails have at most
one type (cwork:thumbnailType), instance of class cwork:ThumbnailType: cwork:StandardThumbnail,

Page 13 of (69)

LDBC Deliverable D4.4.1

Figure 2.1: Creative Work 0.9

cwork:CloseUpThumbnail, cwork:FixedSize66Thumbnail, cwork:FixedSize228Thumbnail and
cwork:FixedSize466Thumbnail and a text description (property cwork:altText).

There are different types of creative works: news article (class cwork:NewsArticle), a programme
(class cwork:Programme) and a blog post (class cwork:BlogPost); these types are represented using the
rdfs:subClassOf RDFS property and are subclasses of cwork:CreativeWork class.

Figure 2.2: Company Ontology 1.4

Page 14 of (69)

Deliverable D4.4.1 LDBC

Company 1.4: This ontology describes the relationship between the web documents produced by a con-
tent management system (class bbc:WebDocument), BBC products (class bbc:Product) and creative works
(class cwork:CreativeWork). A BBC product can be a blog (bbc:Blogs), education (bbc:Education),
news (bbc:News), music (bbc:Music) or sport (bbc:Sport), all instances of bbc:Product. A web doc-
ument (instance of class bbc:WebDocument) has an associated product (property bbc:product). These
documents have exactly one primary topic (property core:primaryTopic) that can be anything (instance of
core:Thing). Such documents are presented in at most one platform such as bbc:Mobile, bbc:HighWeb,
instances of class bbc:Platform. A creative work (instance of cwork:CreativeWork) can be the primary
content (bbc:primaryContentOf)1 at least one and at most two web documents. Finally, a BBC web doc-
ument has an associated such product, the former being the primary content of a creative work. Figure 2.2
presents the classes and properties of the company ontology.

Figure 2.3: Core Concepts Ontology 0.6

Core Concepts 0.6 defines the main classes used in BBC datasets such as core:Person , core:Place,
core:Event, core:Organization and core:Theme. These are all subclasses of the class core:Thing, defined
as equivalent of class (using the owl:sameAs property) of owl:Thing, that is the “class of all individuals in the
OWL world”2. An instance of class core:Thing has short, preferred labels (properties core:shortLabel
core:preferredLabel), disambiguation hint (property core : disambiguationHint:). Finally, each in-
stance of class core:Thing has an associated URI slug (property core:slug) that is the fragment of a URI
that uniquely identifies a resource within a domain. For instance, in the the case of Wikipedia the URI slug for
the entry Stoat: http://en.wikipedia.org/wiki/Stoat is “Stoat” [24]. core:primaryTopicOf property
is the inverse of core:primaryTopic. An instance of core:Thing can be the primary topic of more than
one web documents. Properties bbc:twitter, bbc:facebook and bbc:officialHomepage are subproperties
(modeled using the RDFS built-in rdfs:subPropertyOf) relationship) of core:primaryTopicOf that are

1bbc:primaryContent is the inverse of bbc:primaryContentOf: a web document can have as primary content exactly one a
creative work.

2http://www.w3.org/TR/owl-guide/

Page 15 of (69)

LDBC Deliverable D4.4.1

used to indicate the different kind of web documents that have a “thing” as primary content. The main classes
and properties of the core concepts ontology are shown in Figure 2.3.
CMS 1.2. is the ontology is used for interpreting locators into various specialized content management
systems. A creative work and a BBC “thing” can have multiple such locators, that can be sport-stats
(class cms:Sports− Stats), music bootstrap (class cms:MusicBootstrap), iscript (class cms:iScript)
and content api (class cms:ContentApi). The CMS classes are all subclasses of cms:Locator. The CMS
ontology used in BBC is shown in Figure 2.4.

Figure 2.4: CMS Ontology 1.2

Person 0.2 describes information related to persons, instances of class person:Person, considered to be a
subclass of class bbc:Thing. A person can have a role, a first and a last name (properties person:role,
person:firstName, person:lastName). The person ontology is shown in Figure 2.5.

Figure 2.5: Person Ontology 0.2

Provenance 1.1 specifies the main concepts and properties used to describe versioning and change log
information for the BBC datasets. The main class of the ontology is provenance:Graph that carries infor-
mation about different versions of a dataset. The information that carries a provenance graph are the owner
and provider of the dataset (properties provenance:owner, provenance:provider) that can be any web

Page 16 of (69)

Deliverable D4.4.1 LDBC

resource. The provision date, the reason a dataset changed and its version, a canonical location and a pre-
vious hash version (properties provenance:provided, provenance:changeReason, provenance:version,
provenance:canonicalLocation, provenance:previousVersionHash). The ontology is shown in Fig-
ure 2.6.

Figure 2.6: Provenance Ontology 1.1

Tagging 1.0: this ontology is used for connecting creative works with concepts from domain ontologies. The
main concept is the tagging:TagConcept which is a subclass of bbc:Thing. A tag concept is associated with
a set of tags (instances of class tagging:TagSet) and a locator of a content management system (instance
of class cms:Locator). The ontology is shown in Figure 2.7.

Figure 2.8 presents an overview of the ontologies that comprise the BBC schema. The main classes of
each of the ontologies are shown, in a color-coded fashion to indicate the ontology where they come from.

Figure 2.7: Tagging Ontology 1.0

Page 17 of (69)

LDBC Deliverable D4.4.1

Figure 2.8: Overview Ontology 0.2

In addition to the aforementioned general ontologies, concepts from domain ontologies are used as tagging
concepts: the sports ontology contains concepts for describing sports, competitions and sporting events, the
curriculum ontology describes entities in academia and finally the news ontology describes the basic concepts
that a creative work can be tagged with.

2.1.2 Statistics

Table 2.1 shows the RDFS and OWL constructs used in the BBC ontologies (core and domain-specific
ontologies). The ontologies are relatively simple: they contain few classes, properties and small class and
property hierarchies. More specifically, the class hierarchy has a maximum depth of 3 whereas the property
hierarchy has a depth of 1 .

Classes and Properties
classes data type properties object properties

74 88 28

RDFS Constructs
rdfs:subClassOf rdfs:subPropertyOf rdfs:domain rdfs:range

60 17 105 115

OWL Property and Class Constraints
owl:oneOf owl:TransitiveProperty

8 1

Table 2.1: BBC Ontology Characteristics

Page 18 of (69)

Deliverable D4.4.1 LDBC

2.2 Open PHACTS

Open PHACTS [35] (Open Pharmacological Concept Triple Store), is a freely available dataset in the
pharmacological domain with data coming from various information sources. It provides tools and services
to query this integrated data to support pharmacological research. It uses the state-of-the-art semantic web
standards and technologies. It is a major public-private partnership involving organizations from major
pharmaceutical companies, academia and small-medium enterprises [12]. The project is funded by the
European Federation of Pharmaceutical Industries and Associations (EFPIA) and the European Union through
the Innovative Medicines Initiative; it is scheduled to complete in early 2014.

The Open PHACTS platform is, at its core, a data integration platform. But instead of imposing a
top-down view of data, as the usual approach of data warehousing, a more bottom-up view is considered;
information coming from multiple providers is exposed through an adaptive integration. This bottom-up
approach is facilitated by the adoption of open web-based data standards and is characterized as semantic
data interoperability. In essence, data from all relevant sources is published in a semantically interoperable
web enabled format, which is extended by community-adopted ontologies. This way, an increasing number
of tools and services (including those provided by Open PHACTS) can take advantage of the published
data layer, with full provenance allowing access to the underlying datasets [46].

The Open Pharmacological Space (OPS) of Open PHACTS, offers an open platform to deliver and
sustain pharmacological/chemical data added from various sources (e.g., academia, publishers, small and
medium-sized enterprises). Very well-known and established datasets have been added and linked to each
other such as ChemSpider [29], DrugBank [31] ChEMBL [28], UniProt [39, 25], Gene Ontology
(GO) [32] Database, Medical Subject Headings (MeSH) [33], Worldwide Protein Data Bank (PDB) [37].
We will briefly present here the datasets that we used in this deliverable, for the instance matching and
extract-transform-load (ETL) tasks. In our experiments we consider RDF datasets (some of them have been
extracted from relational databases).

ConceptWiki [30] is a universal open access repository of editable concepts. It focuses on the life sci-
ences and on people working in the life sciences. It is currently being developed as part of the
Open PHACTS project. It includes concepts from Literature, Proteins, Chemicals and other do-
mains. The dataset can be freely downloaded and used as a thesaurus to identify references to the
concepts from the aforementioned topics and in different information sources.

Literature concepts are related to scientific authors and their expertise, as well as scientific publications
and their key subject concepts; these are assembled in a section of ConceptWiki called WikiPeo-
ple/WikiPublications. Much of this information was originally obtained through the PubMed/Medline3
databases.

All concepts related to Proteins, Genes and their relationships, as well as to the species they are found in,
are assembled in a section of ConceptWiki called WikiProteins/WikiGenes. Much of the information
was obtained through the SwissProt/UniProt databases4. Chemical concepts represent small molecules
and are all assembled in a section of ConceptWiki called WikiChemicals/WikiCompounds. This
information, as well as many concepts related to properties of chemicals and their relationships were
originally obtained from ChemSpider dataset that we describe below. The dataset contains data for
more than 2,5 millions of proteins, genes and chemicals.

ChemSpider [29] is a free chemical structure database providing access to over 28 million structures,
properties and associated information. The dataset builds on the collected sources by adding additional
properties, related information and links back to the original data sources. It offers text and structure
search to find compounds of interest and provides services to improve this data by curation and
annotation and to integrate it with users’ applications. By integrating and linking compounds from
more than 400 data sources, ChemSpider enables researchers to discover the most comprehensive

3http://www.ncbi.nlm.nih.gov/pubmed
4http://web.expasy.org/docs/swiss-prot_guideline.html

Page 19 of (69)

LDBC Deliverable D4.4.1

view of freely available chemical data. ChemSpider integrates compound data with publications,
provides publishing platform for the addition and preservation of data in order to make the data
accessible and reusable. The dataset is owned by the Royal Society of Chemistry5.

DrugBank database [31] is a bioinformatics and cheminformatics resource that combines detailed drug
data (i.e., chemical, pharmacological and pharmaceutical) with comprehensive drug target information
(i.e., sequence, structure, and pathway). The database contains 6811 drug entries, including 1528
FDA-approved small molecule drugs, 150 FDA-approved biotech drugs (protein/peptide), 87 nutraceu-
ticals and 5080 experimental drugs. Additionally, 4294 non-redundant protein sequences (i.e., drug
target/enzyme/transporter/carrier) are linked to these drug entries. Each entry contains more than 150
data fields with half of the information being devoted to drug/chemical data and the other half devoted
to drug target or protein data.

ChEMBL [28] is a database of bioactive drug-like small molecules. It contains 2D structures, calculated
properties and abstracted bioactivities. The data is abstracted and curated from the primary scientific
literature, and covers a significant fraction of the structure activity relationship (SAR) and discovery
of modern drugs. ChEMBL attempts to normalize the bioactivities into a uniform set of end-points
and units, and also to tag the links between a molecular target and a published assay with a set of
varying confidence levels. Additional data on clinical progress of compounds is being integrated into
ChEMBL.

Open PHACTS Linksets As mentioned above, Open PHACTS aims to semantically bridge the phar-
macological/chemical datasets. Specifically, Figure 2.9 presents the relationships between the datasets of the
Open PHACTS suite, in other words the linksets; such a relationship is described by means of the
skos:exactMatch property. The figure also shows the number of links each linkset has. The black arrows
in Figure 2.9 show the direct relationships between the datasets while the dashed arrows show the transitive
relationship between the datasets. That is, a concept x in a dataset d1 is linked to a concept z in a dataset
d3 through a concept y in dataset d2. These linksets will be used as the “golden standard” for the instance
matching process discussed in Chapter 5.

5http://www.rsc.org/

Page 20 of (69)

Deliverable D4.4.1 LDBC

Figure 2.9: Open PHACTS Dataset Suite

Page 21 of (69)

LDBC Deliverable D4.4.1

3 Description of the Systems

In this chapter, we describe the systems that were used for identifying the choke points in the three processes
(reasoning, instance matching and ETL). The considered systems are all state-of-the-art in their respective
area, and were chosen for being representative of the currently available tools and approaches. The selected
tools (described in subsequent sections of this chapter) are Virtuoso, OWLIM, Limes, Silk, Triplify and
D2R. Virtuoso and OWLIM were used for the reasoning choke points, Limes and Silk were used for the
instance matching choke points, whereas Triplify and D2R were used for the ETL choke points. As far as
the ETL choke points are concerned, we also used a special feature of Virtuoso, namely Virtuoso Views.

All the above run in a server with 2 Intelr Xeonr CPU E5520 at 2.27GHz (a total of 8 cores/16
threads), 72GB ECC FB Ram and running CentOS release 6.4 x86_64. The system has 8 1TB SATA-2 in
7200RPM disks, which are configured as 4 RAID-1 mirrored disks under Areca ARC-1222 disk controller.

3.1 RDF Query Engines

3.1.1 Virtuoso

Virtuoso [40] is an innovative enterprise grade multi-model data server, developed by Openlink [34]. The
main innovation of Virtuoso is that it delivers a platform-agnostic solution for data management, access
and integration. It supports the management of various types of data, including relational, RDF, XML, text
documents and others. This way, the users can employ the hybrid server architecture of Virtuoso to get
access to all these different types of data.

One of the features of Virtuoso is the ability to create Virtuoso RDF Views. These views are non-
materialized, and they are automatically updated when the source data changes. They essentially allow the
up-to-date conversion of relational data into RDF and its exposure in a manner accessible through a SPARQL
endpoint. This way, relational data is accessible as RDF data, in a transparent manner. Virtuoso RDF views
allow the customization of the relational data, via a declarative Meta Schema Language that defines how
relational data should be translated into RDF data, possibly after being transformed in various ways. These
transformations will be exploited for testing our ETL choke points.

For the purposes of this deliverable, Virtuoso was used for the reasoning choke point analysis and
for the ETL choke point analysis. We used the OpenLink Virtuoso Universal Server (Enterprise Edition),
Version 07.00.3203, Compiled for Linux (i686-generic-linux-glibc212-64).

3.1.2 OWLIM

OWLIM [36] is a state-of-the-art RDF database management system developed by Ontotext1. It is a native
RDF engine, implemented in Java, that supports the semantics of RDFS [2], OWL 2 RL and OWL 2 QL [20];
this makes it adequate for the reasoning choke points analysis that we undertake in this deliverable. According
to their website, OWLIM offers great scalability features, and efficient loading and query evaluation times,
even for large datasets. OWLIM is used in a large number of research projects and software tools. It comes
in three different versions, namely OWLIM-Lite, OWLIM-SE and OWLIM-Enterprise.

For the experiments that we conducted in this deliverable we used OWLIM-SE Version 5.4.6287 with
Sesame Version 2.62 and Tomcat Version 63. We installed and run our experiments with OWLIM on the
same server we used for Virtuoso.

1http://www.ontotext.com/
2http://www.openrdf.org/
3http://tomcat.apache.org/

Page 22 of (69)

Deliverable D4.4.1 LDBC

3.2 Instance Matching Systems

3.2.1 Limes

Limes(LInked discovery framework for MEtric Spaces) [21] is a system used for the discovery of links
between linked data sources. Limes utilizes the triangle inequality in metric spaces to compute estimates
of instance similarities. The system queries the SPARQL endpoints of the Knowledge Bases to return the
selected concept instances and then matches those instances.

Limes was developed in the AKSW group of the University of Leipzig4 and is an open-source system.
Limes is configurable via a web interface, but can also be downloaded as a standalone tool for carrying out
link discovery locally5. For our choke point analysis, we used the standalone tool, in particular version 0.6.

Limes’s strategy is to reduce the complexity of the matching algorithm, by reducing the number of
comparisons of concepts’ labels using “exemplars”, which is a partitioning of the metric space.

3.2.2 Silk

The Silk-Linking Framework [44], like LIMES, is a tool for discovering links between entities within different
data sources. It queries the knowledge bases by using SPARQL queries to return the specific required instances
and their properties. It runs different distance metrics (jaro distance metrics, jaroWinkler distance metric,
q-grams, etc.) to return the similarity of the instances. In order to be more efficient, Silk tool performs
a pre-matching of the instances by indexing the values of the label properties. Silk is a publicly-available
open source system that was developed in the context of the LOD2 project. For our analysis, we used Silk
single machine version 2.5.4.

3.3 ETL Tools

3.3.1 Triplify

Triplify [38] is a tool for translating relational data into formats that are useful for the web of data, namely
RDF, JSON, or Linked Data. Its main motivation is to help users expose relational data in semantical form
for use in Semantic Web applications.

In the process of translating relational data to an, for instance, RDF representation, Triplify allows the
user to define various types of transformations (e.g., string concatenation, or value grouping); this allows
us to classify it as an ETL tool. These transformations are based on the use of database queries to create
views, which can then be converted into the desired format. Triplify puts special emphasis on usability, so
that users have an easy and simple interface to configure the way in which the translation takes place.

Triplify is implemented as a lightweight plugin for Web applications and is licensed under the terms
of the GNU Lesser General Public License. For our analysis of ETL choke points, we used version 0.86 of
Triplify.

3.3.2 D2R

D2R [3] is a tool that allows the publication of relational data on the Semantic Web using adequate semantical
languages. D2R provides various useful features, such as the ability to navigate the contents of the database
via a web interface, support for metadata and other annotations, as well as the use of resolvable URIs, so
that Semantic Web browsers can follow links in the Linked Data cloud.

Note that, unlike Triplify, D2R does not perform a physical translation of the data. Instead, it allows
the user to define custom mappings, which are then used to translate SPARQL queries into SQL queries on-
the-fly, essentially allowing access to the relational data in a transparent manner. These mappings correspond

4http://aksw.org/About.html
5http://sourceforge.net/projects/limes/files/
6http://sourceforge.net/projects/triplify/files/latest/download?source=files

Page 23 of (69)

LDBC Deliverable D4.4.1

to the ETL transformations that we will use in our choke point analysis in Chapter 6. D2R (and the defined
mappings) can be configured via various parameters, some of which are aimed at tuning the system’s behavior
towards improving performance. For our analysis of ETL choke points, we used version 0.8.17 of D2R.

7https://github.com/downloads/d2rq/d2rq/d2rq-0.8.1.tar.gz

Page 24 of (69)

Deliverable D4.4.1 LDBC

4 Reasoning Choke Point Analysis

4.1 Outline of this Chapter

The purpose of the analysis presented in this chapter is to verify which OWL and RDFS constructs are
handled by RDF engines Virtuoso and OWLIM in accordance to the owl 2 rl semantics [20]. In later
versions of the reasoning benchmark (LDBC Deliverable D4.4.2 in M24) we will report on the performance
analysis of queries that include reasoning intensive tasks and how these are (or not) handled efficiently by the
tested RDF engines. These queries will reveal if the underlying optimizers take advantage of, for instance,
cardinality constraints to optimize their plans, or property path axioms to eliminate unnecessary joins.

To check the constructs supported by the aforementioned systems, we define a set of conformance queries.
The queries are formulated against the BBC dataset that contains a rich set of instances, and a set of ontologies
that describe them (see Section 2.1 for more details). Because of the fact that the BBC ontologies are relatively
simple in terms of the reasoning constructs that they use, they were manually enhanced with certain reasoning-
intensive OWL constructs, as described in Section 4.2. Instances of the BBC dataset were produced using
an automated data generator, described in Deliverable D2.2.2 [9].

A detailed description of the employed RDF engines Virtuoso and OWLIM can be found in Sec-
tions 3.1.1 and 3.1.2 respectively. Our objective in this exercise is to identify choke points, i.e., the most
important challenges that current state-of-the-art systems face, in order to be included as (hidden) challenges
in the reasoning benchmark that we will design; the ultimate goal is to encourage systems to address these
challenges, thus stimulating and encouraging technological progress.

Section 4.2 presents the enhacements for the BBC ontologies. Before describing the choke points, we
give a detailed description of the semantics of the RDFS and OWL constructs that are relevant for our analysis
(Section 4.3). In Section 4.4 we present the conformance queries, and in Section 4.5 we discuss the results
of our experiments for the Virtuoso and OWLIM engines.

4.2 Enhanced BBC Ontologies

In order to stress the reasoning capabilities of the reasoning engines used (Virtuoso [40] and OWLIM [36])
and identify choke points, we extended the BBC ontologies by i) defining additional properties and classes
and ii) adding various owl 2 rl constructs.

4.2.1 Property Constraints

(E1) Asymmetric Property (owl:AsymmetricProperty) : if an asymmetric property property p is asserted
between objects x and y (triple (x, p, y)) then p cannot be asserted between objects y and x (triple
(y, p, x)).

(E2): Irreflexive Property (owl:IrreflexiveProperty) : if a property p is defined as irreflexive, triple
(x, p, x) cannot exist in the dataset.

We defined property ldbc:partOf with rdfs:domain and rdfs:range class bbc:WebDocument to be
both an asymmetric and irreflexive property.

ldbc:partOf rdf:type rdf:Property ;
rdfs:domain bbc:WebDocument ;
rdfs:range bbc:WebDocument ;
rdf:type owl:AsymmetricProperty ;
rdf:type owl:IrreflexiveProperty .

Page 25 of (69)

LDBC Deliverable D4.4.1

(E3) Property Chain Axiom (owl:propertyChainAxiom) is a construct that allows one to define properties
as a composition of others . For instance, one can define the property p as the composition of properties
p1 and p2. In this case, if there exist triples (x, p1, y), (y, p2, z) then, according to the Semantics of
Axioms about Properties [20] there exist triple (x, p, z).
We extended BBC ontologies with properties ldbc:cworkThumbnailAltText and ldbc:thumbnailType.
The former is defined as a chain of properties cwork:thumbnail and cwork:altText, with rdfs:domain
cwork:CreativeWork and rdfs:range xsd:string and the latter, as a chain of cwork:thumbnail and
cwork:thumbnailType with range cwork:CreativeWork and range cwork:ThumbnailType.

ldbc:cworkThumbnailAltText rdf:type rdf:Property ;
rdfs:domain cwork:CreativeWork ;
rdfs:range xsd:string ;
owl:propertyChainAxiom (cwork:thumbnail cwork:altText) .

ldbc:thumbnailType
rdf:type rdf:Property ;
rdfs:domain cwork:CreativeWork ;
rdfs:range cwork:ThumbnailType ;
owl:propertyChainAxiom (cwork:thumbnail cwork:thumbnailType) .

4.2.2 Class Constraints

E4 Union Of (owl:unionOf) : this class constraint allows one to define a class c as a union of existing
classes or individuals. If for instance c is defined as a union of classes c1 c2, then an instance of class
c1 (triple (x, rdf:type, c1)) is also an instance of class c (triple (x, rdf:type, c)). The same principle
holds for properties.
To add this constraint in the BBC ontologies we defined class news:Theme as the union of classes
ldbc:Sport, ldbc:Politics, ldbc:Music and ldbc:Art.

news:Theme
owl:unionOf (ldbc:Sport ldbc:Politics ldbc:Music ldbc:Art) .

E5 Intersection Of (owl:intersectionOf) allows one to define a class c as an intersection of existing
classes c1, c2. Essentially this means that c is a subclass of classes c1 and c2. To add this constraint
in the BBC ontologies, we defined class news:Event to be an intersection of classes news:Person and
news:Organization.

news:Event
owl:intersectionOf (news:Person news:Organisation) .

E6 Disjoint Classes & Properties (owl:disjointWith) : if classes c1 and c2 are defined as disjoint
(triple (c1, owl:disjointWith, c2)) then they cannot share common instances, that is, for instance,
triples of the form (x, rdf:type, c1), (x, rdf:type, c2). The same holds for disjoint properties (con-
straint owl:propertyDisjointWith). That is, if triple (p1, owl:propertyDisjointWith, p2) exists,
then there cannot exist triples (x, p1, y), (x, p2, y) in the dataset. Disjointness between two class-
es/properties is generalized to multiple classes/properties using the owl:AllDisjointProperties and
owl:AllDisjointClasses OWL constructs respectively.

Page 26 of (69)

Deliverable D4.4.1 LDBC

We defined class cwork:Audience to be disjoint from class cwork:CreativeWork using the owl:disjointWith
construct.

cwork:Audience owl:disjointWith cwork:CreativeWork .

We also defined pairwise disjointness between properties core:facebook, core:twitter, using the
owl:propertyDisjointWith construct.

core:facebook
owl:propertyDisjointWith core:twitter .

core:twitter
owl:propertyDisjointWith core:facebook .

Construct owl:AllDisjointProperties was used to state properties core:tag, cwork:audience,
cwork:primaryFormat and cwork:thumbnail as disjoint.

_:node1 a owl:AllDisjointProperties ;
owl:members (cwork:tag cwork:audience cwork:primaryFormat cwork:thumbnail) .

Finally, owl:AllDisjointClasses construct is used to define that classes cwork:NewsItem, cwork:BlogPost
and cwork:Programme are disjoint.

_:node2 a owl:AllDisjointClasses ;
owl:members (cwork:NewsItem cwork:BlogPost cwork:Programme) .

4.2.3 Cardinality Constraints

E7 MinCardinality & MaxCardinality Constraints (owl:maxCardinality and owl:minCardinality) are
used to make a property required, to allow only a specific number of values for that property, or to
insist that a property must not occur. Constraints owl:maxCardinality and owl:minCardinality
link a restriction class to a data value belonging to the value space of the XML Schema datatype
xsd:nonNegativeInteger. owl:minCardinality and owl:maxCardinality constraints for values
0 and 1 are added in the ontology (these are supported by OWL Lite). More specifically, we specified
the above constraints for properties ldbc:dateDestroyed and cwork:thumbnail.

ldbc:dateDestroyed rdf:type owl:DatatypeProperty ;
rdfs:domain cwork:CreativeWork ;
rdfs:range xsd:string ;
owl:maxCardinality "0"^^xsd:NonNegativeInteger .

cwork:thumbnail
owl:cardinality "1"^^xsd:nonNegativeInteger .

Page 27 of (69)

LDBC Deliverable D4.4.1

4.2.4 Key Constraints

(E8) Key (owl:hasKey) is used to uniquely identify instances based on their property values. To test whether
the engines implement correctly this feature we added the following statement:

core:Thing
owl:hasKey (core:shortLabel core:preferredLabel

core:disambiguationHint core:primaryTopicOf) .

4.3 Semantics of RDFS and OWL Constructs

In this section, we describe the semantics of the RDFS and OWL constructs that appear in the enhanced
BBC ontologies. These constructs will be used for the definition of the choke points in subsequent sections.
Some of these constructs appear in the original BBC ontologies, whereas others were added during the
enhancement phase to allow the exploration and definition of more sophisticated reasoning-intensive queries
and choke points.

We assume that the reader is familiar with the principles of the RDF [17], RDFS [2] and OWL [18]
languages that were presented in detail in Deliverable [8]. The brief presentation we give in Subsection 4.3.1
focuses only on an outline of the semantics of the relevant RDFS and OWL constructs in order to be used
as a point of reference for the presentation of conformance queries and choke point analysis in the following
sections. The reader is referred to Deliverable [8] for more details.

4.3.1 Summary of the RDFS and OWL Semantics

Both RDFS [2] and OWL [18] are based on RDF syntax and semantics, i.e., they adopt a triple-based
representation. RDFS is used to add some limited semantical constructs (such as subsumption) to RDF,
whereas OWL contains more sophisticated constructs applying on both classes and properties (such as tran-
sitivity or functionality requirements on properties, the ability to define new classes by union, intersection
and enumeration.

Most of the OWL constructs were initially defined in 2004, in what is now known as OWL1 [18]. The
semantics of some of the constructs were slightly refined in a subsequent version, OWL2 [45], introduced in
2012. Both OWL1 and OWL2 define several sublanguages that allow a different set of constructs, and thus
adopt a different stance in the tradeoff between expressive power and reasoning complexity. Our presentation
and analysis below focus on the constructs used in a specific sublanguage of OWL 2, namely owl 2 rl [20],
which is aimed at applications that require scalable reasoning without sacrificing too much expressive power.

Each construct is associated with specific semantics, which are formally encoded in the form of if-then
rules. A rule means that if a dataset contains triples that match the triple pattern in the ”if” part, then it
should imply either (a) triples that match the triple pattern in the “then” part or (b) when the “then” part
contains the keyword “false”, it means that an ontology containing the triples in the ”if” part is inconsistent,
i.e., it implies everything. The informal description of the involved OWL constructs, as well as the intuition
behind their semantics is given in the subsections below.

4.3.2 Class and Property Subsumption

Class and property subsumption is the most basic, useful and frequent reasoning-intensive relationship that
appears in semantic modeling. Subsumption is denoted using the RDFS constructs rdfs:subClassOf and
rdfs:subPropertyOf for classes and properties respectively.

According to [2, 13] if a class c1 is a subclass of c2 (triple (c1, rdfs:subClassOf, c2)), then the in-
stances of the former (x, rdf:type, c1) are also instances of the latter (x, rdf:type, c2). The same holds for
subsumption between properties. Rules cax-sco and prp-spo1 in Table 4.1 describe these semantics.

Page 28 of (69)

Deliverable D4.4.1 LDBC

According to the Semantics of Schema Vocabulary [20], class and property subsumption are transitive (see
Rules scm-sco, scm-spo respectively in Table 4.1). More specifically, the existence of (c1, rdfs:subClassOf, c2)
and (c2,rdfs:subClassOf, c3) in a dataset should cause the inference of (c1, rdfs:subClassOf, c3).

If Then

cax-sco (?c1, rdfs:subClassOf, ?c2) (?x, rdf:type, ?c2)
(?x, rdf:type, ?c1)

prp-spo1 (?p1, rdfs:subPropertyOf, ?p2) (?x, ?p2, y)
(?x, ?p1, ?y)

scm-sco (?c1, rdfs:subClassOf, ?c2) (?c1, rdfs:subClassOf, ?c3)(?c2, rdfs:subClassOf, ?c3)

scm-spo (?p1, rdfs:subPropertyOf, ?p2) (?p1, rdfs:subPropertyOf, ?p3)(?p2, rdfs:subPropertyOf, ?p3)

Table 4.1: Class and Property Subsumption

4.3.3 Property Domain and Range

The constructs rdfs:domain and rdfs:range are used to denote the domain and range of properties re-
spectively. For example, (p, rdfs:domain, c1)/(p, rdfs:range, c1) indicate that c1 is the domain/range of
property p. Rules scm-rng1/scm-dom1 shown in Table 4.2 state that if a property p has as range/domain
a class c1, then it has as range/domain all superclasses c2 of c1. Range and domain of properties is also
inherited along the property subsumption hierarchy: rules scm-rng2/scm-dom2 (Table 4.2) state that if a
property p2 has as range/domain a class c, then its subproperty p1 have also as range/domain class c. In
addition whenever a subject s is connected via property p to some object o, s should be an instance of the
domain of p, and o should be an instance of the range of p (rules prp-dom and prp-rng resp.).

If Then

scm-rng1 (?p, rdfs:range, ?c1) (?p, rdfs:range, ?c2)(?c1, rdfs:subClassOf, ?c2)

scm-rng2 (?p2, rdfs:range, ?c) (?p1, rdfs:range, ?c)(?p1, rdfs:subPropertyOf, ?p2)

scm-dom1 (?p, rdfs:domain, ?c1) (?p, rdfs:domain, ?c2)(?c1, rdfs:subClassOf, ?c2)

scm-dom2 (?p2, rdfs:domain, ?c) (?p1, rdfs:domain, ?c)(?p1, rdfs:subPropertyOf, ?p2)

prp-dom (?p, rdfs:domain, ?c)
(?x, rdf:type, ?c)

(?x, ?p, ?y)

prp-rng (?p, rdfs:range, ?c)
(?y, rdf:type, c)

(?x, ?p, ?y)

Table 4.2: Property Domain and Range

Page 29 of (69)

LDBC Deliverable D4.4.1

4.3.4 Union and Intersection of Classes

The owl:unionOf construct is used to construct a new class, that is the union of two (or more) other classes.
Dually, the owl:intersectionOf construct is used to construct a new class that is the intersection of two
(or more) other classes. As with all OWL constructs, the semantics of owl:unionOf are intentional, i.e., all
instances that are known to be instances of either of c1, c2 will be also instances of their union, and vice-versa,
i.e., known instances of the union will be instances of either c1 or c2 (or both). According to rules scm-uni
and scm-int shown in Table 4.3, a class c defined as union (respectively intersection) of a set of existing
classes c1, c2 . . . cn, then c is inferred as their superclass (respectively subclass).

scm-int
(?c, owl:intersectionOf, ?x)

(?c, rdfs:subClassOf, ?c1)
(?c, rdfs:subClassOf, ?c2)

LIST[?x, ?c1, . . ., cn]
. . .
(?c, rdfs:subClassOf, ?cn)

scm-uni
(?c, owl:unionOf, ?x)

(?c1, rdfs:subClassOf, ?c)
(?c1, rdfs:subClassOf, ?c)

LIST[?x, ?c1, . . ., cn]
. . .
(?cn, rdfs:subClassOf, ?c)

Table 4.3: Union and Intersection of Classes

4.3.5 Enumeration

The owl:oneOf construct is used to define a class via enumeration, i.e., by explicitly stating its instances.
This implies that all such individuals are instances of the defined class, as shown in cls-oo in Table 4.4.

If Then

cls-oo
(?c, owl:oneOf, ?x) (?y1, rdf:type, ?c)
LIST[?x, ?y1, . . ., ?yn] . . .

(?yn, rdf:type, ?c)

Table 4.4: Semantics of Enumerated Classes

4.3.6 Equality of Individuals

The uncontrolled nature of the Web of Data implies that there will be several cases where the same resource
in the real world (e.g., a human being, an object or an idea) may be described using different URIs in different
or even the same dataset. To address this problem, OWL2 proposes the use of the OWL construct owl:sameAs
to connect instances that represent the same real-world entity1. Hence OWL construct owl:sameAs denotes
equality. The opposite of owl:sameAs is owl:differentFrom, which explicitly states that two individuals
are different, i.e., they correspond to a different real-world entity. Table 4.5 presents all rules that hold for
owl:sameAs and owl:differentFrom constructs.

One observation is that whatever holds for one resource, holds for the other as well (rules eq-rep-s, eq-
rep-p, eq-rep-o). Obviously, a pair of individuals cannot be the same and different at the same time, thus the
rule eq-diff1. By its definition, owl:sameAs has the properties of equivalence relations, i.e., it is reflexive,
symmetric and transitive. Reflexivity implies that (x, owl:sameAs, x) for all resources x (rule eq-ref). The
relation being symmetric means that (x, owl:sameAs, y) implies (y, owl:sameAs, x) (rule eq-sym). Finally,

1Although owl:sameAs construct must be used only to denote that two URIs denote the same real world entity, it is sometimes
used to express equality at the schema level.

Page 30 of (69)

Deliverable D4.4.1 LDBC

If Then

eq-ref (?s, ?p, ?o)
(?s, owl:sameAs, ?s)
(?p, owl:sameAs, ?p)
(?o, owl:sameAs, ?o)

eq-sym (?x, owl:sameAs, ?y) (?y, owl:sameAs, ?x)

eq-trans (?x, owl:sameAs, ?y)
(?x, owl:sameAs, ?z)

(?y, owl:sameAs, ?z)

eq-rep-s (?s, owl:sameAs, ?s′)
(?s′, ?p, ?o)

(?s, ?p, ?o)

eq-rep-p (?p, owl:sameAs, ?p′)
(?s, ?p′, ?o)

(?s, ?p, ?o)

eq-rep-o (?o, owl:sameAs, ?o′)
(?s, ?p, ?o′)

(?s, ?p, ?o)

eq-diff1 (?x, owl:sameAs, ?y) false
(?x, owl:differentFrom, ?y)

Table 4.5: Semantics of Equality

transitivity implies that from (x, owl:sameAs, y) and (y, owl:sameAs, z) we should infer (x, owl:sameAs, z)
(rule eq-trans).

4.3.7 Inverse of Properties

The inverse property construct (owl:inverseOf) allows one to define a property as the inverse of another.
For example, the property has_parent is the inverse of has_child. More formally, if p1 is the inverse of p2

then a triple of the form (x, p1, y) implies (y, p2, x). Note that when p1 is the inverse of p2, then p2 is the
inverse of p1, so the above implication holds both ways. Rows prp-inv1, prp-inv2 of Table 4.6 expresses
these implications.

If then

prp-inv1 (?p1, owl:inverseOf, ?p2) (?y, ?p2, ?x)
(?x, ?p1, ?y)

prp-inv2 (?p1, owl:inverseOf, ?p2) (?y, ?p1, ?x)
(?x, ?p2, ?y)

Table 4.6: Inverse Constraints

4.3.8 Constraints on Properties

Several OWL constructs are introduced to allow restricting the values that a property can have. In particular,
there are constructs that restrict a property to be inverse functional (owl:InverseFunctionalProperty),
transitive (owl:TransitiveProperty), asymmetric (owl:AsymmetricProperty) or irreflexive
(owl:IrreflexiveProperty). The intuitive semantics of such constraints are given below. The formal
semantics can be found at Table 4.7.

Inverse functional properties are useful to denote values that uniquely identify an entity. Note that, due to
the fact that the semantics of OWL2 do not include the Unique Name Assumption (UNA), inverse functional

Page 31 of (69)

LDBC Deliverable D4.4.1

If then

prp-ifp
(?p, rdf:type, owl:InverseFunctionalProperty)

(?x1, owl:sameAs, ?x2)(?x1, ?p, ?y)
(?x2, ?p, ?y)

prp-trp
(?p, rdf:type, owl:TransitiveProperty)

(?x, ?p, ?z)(?x, ?p, ?y)
(?y, ?p, ?z)

prp-asyp
(?P , rdf:type, owl:AsymmetricProperty)

false(?x, ?p, ?y)
(?y, ?p, ?x)

prp-irp (?P , rdf:type, owl:IrreflexiveProperty) false
(?x, ?P , ?x)

Table 4.7: Constraints of Properties

properties should not be viewed as integrity constraints, because they cannot directly (by themselves) lead
to contradictions. Instead, they force us to assume (infer) that certain individuals are the same, as indicated
by rule prp-ifp. If a property p is defined as transitive, then the existence of triples (x, p, y) and (y, p, z)
should imply (x, p, z) (see also rule prp-trp). Transitive properties appear quite often in user properties (e.g.,
partOf), but also in built-in properties (e.g., subsumption).

If a property p is defined as asymmetric, then whenever x is connected to y via p, then y cannot be
connected to x via p. More formally, if p is asymmetric, then the existence of (x, p, y) and (y, p, x) violates
the correctness of the database (rule prp-asyp). Finally, if a property p is defined as irreflexive then, no
individual can be connected to itself via p, i.e., a triple (x, p, x) cannot exist in the dataset (cf. rule prp-irp).

4.3.9 Keys of Classes

The owl:hasKey construct is used to specify a property (or a set of properties) as being the key for a given
class (in the sense of primary keys, as defined in relational tables). Thus, the values of said properties
uniquely identify a resource that is an instance of the class. For example, if property p is the key for class c,
then the triples (x, rdf:type, c), (y, rdf:type, c), (x, p, z) and (y, p, z) imply (x, owl:sameAs, y). A more
general form of this statement is shown by rule prp-key of Table 4.8.

If then

prp-key

(?c, owl:hasKey, ?u)

(?x, owl:sameAs, ?y)

LIST[?u, ?P1, . . ., ?P2]
(?x, rdf:type, ?c)
(?x, ?p1, ?z1)
. . .
(?x, ?pn, ?zn)
(?y, rdf:type, ?c)
(?y, ?p1, ?z1)
. . .
(?y, ?pn, ?zn)

Table 4.8: Keys

Page 32 of (69)

Deliverable D4.4.1 LDBC

4.3.10 Property Chains

The construct owl:propertyChainAxiom allows one to define properties as a composition of others. As an
example, the property grandparent can be defined as the composition of parent with itself. More formally,
when a property p is defined as the composition of properties p1 and p2, then the triples (x, p1, y), (y, p2, z)
imply (x, p, z) (rule prp-spo2, Table 4.9).

If then

prp-spo2

(?p, owl:propertyChainAxiom, ?x)

(?u1, ?p, ?un+1)

LIST[?x, ?p1, . . ., pn]
(?u1, ?p1, ?u2)
(?u2, ?p2, ?u3)
. . .
(?un, ?pn, ?un+1)

Table 4.9: Property Chains

4.3.11 Disjoint Classes and Properties

Defining two classes c1, c2 as disjoint implies that they cannot share common instances. Disjointness is
denoted using the owl:disjointWith construct. Disjointness between classes is generalized to multi-
ple ones using the owl:AllDisjointClasses construct. The semantics of said constructs implemented
by rules cax-dw, cax-adc are shown in Table 4.10. Similar constructs owl:propertyDisjointWith,
owl:AllDisjointProperties exist for specifying disjoint properties, i.e., properties that cannot share com-
mon instances. Rules prp-adp, prp-pdw of Table 4.10 show some consequences of the semantics of the above
constructs.

If Then

cax-dw
(?c1, owl:disjointWith, ?c2)

false(?x, rdf:type, ?c1)
(?x, rdf:type, ?c2)

cax-adc

(?x, rdf:type, owl:AllDisjointClasses)

false
(?x, owl:members, ?y)
LIST[?y, ?c1, . . ., ?cn]
(?z, rdf:type, ?ci)
(?z, rdf:type, ?cj)

prp-adp

(?x, rdf:type, owl:AllDisjointProperties)

false
(?x, owl:members, ?y)
LIST[?y, ?P1, ?P2, . . . ?Pn]
(?u, ?P1, ?z)
(?u, ?P2, ?z)

prp-pdw
(?P1, owl:propertyDisjointWith, ?P2)

false(?x, ?P1, ?y)
(?x, ?P2, ?y)

Table 4.10: Disjoint Classes and Properties

Page 33 of (69)

LDBC Deliverable D4.4.1

4.3.12 Cardinalities

Cardinality constraints appear quite often in practice, and are used to allow a specific maximum or minimum
number of values for any given property. Constraints owl:maxCardinality and owl:minCardinality link a
restriction class to a data value belonging to the value space of the XML Schema datatype xsd:nonNegativeInteger.

The most common type of cardinality constraints are for values 0 and 1, which are simpler to handle;
such cardinality constraints correspond to functional or required properties. Note that owl 2 rl only supports
cardinality constraints of this type (i.e., with values 0 or 1), so our analysis in this deliverable will focus on
these types of cardinality constraints as well. Table 4.11 shows restrictions implied by owl:maxCardinality.

If Then

cls-maxc1

(?x,owl:maxCardinality "0"xsd:nonNegativeInteger)

false
(?x, owl:onProperty, ?p)
(?u, rdf:type, ?x)
(?u, ?p, ?y)

cls-maxc2

(?x,owl:maxCardinality "1"xsd:nonNegativeInteger)

false
(?x, owl:onProperty, ?p)
(?u, rdf:type, ?x)
(?u, ?p, ?y1)
(?u, ?p, ?y2)

Table 4.11: Cardinalities

4.4 Conformance Choke Points

In this Section we discuss the conformance choke points which determine whether a certain OWL construct
is properly supported by the evaluated system, in the sense of performing sound and complete reasoning
as specified by the semantics associated with the construct [20]. This is of crucial importance, because
reasoning has only recently started being supported by query engines, and is not yet supported “by default”
in all existing systems.

Support of OWL and RDFS constructs is tested using a set of conformance queries that were used to
test the Virtuoso and OWLIM engines. Virtuoso is an engine that supports backward reasoning, whereas
OWLIM is a forward reasoner, that is OWLIM materializes the closure of the dataset using the rules discussed
in Section 4.3. A query is then evaluated on the closure of the dataset, that is, explicit and inferred triples
(that appear in the consequence of the “then” part of the rules of Section 4.3) are treated in exactly the same
manner. On the other hand, a backward reasoner computes the inferred triples during query time. Reasoning
in Virtuoso is performed by specifying rule_sets that implement a small subset of the rules discussed in
Section 4.3. Virtuoso recognizes rdfs:subClassOf and rdfs:subPropertyOf. owl:sameAs is considered
for arbitrary subjects and objects if specially enabled by a pragma in the query (owl:sameAs=’yes’).

The conformance queries that we refer to here, are mainly SPARQL Ask queries and are expessed for
the BBC ontologies discussed in Section 2.1. In particular, the SPARQL queries test whether the semantics
described in Section 4.3 are implemented correctly by the underlying engine. The results of these tests will
reveal the limitations or choke points of the tested systems regarding reasoning constructs; these are presented
in Section 4.5. For each query we give also some explanation on the expected result and the intuition behind
it.

Page 34 of (69)

Deliverable D4.4.1 LDBC

4.4.1 Class and Property Subsumption

In order to check the conformance of the RDF engines regarding class and property subsumption we added
a set of triples in our dataset shown in Table 4.12. Note that the BBC ontologies have a property hi-
erarchy of depth 1 (see Section 2.1.2). In order to check rule scm-spo, we introduced a new property
things:pr-scm-spo-1#id, as a subproperty of cwork:about. The conformance queries for class and
property subsumption (rdfs:subClassOf, rdfs:subPropertyOf) are shown in Table 4.13; these queries
implement the semantics of subsumption discussed in Section 4.3.2. Their expected result is true.

Description Update

Class Subsumption
INSERT DATA {

things:cw-cax-sco-1#id
rdf:type cwork:BlogPost ;
cwork:title "Test for rdfs:subClassOf (cax-sco)" . }

Property Subsumption

INSERT DATA {
things:pr-scm-spo-1#id

rdf:type rdf:Property ;
rdfs:subPropertyOf cwork:about ;
cwork:title "Test for rdfs:subPropertyOf (scm-spo)" .

things:cw-cax-sco-1#id
things:pr-scm-spo-1#id tags:tag-cax-sco-spo-1#id ;
cwork:title "Test for rdfs:subPropertyOf (prp-spo1)" . }

Table 4.12: Test Data for Class and Property Subsumption

Rule Description Constructs Query

cax-sco

Check that
things:cw-cax-sco-1#id is
an instance of
cwork:CreativeWork

rdf:type,
rdfs:subClassOf

ASK { ?cw a cwork:CreativeWork .
FILTER(?cw = things:cw-cax-sco-1#id) }

prp-spo1

Check that
things:pr-scm-spo-1#id is
an instance of cwork:tag

rdfs:subPropertyOf,
rdfs:subClassOf,
rdf:type

ASK {
?cw a cwork:CreativeWork .
?cw cwork:tag tags:tag-cax-sco-spo-1#id .
FILTER(?cw = things:cw-cax-sco-1#id>) }

scm-sco

Check if cwork:BlogPost is a
subclass of owl:Thing
(transitivity)

rdfs:subClassOf ASK { cwork:BlogPost rdfs:subClassOf ?c .
FILTER(?c = owl:Thing) }

scm-spo Check that a property is a sub-
property of cwork:tag (transitiv-
ity of rdfs:subPropertyOf)

rdfs:subPropertyOf

ASK {
?s rdfs:subPropertyOf ?o .
FILTER ((?o = cwork:tag) &&
(?s = things:pr-scm-spo-1#id)) }

Table 4.13: Rules cax-sco, scm-sco, prp-spo1, scm-spo

Page 35 of (69)

LDBC Deliverable D4.4.1

4.4.2 Property Domain and Range

The conformance queries for testing the semantics of rdfs:domain and rdfs:range RDFS properties are
shown in Table 4.15; these queries implement the semantics of the aforementioned properties as discussed
in Section 4.3.3. These tests take into account the BBC ontologies presented in Section 2.1. Table 4.14
presents the triples we added to check prp-dom and prp-rng. The expected result of all these conformance
queries is true.

Description Update

Property Domain and Range

INSERT DATA {
events:event-prp-dom-rng-1#id news:person org:org-prp-dom-rng-1#id }

INSERT DATA {
events:cw-prp-scm-dom2-1#id rdf:type rdf:Property ;

rdfs:subPropertyOf cwork:about ;
rdfs:comment "Testing rdfs:domain and rdfs:range (scm-dom2)" . }

Table 4.14: Test Data for Property Domain and Range

Rule Description Constructs Query

scm-rng1 Check that news:person has as
range core:Thing

rdfs:range,
rdfs:subClassOf

ASK {news:person rdfs:range core:Thing}

scm-rng2 Check that cwork:about has as
range owl:Thing

rdfs:range,
rdfs:subClassOf

ASK {cwork:about rdfs:range owl:Thing}

scm-dom1 Check that news:person has as do-
main core:Event

rdfs:subClassOf,
rdfs:domain

ASK {news:person rdfs:domain core:Event}

scm-dom2

Check that
events:cw-prp-scm-dom2-1#id
has as domain
cwork:CreativeWork

rdfs:subClassOf,
rdfs:domain

ASK {events:cw-prp-scm-dom2-1#id
rdfs:domain cwork:CreativeWork }

scm-dom

Check that
events:event-prp-dom-rng-1#id
is an instance of core:Event

rdfs:domain,
rdfs:subClassOf

ASK {
?event rdf:type core:Event .
?event news:person ?org
FILTER((?event=events:event-prp-dom-rng-1#id)

&& BOUND(?org)) }

scm-rng

Check that
org:org-prp-dom-rng-1#id is
an instance of owl:Thing

rdfs:range,
rdfs:subClassOf

ASK {
?org rdf:type owl:Thing .
?event news:person ?org .
FILTER ((?org = org:org-prp-dom-rng-1#id) &&

BOUND(?event)) }

Table 4.15: Rules scm-rng1, scm-rng2, scm-dom1, scm-dom2, prp-dom, prp-rng

Page 36 of (69)

Deliverable D4.4.1 LDBC

4.4.3 Union and Intersection of Classes

For the conformance choke points of owl:unionOf, owl:intersectionOf, we wrote Ask queries to check
the implications of scm-uni, scm-int discussed in Section 4.3.4. For these queries, given in Table 4.17,
we use the Class Constraints extensions to the BBC ontologies presented in Section 4.2.2. We tested the
conformance of the engines using not only schema information but also instances (scm-uni, scm-int (1)).
Table 4.16 presents the data used for our conformance queries. The expected result of all those queries is
true.

Description Update

Class Union and Intersection

INSERT DATA {
things:sport-scm-uni-1#id

rdf:type ldbc:Sport ;
rdfs:comment "Testing owl:unionOf (scm-uni)" .

}

INSERT DATA {
things:news-person-scm-int-1#id

rdf:type news:Person ;
rdf:type news:Organisation;
rdfs:comment "Testing owl:intersectionOf (scm-int)" .

}

Table 4.16: Test Data for Union and Intersection of Classes

Rule Description Constructs Query

scm-uni (1) Check whether an instance of
ldbc:Sport is also an instance of
class news:Theme

owl:unionOf

ASK {
?t a news:Theme .
FILTER(?t=things:sport-scm-uni-1#id>)

}

scm-uni (2) Check whether ldbc:Sport is a
subclass of news:Theme

owl:unionOf
ASK {
ldbc:Sport rdfs:subClassOf news:Theme

}

scm-int (1) Check whether an instance
of classes news:Person and
news:Organization is an
instance of news:Event

owl:intersectionOf

ASK {
?t a news:Event .
FILTER (
(?t=things:person-scm-int-1#id) &&
(EXISTS{?t a news:Person}) &&
(EXISTS{?t a news:Organisation}))

}

scm-int (2) Check whether news:Event is a
subclassOf news:Person

owl:intersectionOf
ASK {
news:Event rdfs:subClassOf news:Person

}

Table 4.17: Rules scm-int, scm-uni

Page 37 of (69)

LDBC Deliverable D4.4.1

4.4.4 Conformance Choke Points for Enumeration

Testing the support of owl:oneOf is done by checking whether the implication cls-oo discussed in Sec-
tion 4.3.5 is correctly implemented. The expected result of the query shown in Table 4.18 is true. This query
is formulated on the basis of the extensions to the BBC ontologies discussed in Section 4.2.

Rule Description Constructs Query

cls-oo Test that bbc:HighWeb and
bbc:Mobile are instances of
class bbc:Platform

owl:oneOf

ASK {
bbc:HighWeb a ?plat .
bbc:Mobile a ?plat0 .
FILTER ((?plat = bbc:Platform)

&& (?plat0 = ?plat))
}

Table 4.18: Rule cls-oo

4.4.5 Conformance Choke Points for Equality Tests

Equality tests involve checking the existence of conflicting statements related to the owl:sameAs and owl:dif-
ferentFrom constructs. The conformance queries for owl:sameAs and owl:differentFrom are shown in
Table 4.20. These SPARQL queries are formulated on the basis of rules eq-ref, eq-sym, eq-trans, eq-rep-s,
eq-rep-p, eq-rep-o and eq-diff1 discussed in Section 4.3.6. These queries test whether two resources are
specified as being the same and as being different, at the same time. In such a case, a conflict appears,
according to the OWL Semantics, so a reasoner that implements such semantics should return false. The
data we used for these conformance tests are shown in Table 4.19.

Description Update

Equality Checks

INSERT DATA {
things:cw-eq-ref-1#id bbc:primaryContentOf things:webdoc-eq-ref-1#id ;

rdfs:comment "Testing owl:sameAs (eq-ref)". }

INSERT DATA {
things:cw-eq-sym-1#id bbc:primaryContentOf things:webdoc-eq-sym-1#id ;

owl:sameAs things:cw-eq-sym-2#id ;
rdfs:comment "Testing owl:sameAs (eq-sym)". }

INSERT DATA {
things:cw-eq-trans-1#id

bbc:primaryContentOf things:webdoc-eq-trans-1#id ;
owl:sameAs things:cw-eq-trans-2#id ;
rdfs:comment "Testing owl:sameAs (eq-trans), (eq-rep-o), (eq-rep-p)".

things:cw-eq-trans-2#id
ldbc:referTo things:bbc-product-eq-trans-1#id ;
rdfs:comment "Testing owl:sameAs (eq-trans)" ;
owl:sameAs things:cw-eq-trans-3#id .

things:cw-eq-trans-3#id
rdf:type cwork:CreativeWork ;
rdfs:comment "Testing owl:sameAs (eq-trans), (eq-rep-s)". }

ldbc:refersTo owl:sameAs ldbc:referTo ;
rdfs:comment "Testing owl:sameAs (eq-rep-p)" .

Table 4.19: Test Data for Equality Checks

Page 38 of (69)

Deliverable D4.4.1 LDBC

Rule Description Constructs Query

eq-ref Test if eq-ref holds for a specific
resource and property

owl:sameAs

ASK {
?s owl:sameAs ?s .
?o owl:sameAs ?o .
?p owl:sameAs ?p .
?s ?p ?o .
FILTER(
(?s=things:cw-eq-ref-1#id) &&
(?p = bbc:primaryContentOf)) .

}

eq-sym Test if owl:sameAs is symmetric owl:sameAs

ASK {
?cWork2 owl:sameAs ?cWork .
FILTER ((?cWork2 = things:cw-eq-sym-2#id) &&

(?cWork = things:cw-eq-sym-1#id))
}

eq-trans Test if owl:sameAs is transitive owl:sameAs

ASK {
things:cw-eq-trans-1#id owl:sameAs ?o .
FILTER(?o = things:cw-eq-trans-3#id)

}

eq-rep-s Test inheritance of properties
along owl:sameAs path (for sub-
jects)

owl:sameAs

ASK {
things:cw-eq-trans-3#id

bbc:primaryContentOf ?o .
FILTER (?o = things:webdoc-eq-trans-1#id)

}

eq-rep-o Test inheritance of properties
along owl:sameAs path (for ob-
jects)

owl:sameAs,
owl:inverseOf

ASK {
things:webdoc-eq-trans-1#id

bbc:primaryContent ?o
FILTER (?o = things:cw-eq-trans-2#id) .
}

eq-rep-p Test inheritance of subjects and
objects along the owl:sameAs
path (for properties)

owl:sameAs

ASK {
things:cw-eq-trans-1#id
ldbc:refersTo ?o .
FILTER (?o = things:bbc-product-eq-trans-1#id)

}

eq-diff1 Test satisfiability for owl:sameAs
and owl:differentFrom

owl:sameAs,
owl:differentFrom

ASK {
things:cw-eq-trans-1#id owl:sameAs

things:cw-eq-trans-4#id ;
owl:differentFrom

things:cw-eq-trans-4#id
}

Table 4.20: Rules eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-o, eq-rep-p, eq-diff1

Page 39 of (69)

LDBC Deliverable D4.4.1

4.4.6 Conformance Choke Points for Inverse of Properties

The construction of inverse properties (using the owl:inverseOf construct) will be based as usual on checking
whether the corresponding implications (prp-inv1, prp-inv2 of Section 4.3.7) are properly supported by
the query engine. The Insert statement in Table 4.21 inserts triples for an inverse property (instance of
owl:inverseOf) and the Ask query checks that the instances reached by the inverse property are the same.

Rule Query

prp-inv1

INSERT DATA {
things:cw-prp-inv1#id a cwork:BlogPost ;

cwork:title "Test for owl:inverseOf (prp-inv1)" ;
bbc:primaryContentOf things:cw-prp-inv1-webdocument-1 .

}

ASK {
?cWork a cwork:BlogPost .
?cWork bbc:primaryContentOf ?pco .
?pcoInv bbc:primaryContent ?cWork .
FILTER(?pco = ?pcoInv) .
FILTER(?cWork = things:cw-prp-inv1#id>) .

}

Table 4.21: Rule prp-inv1

4.4.7 Conformance Choke Points for Constraints on Properties

The various constraints on properties (inverse functional, transitive, asymmetric, irreflexive) using the cor-
responding semantics are presented in Section 4.3.8. If the engine supports checking the constraints on
properties, then the Insert statements are presented in Table 4.23 for prp-asyp and prp-sym should fail. On
the other hand, the Ask queries for prp-ifp and prp-trp should return true.

Rule Query

prp-key

INSERT DATA {
things:cw-prp-key-1-constraint#id

rdf:type cwork:BlogPost ;
core:shortLabel "label1" ;
core:preferredLabel "label2" ;
core:disambiguationHint "label3" ;
core:primaryTopicOf things:cw-prp-key-webdocument-1 .

things:cw-prp-key-2-constraint#id
rdf:type cwork:CreativeWork;
core:shortLabel "label1" ;
core:preferredLabel "label2" ;
core:disambiguationHint "label3" ;
core:primaryTopicOf things:cw-prp-key-webdocument-1 .

}

ASK {
things:cw-prp-key-1-constraint#id

owl:sameAs things:cw-prp-key-2-constraint#id
}

Table 4.22: Rule prp-key

Page 40 of (69)

Deliverable D4.4.1 LDBC

Rule Query

prp-ifp

INSERT DATA {
things:thing-prp-ifp-1#id

core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id";
rdfs:comment "Testing owl:InverseFunctionalProperty" ;

things:thing-prp-ifp-2#id
core:disambiguationHint "hint for things:thing-prp-ifp-1-2#id";
rdfs:comment "Testing owl:InverseFunctionalProperty" . }

ASK { things:thing-prp-ifp-1#id owl:sameAs ?o .
FILTER (?o = things:thing-prp-ifp-2#id) }

prp-asyp

INSERT DATA {
things:cw-prp-asyp-constraint-1#id

cwork:title "Constraint Violation test for owl:AsymmetricProperty" ;
bbc:primaryContentOf things:prp-asyp-webdocument-1#id .

things:cw-prp-asyp-constraint-2#id
bbc:primaryContentOf things:prp-asyp-webdocument-2#id .

things:prp-asyp-webdocument-1#id
ldbc:partOf things:prp-asyp-webdocument-2#id .

things:prp-asyp-webdocument#2
ldbc:partOf things:prp-asyp-webdocument-1#id . }

prp-irp

INSERT DATA {
things:cw-prp-irp-constraint#id

cwork:title "Constraint Violation test for owl:IrreflexiveProperty" ;
bbc:primaryContentOf things:cw-prp-irp-webdocument-1 .

things:cw-prp-irp-webdocument-1
ldbc:partOf things:cw-prp-irp-webdocument-1 . }

prp-trp

INSERT DATA {
sports:sportsdiscipline-prp-trp-1#id

rdfs:comment "Testing owl:TransitiveProperty (prp-trp)" ;
sport:subDiscipline sports:sportsdiscipline-eq-trans-2#id .

sports:sportsdiscipline-prp-trp-2#id
sport:subDiscipline sports:sportsdiscipline-prp-trp-3#id .

sports:sportsdiscipline-prp-trp-3#id
sport:subDiscipline sports:sportsdiscipline-prp-trp-4#id .

sports:sportsdiscipline-prp-trp-4#id
rdf:type sport:SportsDiscipline . }

ASK { ?s sport:subDiscipline ?o .
FILTER ((?s = sports:sportsdiscipline-prp-trp-1#id) &&

(?o = sports:sportsdiscipline-prp-trp-4#id)) }

Table 4.23: Rules prp-ifp, prp-asyp, prp-irp, prp-trp

4.4.8 Conformance Choke Points for Class Keys

Support for the owl:hasKey construct (as defined by prp-key in Section 4.3.9) is checked using the query
shown in Table 4.22. According to the key constraints that we have defined in the ontology, the Insert
statements should fail to execute. Otherwise, the engine should deduce that the two inserted instances are

Page 41 of (69)

LDBC Deliverable D4.4.1

connected using a owl:sameAs link.

4.4.9 Conformance Choke Points for Property Chains

The conformance queries related to the proper support of property chains (which allow the composition
of properties) discussed in Section 4.3.10 is implemented using query shown in Table 4.24. The Insert
statement inserts triples for properties that are part of the property chain as defined in the extensions for
the BBC ontologies. The Ask query requests that the same resource is reached either by an explicit join
before the respective triples, or by the property chain. The first Ask query checks whether prp-spo2 holds
for owl:DatatypeProperty properties and the second for owl:ObjectProperty.

Rule Query

prp-spo2

INSERT DATA {
things:cw-prp-spo2#id

rdf:type cwork:CreativeWork ;
cwork:title "Test for owl:propertyChainAxiom - owl:DataTypeProperty" ;
cwork:thumbnail thumbnail:cw-prp-spo2-thumbnail .

thumbnail:cw-prp-spo2-thumbnail
cwork:altText "AltText for CW : things:cw-prp-spo2#id" .

}

ASK {
?cWork a cwork:CreativeWork .
?cWork cwork:thumbnail ?thumbnail1 .
?thumbnail1 cwork:altText ?thumbnailAltText1 .
?cWork ldbc:cworkThumbnailAltText ?thumbnailAltText2 .
FILTER (?thumbnailAltText1 = ?thumbnailAltText2) .
FILTER (?cWork = things:cw-prp-spo2#id) .

}

prp-spo2

INSERT DATA {
things:cw-prp-spo2-2#id

rdf:type cwork:NewsItem ;
cwork:title "Test for owl:propertyChainAxiom - owl:ObjectProperty" ;
cwork:thumbnail thumbnail:cw-prp-spo2-2-thumbnail . }

ASK {
?cWork a cwork:NewsItem .
?cWork cwork:thumbnail ?thumbnail1 .
?thumbnail1 cwork:thumbnailType ?thumbnailType1 .
?cWork ldbc:thumbnailType ?thumbnailType2 .
FILTER (?thumbnailType1 = ?thumbnailType2) .
FILTER (?cWork = things:cw-prp-spo2-2#id> .

}

Table 4.24: Rule prp-spo2

4.4.10 Conformance Choke Points for Disjoint Classes and Properties

Queries in Table 4.25 implement the semantics of cax-dw, cax-adc, prp-adp and prp-pdw are presented in
Section 4.3.11. These Insert queries add triples that violate the disjointness of classes and properties, and
the engine should fail to perform the updates.

Page 42 of (69)

Deliverable D4.4.1 LDBC

Rule Query

prp-pdw

INSERT DATA {
things:cw-prp-pdw-constraint#id

cwork:title "Constraint Violation test for owl:propertyDisjointWith" ;
rdf:type cwork:CreativeWork ;
core:facebook things:cw-prp-pdw-webdocument-1 ;
core:twitter things:cw-prp-pdw-webdocument-1 .}

prp-adp

INSERT DATA {
things:cw-prp-adp-constraint#id a cwork:NewsItem ;

cwork:title "Constraint Violation test for owl:AllDisjointProperties" ;
cwork:about things:value-1#id;
cwork:primaryFormat things:value-1#id;
cwork:audience things:value-1#id;
cwork:thumbnail things:value-1#id . }

cax-dw

INSERT DATA {
things:cw-cax-dw-constraint#id a cwork:Audience ;

cwork:title "Constraint Violation test for owl:disjointWith" .

things:cw-cax-dw-constraint#id a cwork:CreativeWork ; }

cax-adc

INSERT DATA {
things:cw-cax-adc-constraint#id a cwork:NewsItem ;

cwork:title "Constraint Violation test for owl:AllDisjointClasses" .
things:cw-cax-adc-constraint#id a cwork:BlogPost .
things:cw-cax-adc-constraint#id a cwork:Programme . }

Table 4.25: Rules prp-pdw, prp-adp, cax-dw, cax-adc

4.4.11 Conformance Choke Points for Cardinalities

The queries shown in Table 4.26 implement rule cls-maxc1 and cls-maxc2 discussed in Section 4.3.12.
Note that to test the latter, we insert two cwork:thumbnail triples for the same instance. An engine that
performs consistency checking would either reject this update operation, or infer that the object values for
these triples are the same (i.e., checks the existence of a owl:sameAs triple). This is the role of the Ask
query showin in Table 4.26.

Rule Query

cls-maxc1

INSERT DATA {
things:cw-cls-maxc1-constraint#id

rdf:type cwork:NewsItem ;
ldbc:dateDestroyed "1.1.1990" .

}

cls-maxc2

INSERT DATA {
things:cw-cls-maxc2-constraint#cwork-id1

rdf:type cwork:BlogPost ;
cwork:thumbnail things:cw-cls-maxc2-constraint#thumbnail-id1 .
cwork:thumbnail things:cw-cls-maxc2-constraint#thumbnail-id2 . }

ASK {
things:cw-cls-maxc2-constraint#thumbnail-id1

owl:sameAs things:cw-cls-maxc2-constraint#thumbnail-id2 . }

Table 4.26: Rules cls-maxc1, cls-maxc2

Page 43 of (69)

LDBC Deliverable D4.4.1

4.5 Conformance Choke Points Results

In this section we discuss the results for the conformance queries discussed in Section 4.4. For our experiments
we used the OWLIM and Virtuoso engines. The OWLIM repository we used to run our performance
tests was configured with (i) inconsistency checks set to true, and (ii) the OWL-2RL optimized rule set. Recall
that OWLIM uses forward reasoning to compute the closure of the dataset; the queries (reasoning or not) are
then evaluated on the pre-computed set of triples. On the other hand, Virtuoso uses backward reasoning: the
inferred triples are computed at query time when reasoning is involved. Towards this purpose, Virtuoso uses
special purpose rule-sets and options. To answer queries involving subsumption, preamble define:input
inference ’graph_name’ should be incorporated in the query. Option define input:same-as ’yes’
is used to handle queries that involve owl:sameAs links and option option (transitive, t_in(?x),
t_out(?syn), t_distinct, t_min(0)) to trigger transitivity. Without the incorporation of the above
options, Virtuoso is unable to handle any form of reasoning. In addition, Virtuoso does not perform
consistency checks (e.g., cardinality constraints, property constraints etc.) and hence updates that result in
an inconsistent state of the database are successful. On the other hand, OWLIM succeeds in most of
the conformance tests. In the following we will present the results for every class of choke points that we
discussed in Section 4.4.
4.5.1 Class and Property Subsumption

Table 4.27 shows the results for Virtuoso and OWLIM and for the class and property subsumption
(rdfs:subClassOf, rdfs:subPropertyOf) conformance queries presented in Section 4.4.1. We have to
note here that Virtuoso was successful in running the tests when option transitive was added in the
query.

Rule OWLIM Virtuoso

cax-sco success success

prp-spo1 success fail

scm-sco success success

scm-spo success success

Table 4.27: Class and Property Subsumption Results

4.5.2 Property Domain and Range

Rule OWLIM Virtuoso

scm-rng1 success fail

scm-rng2 success fail

scm-dom1 success fail

scm-dom2 success fail

scm-dom success fail

scm-rng success fail

Table 4.28: Property Domain and Range Results

The results for the property domain and range (rdfs:domain, rdfs:range) conformance tests for both
RDF engines discussed in Section 4.4.2 are given in Table 4.28.

Page 44 of (69)

Deliverable D4.4.1 LDBC

4.5.3 Union and Intersection of Classes

Rule OWLIM Virtuoso

scm-uni (1) success fail

scm-uni (2) success fail

scm-int (1) success fail

scm-int (2) success fail

Table 4.29: Union and Intersection of Classes

The results for the union and intersection of classes (owl:unionOf and owl:intersectionOf resp.)
conformance tests for both RDF engines discussed in Section 4.4.3 are given in Table 4.29.

4.5.4 Enumeration

Rule OWLIM Virtuoso

cls-oo success success

Table 4.30: Enumeration Results

Table 4.30 presents the results for the conformance query considering owl:oneOf construct that was
presented in Section 4.4.4.

4.5.5 Equality

Rule OWLIM Virtuoso

eq-ref fail fail

eq-sym success success

eq-trans success success

eq-rep-s success success

eq-rep-o success success

eq-rep-p success success

eq-diff1 fail fail

Table 4.31: Equality

The results for equality tests regarding owl:sameAs links discussed in Section 4.4.5 are shown in Ta-
ble 4.31. Note here that both OWLIM and Virtuoso are successful in all tests except eq-ref and eq-diff1.

4.5.6 Class Keys, Property Chains, Inverse Properties

Table 4.32 presents the results for conformance queries regarding key constraints, property chains, inverse
properties discussed in Sections 4.4.8, 4.4.9 and 4.4.6 respectively. As expected OWLIM succeeded in all
tests, whereas Virtuoso only for the owl:inverseOf property test.

Page 45 of (69)

LDBC Deliverable D4.4.1

Rule OWLIM Virtuoso

prp-key success fail

prp-spo2 (1) success fail

prp-spo2 (2) success fail

prp-inv1 success success

Table 4.32: Class Keys, Property Chains, Inverse Properties Results

4.5.7 Constraints on Properties

Rule OWLIM Virtuoso

prp-ifp success fail

prp-asyp success fail

prp-irp success fail

prp-trp success success

Table 4.33: Property Constraints Results

The results for the conformance tests on property constraints (Section 4.4.7) are presented in Table 4.33.
Virtuoso fails in all texts except for owl:TransitiveProperty construct; the query in this case run with
option transitive.

4.5.8 Disjoint Classes and Properties

Rule OWLIM Virtuoso

prp-pdw success fail

prp-adp success fail

cax-dw success fail

cax-adc success fail

Table 4.34: Disjointness Results

The results for constraints regarding disjointness of classes and properties (see Section 4.4.10) are shown
in Table 4.34.

Page 46 of (69)

Deliverable D4.4.1 LDBC

4.5.9 Cardinalities

Rule OWLIM Virtuoso

cls-maxc1 fail fail

cls-maxc2 success fail

Table 4.35: Cardinalities Results

Table 4.35 presents the results for the tests concerning cardinality constraints discussed in Section 4.4.11.
Virtuoso fails for both tests, and OWLIM succeeds only for cls-maxc2.

Page 47 of (69)

LDBC Deliverable D4.4.1

5 Instance Matching Choke Point Analysis

In order to identify choke points for the instance matching task we conducted a set of experiments using i)
the Open PHACTS dataset presented in Section 2.2 and ii) the state of the art instance matching systems
Limes [21] and Silk [44] presented in Sections 3.2.1 and 3.2.2 and respectively.

5.1 Evaluation Criteria and Choke Points Identification

Our analysis of the instance matching choke points is targeted on identifying cases where the tested systems
perform poorly in the matching task (with respect to the golden standards) regarding a set of evaluation
criteria:

Precision/ Recall / F-measure These metrics are used to determine the effectiveness of the instance
matching systems. In information retrieval, precision is the fraction of the intersection of the relevant
and retrieved instances over the retrieved instances, whereas recall is the fraction of the intersection
of relevant and retrieved instances over the relevant instances.
In the case of instance matching, retrieved instances are the instances matched by the used systems, and
the relevant instances are the matched instances that are also reported in the golden standard provided
by the test case. Precision can be seen as a measure of exactness or quality, whereas recall is a measure
of completeness. F-measure is a metric that combines precision and recall. It is calculated as their
harmonic mean.
When comparing the results of the instance matching process with the golden standard, one can
calculate the true positive (tp) (correct), the false positive (fp) (unexpected) and the false negative
(fn) (missing) results. Precision, recall and f-measure can then be computed as follows:

precision =
tp

tp + fp

recall =
tp

tp + fn

fmeasure = 2× precision× recall

precision + recall

Run Times We record the times that the systems needed to compute the matching instances for the datasets.
This is a standard metric for measuring the performance of the tested systems. The time that it takes
for an instance matching system to compute the matching instances is an important criteria, but not
as important as precision, recall and F-measure since such systems are judged primarily on the basis
on their results: systems with higher quality results are more preferrable than ones with lower quality,
even if the latter compute matches faster.

Scalability In the context of Linked Data, it is essential that RDF instance matching systems can deal
with billions of triples. For instance, according to the latest diagram of the Linked Open Data cloud,
there are over 31 billion triples published online that originate from different sources. In this context,
scalability is one of the most important characteristics of an instance matching system.

Distance Measures Distance Measures include string matching algorithms and transformation methods.
String matching algorithms are distinguished into character-based, token-based and special-purpose
ones.
Character-based distance measures compare strings on a character basis, whereas token-based ones
compare strings on a token basis, a token being a string of two or more characters that is significant as

Page 48 of (69)

Deliverable D4.4.1 LDBC

a group. These measures work well for typographical mistakes. There exist a number of tasks where
token-based distance measures are better suited (e.g., strings where substrings are reordered e.g. “John
Doe” and “Doe, John”) than character-based ones. Special purpose distance measures are developed
for matching specific types of strings such as dates. Silk has a large variety of matching metrics
for different use cases if compared to Limes that has a slightly smaller variety. The character-based
measures are shown in Table 5.1, the token-based ones in Table 5.2 and finally the special-purpose
ones in Table 5.3. Some of the transformation methods that Silk offers are shown in Table 5.4.

Silk
Metric Description

levenshteinDistance The minimum number of edits needed to transform one string into the other, using
the allowed operations (insertion, deletion and substitution of a single character).

levenshtein The levensthein distance normalized to the interval [0, 1].
jaro Jaro is a simple distance metric originally developed to compare person names.

jaroWinkler The JaroWinkler distance metric is designed and best suited for short strings (e.g.,
person names).

equality This metric returns 0 if strings are equal, 1 otherwise.
inequality Complementary of equality metric.

Limes
levenshtein The levensthein distance normalized to the interval [0, 1].
exactMatch This metric returns 0 if strings are equal, 1 otherwise.

Table 5.1: Character-based Distance Metrics

Silk
Metric Description
jaccard Jaccard distance coefficient.
dice Dice distance coefficient.

softjaccard This metric is the same as Jaccard distance but values within an levenhstein distance
of maxDistance are considered equivalent.

Limes
jaccard Jaccard distance coefficient.
overlap Overlap distance coefficient.
trigrams N-grams distance coefficient.
cosine Cosine distance coefficient.

Table 5.2: Token-based Distance Metrics

Vocabularies/Thesauri Instance matching systems can use these information resources for discovering
matches between the different datasets. Wordnet [41] is such an example that encodes the synonyms
and antonyms of terms. Such information can be used for finding or even rejecting potential matches.

Schema Information In the context of Linked Data, datasets in different domains are accompanied by
ontologies: Uniprot [39], PubMed1 and GO [32] in the biomedical domain, MusicBrainz 2 in the
entertainment domain. Schema information can be used to guide and optimize the matching pro-
cess: instances of equivalent classes (owl:equivalentClass) can be considered as possible matches,
whereas those of disjoint classes (owl:disjointWith) as improbable matches.

1PubMed:http://www.ncbi.nlm.nih.gov/pubmed
2MusicBrainz:http://musicbrainz.org/

Page 49 of (69)

LDBC Deliverable D4.4.1

Silk
Metric Description

num(float minValue, float maxValue) Computes the numeric difference between two numbers: minValue,
maxValue are the minimum and maximum values that occur in the
dataset.

date Computes the distance between two dates (“YYYY-MM-DD” format).
Returns their difference in days.

dateTime Computes the distance between two date time values (xsd:dateTime
format). Returns the difference in seconds.

wgs84(string unit, string curveStyle) Computes the geographical distance between two points. unit is the
unit in which the distance is measured (e.g., "meter", "kilometer")

Limes
Metric Description

wgs84(string unit, string curveStyle) Computes the geographical distance between two points. unit is the
unit in which the distance is measured (e.g., "meter", "kilometer")

Table 5.3: Special-Purpose Distance Metrics

Functions and parameters Description
removeBlanks Remove whitespace from a string

removeSpecialChars Remove special characters (including punctuation) from a string
lowerCase Convert to lower case
upperCase Convert to upper case

capitalize(allWords) Capitalizes the string i.e. converts the first character to upper case
stem Apply word stemming to the string

Table 5.4: List of a subset of the transformation processes for Silk

5.2 Test Cases

For the instance matching choke points analysis, we used the Open PHACTS datasets provided by the
Open PHACTS [35] FP7 European Project and discussed in Section 2.2. Open PHACTS provided a
set of golden standards or linksets presented in Section 2.2, used to evaluate the quality of the matching
process performed by instance matching systems. These golden standards were created by domain experts
(curators) in the pharmacology and chemistry domains. The results of the instance matching process were
compared against the golden standards to compute the precision/recall and f-measure values as discussed
previously. For our experiments, we focused on the following two Open PHACTS test cases:

TC1 : instances of the ConceptWiki [30] dataset were matched with instances from the DrugBank−
Targets dataset.

TC2 : ConceptWiki [30] instances were matched with instances from the ChemSpider [29] dataset.

We focused on the ConceptWiki dataset since it is the central dataset of the Open PHACTS project
that is linked to all the others datasets as shown in Figure 5.1. The DrugBank−Targets dataset was used
in our experiments because it is a dataset that is widely known and well established. More importantly, the
dataset was already used for the Silk and Limes systems that we employed in our experiments. Last but not
least, the ChemSpider dataset was used to test the scalability aspect of the systems since it is the dataset
with the highest number of reported matchings.

The ConceptWiki dataset is an RDF dataset that is comprised of 2.65 million triples that all use
property skos:prefLabel3 where skos is the namespace for the SKOS vocabulary [19] .

The Drugbank dataset, contained information about targets and drugs (in total 522000 triples); we
removed information about drugs, hence creating the DrugBank−Targets dataset. These triples were

3http://www.w3.org/2004/02/skos/core\#prefLabel

Page 50 of (69)

Deliverable D4.4.1 LDBC

Figure 5.1: Instance Matching Test Cases

removed because they caused some matches with ConceptWiki instances, which although reasonable
and most propably correct in most cases they were not recorded in the provided golden standard; thus the
extra triples were introducing noise in our measurements (especially in the case of precision) affecting the
performance of the systems.

The DrugBank−Targets dataset contained 6 classes and 117 properties. The classes, properties and
their instances are shown in Table 5.5. In total the DrugBank−Targets dataset contains 273259 triples.
ChemSpider contains chemical compounds, but also chemical structures (SMILES4, InCHI5). The dataset
contains 1,14 million different compounds that are distinguished by their unique title, i.e., RDF property
chemspider:title where chemspider is the namespace for http://rdf.chemspider.com. In total it
contains 9, 35 million triples with 6 concept properties that are shown with the number of their instances in
Table 5.6.

4SMILES: http://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
5InCHI: http://www.iupac.org/home/publications/e-resources/inchi.html

Page 51 of (69)

LDBC Deliverable D4.4.1

Classes Instances
drugbank:drug_interactions 10096

drugbank:drugs 0
drugbank:enzymes 53

drugbank:references 96
drugbank:targets 4553

vocab:Offer 0

Table 5.5: DrugBank−Targets Dataset Classes and their instances

Properties Instances
chemspider:smiles 1148672
chemspider:csid 1148672
chemspider:inchi 1148672

chemspider:inchikey 1148672
chemspider:title 1148672

chemspider:non− validated− synonym 3614705

Table 5.6: ChemSpider Properties

The golden standards for the ConceptWiki/DrugBank−Targets datasets and ConceptWiki/ChemSpider
datasets contain 3634 and 1089403 RDF triples of the form (x, skos:exactMatch, y) respectively, where
each triple represents a match for the specific test case.

5.3 Experimental Set Up

For our tests we used two open source, publicly available instance matching systems, namely Limes [21] and
Silk Single Machine [14, 15, 44].

Both Limes and Silk obtain their data from RDF repositories using SPARQL endpoints. In our exper-
iments we stored the RDF datasets in OpenLink Virtuoso Universal Server Version 7. Java memory was
configured to 8GB.

An important task for our experiments was to find the information on the basis of which the datasets
could be matched. After the analysis of the golden standards, we indicated this information:

• Tc1: instances from the ConceptWiki and DrugBank−Targets datasets were matched using:

1. the ConceptWiki skos:prefLabel property, instances of which were obtained by executing
the SPARQL query

select distinct ?prefLabel
from <http://conceptwiki.data>
where {?cw skos:prefLabel ?prefLabel}

2. the DrugBank−Targets drugbank:name property, instances of which are obtained with the
following SPARQL query where drugbank is the namespace for http://drugbank-targets.
data.

select distinct ?name
from <http://drugbank-targets.data>
where {?db skos:prefLabel ?name }

Page 52 of (69)

Deliverable D4.4.1 LDBC

• Tc2, instances from ConceptWiki and ChemSpider datasets were matched using the

1. the ConceptWiki skos:prefLabel property, instances of which were obtained by executing
the SPARQL query stated previously.

2. the ChemSpider chemspider:title property, instances of which were obtained by executing
the SPARQL query:

select distinct ?title
from <http://chemspider_compounds.data>
where {?db chemspider:title ?title}

The Silk and Limes systems were then configured to match instances (i.e., triple subjects) by comparing
their:

• ?prefLabel with ?name values for Tc1

• ?prefLabel with ?title values for Tc2.

We conducted experiments with the above test cases using the different string matching algorithms that
are offered by the tested systems: exactMatch (for Limes), equality (for Silk), trigrams [4], cosine [26],
jaccard [42] and levenshtein [11] algorithms (discussed in Tables 5.1 and 5.2). We run each of the above
algorithms using different values for the threshold that determines whether two instances are considered as a
true match. Specifically we experimented with the Limes system using the following algorithms exactMatch,
cosine, trigrams and jaccard. We tested Silk with the equality, jaccard and levenshtein algorithms. We
failed to conduct experiments with Limes using the levenshtein algorithm, although it is mentioned in the
available matching algorithms. For our experiments we used a threshold between values 0 and 1.

A threshold is perceived in two ways:

• to represent the similarity between two inputs. Values above a certain threshold imply a higher similarity
between the instances. Exact matches are generated for similarities greater than a certain threshold.
This threshold perception is used in Limes. In our experiments we are interested in higher similarities,
so we used two threshold values t = 0.9 and t = 0.8.

• to represent the distance between two inputs. Exact matches are generated for distances that they
are below a given threshold (intuitively, the smaller the distance, the better the match): a distance
t = 0 indicates that an exact match is found, whereas distance t = 1 indicates that there is no
match. Consequently values below a low threshold indicate a higher similarity between instances. This
threshold perception is used in Silk. As we are interested in higher similarities we experiment with
threshold t = 0.1 and t = 0.2.

5.4 Experimental Results

5.4.1 Precision, Recall and F-measure

The results for Limes, for thresholds 0.9, 0.8 and for test case Tc1 are shown in Tables 5.7 and 5.8 respectively.
The results for test case Tc2 and for thresholds 0.9, 0.8 are given in Tables 5.9 and 5.10 respectively.

From the results one can see that Limes did not perform very well for Tc1. A possible reason is that the
queries we used to match the instances were not sufficient for the kind of data in hand, and hence a more
detailed analysis is needed, probably with the help of the authors of the golden standards.

Another interesting point is that i) for the string matching algorithms exactMatch, cosine and trigrams
and ii) for both test cases, Limes returned the same results for a given threshold. Without having access to
the source code, we are unable to provide here any explanation. jaccard performed worse than the other

Page 53 of (69)

LDBC Deliverable D4.4.1

Limes
Algorithm Precision Recall F-measure
exactMatch 0.098 0.0047 0.009

cosine 0.098 0.0047 0.009
trigrams 0.098 0.0047 0.009
jaccard 0 0 0

Table 5.7: ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.9)

Limes
Algorithm Precision Recall F-measure
exactMatch 0.04 0.17 0.065

cosine 0.04 0.17 0.065
trigrams 0.04 0.17 0.065
jaccard 0 0 0

Table 5.8: ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.8)

Limes
Algorithm Precision Recall F-measure
exactMatch 1 0.15 0.26

cosine 1 0.15 0.26
trigrams 1 0.15 0.26
jaccard 1 0.04 0.08

Table 5.9: ConceptWiki/ChemSpider - Tc2 (threshold t = 0.9)

Limes
Algorithm Precision Recall F-measure
exactMatch 1 0.62 0.77

cosine 1 0.62 0.77
trigrams 1 0.62 0.77
jaccard 1 0.17 0.29

Table 5.10: ConceptWiki/ChemSpider - Tc2 (threshold t = 0.8)

three string matching methods. We assume that this is because the strings are not "normalized" as in other
domains (e.g., person names, addresses etc.). Furthermore, Limes for both test cases returns better results
with 0.8 threshold. This shows that the compared instances had some but not important differences.

Silk
Algorithm Precision Recall F-measure
equality 0.0 0.0 0.0

levenshtein 0.0 0.0 0.0
jaccard 0.0 0.0 0.0

Table 5.11: ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.1)

Page 54 of (69)

Deliverable D4.4.1 LDBC

Silk
Algorithm Precision Recall F-measure
equality 0.0 0.0 0.0

levenshtein 0.0 0.0 0.0
jaccard 0.0 0.0 0.0

Table 5.12: ConceptWiki/DrugBank−Targets - Tc1 (threshold t = 0.2)

The results for Silk, for thresholds 0.1, 0.2 and for test case Tc1 are shown in Tables 5.11 and 5.12
respectively. The results for test case Tc2 and for thresholds 0.1, 0.2 are given in Tables 5.13 and 5.14
respectively. From the results one can observe that Silk did not perform well for precision and recall
returning zero true positive results. On the other hand, Limes returned a non empty set of true positive
results, showing that Limes outperformed Silk for this experiment. One can also see that Silk performed
better than Limes for the test case tc2 and for threshold 0.1 (corresponding to a threshold of 0.9 for Limes).
Specifically it returned high scores for precision and recall. An interesting observation one can make is that
equality and jaccard distance metrics give the same results in Silk system. This was also observed in Limes
for the testcases by using the metrics exactMatch and cosine.

Silk
Algorithm Precision Recall F-measure
equality 1 0.51 0.68

levenshtein − − −
jaccard 1 0.51 0.68

Table 5.13: ConceptWiki/ChemSpider - Tc2 (threshold t = 0.1)

Silk
Algorithm Precision Recall F-measure
equality 1 0.51 0.68

levenshtein 1 0.037 0.071
jaccard 1 0.51 0.68

Table 5.14: ConceptWiki/ChemSpider - Tc2 (threshold t = 0.2)

As far as threshold 0.2 is concerned (corresponding threshold to 0.8 for Limes), Silk performs slightly
better than Limes for all the distance metrics, apart from jaccard. Again, here Silk gives the same results
for both equality and jaccard, and the results are the same as for threshold 0.1.

Table 5.15 below a synopsis of the performance of Silk and Limes in terms of f-measure and for the
algorithms that are implemented in both systems.

Test Case Distance Method Limes Silk
0.9 0.8 0.1 0.2

Tc1 jaccard 0.0 0.0 0.0 0.0
exactMatch/equality 0.009 0.065 0.0 0.0

Tc2 jaccard 0.08 0.29 0.68 0.68
exactMatch/equality 0.26 0.77 0.68 0.68

Table 5.15: A summary of the comparison for Silk and Limes

Page 55 of (69)

LDBC Deliverable D4.4.1

Algorithms ConceptWiki/DrugBank−Targets(Tc1) ConceptWiki/ChemSpider(Tc2)
Retrieval Matching Retrieval Matching

exactMatch 983.142 1, 050.841 331.643 437.396
trigrams 981.457 1, 048.487 289.792 384.036
cosine 960.148 1, 027.482 284.683 381.621
jaccard 251.889 318.058 100.420 200.597

Table 5.16: Run times for Limes- Threshold 0.9 (time in seconds)

Algorithms ConceptWiki/DrugBank−Targets ConceptWiki/ChemSpider
Retrieval/Matching Retrieval/Matching

equality 4213 4417
levenshtein 5590 − (t = 0.1) / 9829 (t = 0.2)
jaccard 912 4589

Table 5.17: Run times for Silk - Threshold 0.1 (time in seconds)

5.4.2 Run Times

For this experiment, we measured the time it took the systems to create the matching results for each of the
test cases discussed in Section 5.2.

The run times of Limes for all the different string matching algorithms and the two test cases with
threshold 0.9 are shown in Table 5.16. The runtimes for threshold 0.8 are comparable, so we do not report
them for Limes or Silk. We distinguish between the time to obtain the data (Retrieval) from the SPARQL
endpoints, and the time need to compute the matches (Matching).

Limes needs around 16 minutes to retrieve the data and 17 minutes to compute the matchings for the
exactMatch, cosine and trigrams algorithms and for testcase Tc1. For the same test case it needs less time
to compute the matching with the jaccard distance metric. In fact it takes around 4 minutes to retrieve data
and approximately 5 minutes to compute the matchings.

Regarding test case Tc2, Limes needs about 5 minutes to retrieve the data and about 6 minutes to compute
the matchings except for jaccard for which it needs one and a half minute to retrieve data and 3 minutes to
compute the matches. This difference in the data retrieval time can be explained by the use of “exemplars”;
recall that Limes works with exemplars to reduce the size of the input data for the matching process.

The run times of Silk for all the different algorithms and test cases with threshold 0.1 (corresponds to
threshold 0.9 for Limes) are shown in Table 5.17. The runtimes for threshold 0.2 are pretty much the same,
so we do not report them. Note that for levenshtein and for threshold 0.1, Silk failed to produce any results
(the used threshold is very low indicating high similarity) With the high number of exact matches (up to
millions for this test case), it seems that Silk fails to scale for large datasets and linksets.

Silk needs around 70 minutes to retrieve data and compute the matchings for the equality algorithm,
around 90 minutes for the levenshtein and around 15 minutes for jaccard and for test case Tc1. As one
can notice Limes is notably faster than Silk in this testset. Regarding test case Tc2, Silk needs around 73
minutes to retrieve data and compute the matchings for the equality, around 165 minutes for the levenshtein
and around 76 minutes for jaccard. Again in this test case Limes calculates faster the mappings.

5.4.3 Scalability

Scalability is a major issue for instance matching systems in the era of Linked Open Data. In our case, the
biggest test case of Open PHACTS is Tc2. The matching process compares 1,65 million skos:prefLabel
triples from ConceptWiki with 1,14 millions chempider:title triples from ChemSpider. In total it
conducts more than 3 trillion matches. Both systems, Limes and Silk, did cope well with this exigent
matching process. The only problem was that in one case the matching process did not end. Specifically

Page 56 of (69)

Deliverable D4.4.1 LDBC

when running levenshtein distance in Silk with threshold=0.1 and test case ConceptWiki/ChemSpider,
it ran many hours and at the end we always got the message "Connection abort" without any other information
or error.

5.4.4 Support Matching with Thesaurus

Both Limes and Silk instance matching systems are domain independent systems, which means they conduct
the matchings without any knowledge of the data, depending only on the string matching methods mentioned
above. Other instance matching systems have been reported, like the OTO matching system [5] that makes use
of general purpose thesaurus, e.g. Wordnet [41] to enhance the matching process. This way the matching
outputs do not only depend on the string matching algorithms used, but also on the semantic process of
comparing synonyms and antonyms that exist in the thesaurus. Limes and Silk do not take into account
such information in order to enhance the matching process and to ameliorate the quality of the results.

5.4.5 Reasoning functionalities

Limes and Silk systems do not use any kind of semantic information expressed in a schema or ontology.
In this way the matching process is not “optimized” since it might consider instances that belong to disjoint
classes, that should never be considered as possible matches. For example, in one of our test cases we want to
match data from ConceptWiki and DrugBank−Targets. As mentioned in Section 2.2 ConceptWiki
includes concepts from Literature, Proteins and Chemicals and others and DrugBank−Targets includes
drug targets. When using Limes and Silk to match the instances of these datasets, concepts from Literature
will be considered as possible matches with concepts from drugs, which is semantically incorrect since these
classes are disjoint.

5.4.6 Concluding Remarks

Criteria Systems
Limes Silk

Performance
√ √

Scalability
√ √

Schema − −
Thesauri − −

Distance Measures
√ √

Transformations −
√

Table 5.18: Overall comparison for Limes and Silk

To sum up, we conducted instance matching experiments on systems Limes and Silk, by using two differ-
ent test cases, namely ConceptWiki with DrugBank−Targets and ConceptWiki with ChemSpider.
The experiments showed that Limes performed better in the former case by giving better results in terms of
precision,recall and F-measure, and worse for the second test case for the same criteria. Furthermore, Limes
conducted the matching task much faster than Silk in both testsets.

Limes does not support any transformation processes unlike Silk that supports a larger set as discussed in
Table 5.4. Neither of the systems uses any kind of semantic information expressed in a schema (e.g., ontology),
or a domain specific or general thesaurus to enhance the matching process with semantic information. Table
5.18 shows the overall evaluation results of the systems.

Page 57 of (69)

LDBC Deliverable D4.4.1

6 ETL Choke Point Analysis

The datasets that we are dealing with in ETL Choke Point Analysis, are ChEMBL [28] and ChEBI [6].
ChEMBL, whose description can be found in Section 2.2 and not repeated here, consists of 6.2 GB of data,
stored in 28 relational tables. ChEBI consists of 1.5 GB of data, stored in 12 relational tables. ChEBI
is a dictionary of molecular entities which are defined as natural or synthetic products which are used to
intervene in the processes of living organisms. ChEBI also includes an ontological classification, which
is used to specify the relationships between molecular entities or classes of entities and their parents and/or
children [6].

6.1 D2R

6.1.1 Extract

As described in Section 3.3.2, D2R is a tool that provides a mechanism through which relational data are
mapped to RDF. To achieve this, D2R provides a declarative mapping language upon which the translations
are based. The main components of this mapping language are the class maps (d2rq:ClassMap) and the
property bridges (d2rq:PropertyBridge). A class map represents a class of an ontology whereas the
property bridges represent a set of properties of a certain class. For instance, assuming the relational table
of ChEBI database, AUTOGEN_STRUCTURES(id, structure_id) its appropriate mappings are shown in
Table 6.1.

1 map:autogen_structures a d2rq:ClassMap;
2 d2rq:dataStorage map:database;
3 d2rq:uriPattern "autogen_structures/@@autogen_structures.id@@";
4 d2rq:class vocab:autogen_structures;
5 d2rq:classDefinitionLabel "autogen_structures" .
6

7 map:autogen_structures_id a d2rq:PropertyBridge;
8 d2rq:belongsToClassMap map:autogen_structures;
9 d2rq:property vocab:autogen_structures_id;
10 d2rq:propertyDefinitionLabel "autogen_structures id";
11 d2rq:column "autogen_structures.id";
12 d2rq:datatype xsd:integer .
13

14 map:autogen_structures_structure_id__ref a d2rq:PropertyBridge;
15 d2rq:belongsToClassMap map:autogen_structures;
16 d2rq:property vocab:autogen_structures_structure_id;
17 d2rq:refersToClassMap map:structures;
18 d2rq:join "autogen_structures.structure_id => structures.id" .
19

Table 6.1: D2R Mappings for the relational table CHEBI.AUTOGEN_STRUCTURES

In more details, for the relational table AUTOGEN_STRUCTURES we create the class map map:autogen_structures
(line 1 of Table 6.1) which represents an RDFS schema class that correspond to this table. This class
map defines that its instances are identified by the column autogen_structures.id of the relational ta-
ble (line 3). In addition, it is connected to a d2rq:Database, namely map:database (line 2) and has
a set of d2rq:PropertyBridges (lines 7-18) which attach properties to instances. The first of these at-
tached properties is the map:autogen_structures_id (line 7), whose RDF datatype is integer (line 12),
and corresponds to the relational column autogen_structures.id (line 11). The second one is the
map:autogen_structures_structure_id__ref (line 14), which corresponds to a foreign key in the re-

Page 58 of (69)

Deliverable D4.4.1 LDBC

lational schema (structures.id), so it has to reference another class map map:structures (line 17) that
creates the instances which are used as the values of this bridge.

Table 6.3 shows the result of applying the mappings shown in Table 6.1 on the relational data of Table 6.2.
As we can see in Table 6.3 the mapping creates 6 triples. In the same manner all mappings for both ChEBI
and ChEMBL datasets are produced. By evaluating these mappings on the entire datasets, the extract
process translates the relational representation into 281.348.982 triples.

AUTOGEN_STRUCTURES
id structure_id
2680136 2707183

Table 6.2: A sample row for the relational table CHEBI.AUTOGEN_STRUCTURES

1 chebi_baseuri:autogen_structures a rdfs:Class .
2 chebi_baseuri:autogen_structures_id a rdf:Property .
3 chebi_baseuri:autogen_structures_structure_id a rdf:Property .
4 chebi_baseuri:autogen_structures/2680136 a chebi_baseuri:autogen_structures;
5 vocab:autogen_structures_id "2680136"^^xsd:integer;
6 vocab:autogen_structures_structure_id chebi_baseuri:structures/2707183 .

Table 6.3: Resulting triples after the application of the mappings shown in Table 6.1 on the sample row of
Table 6.5 for D2R

6.1.2 Transform

To aggregate information of the same nature found in the datasets, we can apply a set of transformations
in the original data; these transformations must be applied during the extraction stage. To achieve this in
D2R, we use the d2rq:sqlExpression property of d2rq:PropertyBridge. So, for properties with literal
values (in which such transformations make sense), these values are generated by evaluating a specific SQL
expression.

For instance, considering the relational table DOCS of the ChEMBL dataset, the mappings along with
the chosen transformations shown in Table 6.4 could be applied. In particular, the transformations shown
in Table 6.4 aggregate all the important information (journal, year etc.) of a document in relational table
CHEMBL.DOCS in a concatenated string. For example, for row of CHEMBL.DOCS shown in Table 6.5, the
transformation of Table 6.4 would produce the triple shown in Table 6.6.

1 map:docs_important_info a d2rq:PropertyBridge;
2 d2rq:belongsToClassMap map:docs;
3 d2rq:property vocab:docs_important_info;
4 d2rq:sqlExpression "CONCAT(docs.journal, ’, ’,
5 docs.year, ’, ’,
6 docs.volume, ’(’,
7 docs.issue, ’) ’,
8 docs.first_page, ’-’,
9 docs.last_page)" .

Table 6.4: D2R A part of mappings for relational table CHEMBL.DOCS

Page 59 of (69)

LDBC Deliverable D4.4.1

DOCS
doc_id journal year volume issue first_page last_page . . .

1 J. Med. Chem. 2004 47 1 1 9 . . .

Table 6.5: A sample row for CHEMBL.DOCS relational table

chebi_baseuri:docs/1 vocab:docs_important_info "J. Med. Chem. 2004, 47(1) 1-9" .

Table 6.6: Resulting triple after the application of the mappings shown in Table 6.4 on the sample row of
Table 6.5 for D2R

Despite the fact that D2R provides the option to use SQL expressions to manipulate literal values, its
mapping language is not rich enough to evaluate more complex queries. For example, we can easily aggregate
information in the level of the row (e.g. CONCAT aggregate function), as described above, but not in the
column one (e.g. GROUP BY aggregate functions).

Another type of transformation that can be applied is related to the inter-linkage between the two datasets
ChEMBL and ChEBI. As the linkage information is stored in a table of the ChEMBL dataset itself,
as shown in Table 6.7 it was trivial to produce the appropriate triples by querying this relational table.
So, assuming the row of the relational table MOLECULE_DICTIONARY of the ChEMBL dataset shown in
Table 6.7, the produced link should be the one shown in Table 6.8.

MOLECULE_DICTIONARY
molregno . . . chebi_par_id
97 . . . 8364

Table 6.7: A sample row for CHEMBL.MOLECULE_DICTIONARY relation table

chembl_baseuri:compounds/97 skos:exactMatch chebi_baseuri:compounds/8364 .

Table 6.8: Resulting triple after the application of the inter-linkage transformation in the sample row of
Table 6.7

6.1.3 Load

After the process of Export and Transform, all relational data, transformed or not, are stored in the disk in
separate RDF files. These files are then loaded to Virtuoso Server.

6.2 Triplify

6.2.1 Extract

Triplify (described in Section 3.3.1) is another tool for publishing RDF data from relational databases that
can be used as an ETL tool. To achieve this data publication, relational database queries have to be defined,
which can be thought of as database views. These queries are expressed in SQL with some additions (SQL
aliases) in order to retrieve valuable information and to convert the results into RDF triples. For example,
assuming that we want to publish data from the relational table AUTOGEN_STRUCTURES(id, structure_id)
of the ChEBI database, the query that has to be evaluated is shown in Table 6.9.

As shown from this query, in order for Triplify to be able to convert its results into RDF, the query is
required to have a certain structure. More specifically, the first column (id) must be used in order to generate

Page 60 of (69)

Deliverable D4.4.1 LDBC

instance URIs, while the other ones could be used to represent properties. Some of the property columns,
such as autogen_structures.structure_id, may contain references to other objects rather than literal
values. So, a configuration array that specifies which columns are references to objects of which type has to
be defined, as shown in Table 6.10.

For example, if we apply the query of Table 6.9 on the relational row shown in Table 6.2, we would get
the RDF triples shown in Table 6.11. In the same manner are produced all SQL queries for both ChEBI and
ChEMBL datasets. By evaluating these queries the extract process translates the relational representation
of these datasets into 267.960.975 triples.

1 triplify[‘queries’]=array(
2 ‘autogen_structures’=>"
3 SELECT autogen_structures.id AS id,
4 autogen_structures.id
5 AS ‘vocab:autogen_structures_id^^xsd:integer’,
6 autogen_structures.structure_id
7 AS ‘vocab:autogen_structures_structure_id’
8 FROM autogen_structures"
9);

Table 6.9: Triplify Mapping query for the relational table CHEBI.AUTOGEN_STRUCTURES

1 triplify[‘objectProperties’]=array(
2 ‘vocab:autogen_structures_structure_id’=>‘structures’
3);

Table 6.10: Triplify Object Properties array for the relational table CHEBI.AUTOGEN_STRUCTURES

1 chebi_baseuri:autogen_structures a rdf:Class .
2 chebi_baseuri:autogen_structures_id a rdf:Property .
3 chebi_baseuri:autogen_structures_structure_id a rdf:Property .
4 chebi_baseuri:autogen_structures/2680136 a chebi_baseuri:autogen_structures;
5 vocab:autogen_structures_id "2680136"^^xsd:integer;
6 vocab:autogen_structures_structure_id chebi_baseuri:structures/2707183 .

Table 6.11: Resulting triples after evaluating the SQL query shown in Table 6.9 upon the sample row of
Table 6.2

6.2.2 Transform

As in D2R, a set of transformations on the relational data must be applied during the extraction stage. The
first transformation that we applied was the same as in the case of D2R in which we aggregated values of
the same nature. For this type of transformation and the relational table DOCS of the ChEMBL dataset, the
appropriate SQL query is the one shown in Table 6.12.

Contrary to D2R, we can take advantage of the fact that pure SQL is used in order to translate relational
data to their appropriate RDF triples, in order to create more expressive transformations, for example in the
column level by using GROUP BY aggregate functions.

Page 61 of (69)

LDBC Deliverable D4.4.1

1 ‘docs’=>"
2 SELECT docs.doc_id as id,
3 docs.doc_id AS ‘vocab:docs_doc_id^^xsd:integer’,
4 CONCAT(docs.journal, ‘, ’,
5 docs.year, ‘, ’,
6 docs.volume, ‘(’,
7 docs.issue, ‘) ’,
8 docs.first_page, ‘-’,
9 docs.last_page) AS ‘vocab:docs_important_info’,

10 docs.pubmed_id AS ‘vocab:docs_pubmed_id^^xsd:integer’,
11 docs.doi AS ‘vocab:docs_doi’,
12 docs.title AS ‘vocab:docs_title’,
13 docs.doc_type AS ‘vocab:docs_doc_type’,
14 docs.chembl_id AS ‘vocab:docs_chembl_id’
15 FROM docs"

Table 6.12: Triplify Mapping query for relational table CHEBI.DOCS

Such a transformation has been applied in the relational table MOLECULE_SYNONYMS of the ChEMBL
database and the corresponding SQL query is shown in Table 6.13. This query aggregates all synonyms
grouped by their molregno identifier. For example, taking into consideration the SQL query shown in
Table 6.13 and the relational rows shown in Table 6.14 the produced RDF triples are the ones shown in
Table 6.15.

1 ‘molecule_synonyms’=>"
2 SELECT molecule_synonyms.molregno as id,
3 GROUP_CONCAT(molecule_synonyms.synonyms, ‘ (’,
4 molecule_synonyms.syn_type, ‘)’)
5 AS ‘vocab:molecule_synonyms_synonyms_and_type’,
6 molecule_synonyms.research_stem
7 AS ‘vocab:molecule_synonyms_research_stem’,
8 molecule_synonyms.molregno
9 AS ‘vocab:molecule_synonyms_molregno’^^xsd:integer

10 FROM molecule_synonyms
11 GROUP BY molregno"

Table 6.13: Triplify Mapping query for the relational table MOLECULE_SYNONYMS

MOLECULE_SYNONYMS
molregno synonyms syn_type research_stem
1620 Brumetadina TRADE_NAME NULL
1620 Cimetidine BAN NULL
1620 Cimetidine FDA_ALTERNATIVE_NAME NULL

Table 6.14: Sample rows for CHEMBL.MOLECULE_SYNONYMS relation table

The final transformation that is applied is the inter-linkage of ChEBI and ChEMBL, which is similar
to D2R.

Page 62 of (69)

Deliverable D4.4.1 LDBC

1 chembl_baseuri:molecule_synonyms a rdf:Class .
2 chembl_baseuri:molecule_synonyms_synonyms_and_type a rdf:Property .
3 chembl_baseuri:molecule_synonyms_research_stem a rdf:Property .
4 chembl_baseuri:molecule_synonyms_molregno a rdf:Property .
5 chembl_baseuri:molecule_synonyms_synonyms_and_type/1620
6 vocab:molecule_synonyms_molregno "1620"^^xsd:integer;
7 vocab:molecule_synonyms_synonyms_and_type
8 "Brumetadina (TRADE_NAME), Cimetidine (BAN), Cimetidine (FDA_ALTERNATIVE_NAME)" .

Table 6.15: Resulting triples after evaluating the SQL query shown in Table 6.13 in the sample rows of
Table 6.14

6.2.3 Load

As in the case of D2R, all the data, after Export and Transform has finished, are stored in the disk and then
loaded to Virtuoso Server.

6.3 Virtuoso Linked Data Views

In the case of Virtuoso Views, the process of ETL can be omitted because the extract and transform processes
are performed within the Virtuoso database engine using a SPARQL-based Meta Schema Language to provide
RDBMS-to-RDF mapping functionality (called Linked Data Views). Through this language we can map
relational database schema components, such as tables, views, columns, rows or foreign keys, to Classes,
Attributes, Relationships, and Instances defined by RDF Schemas or OWL Ontologies.

Therefore, all that needs to be done in order to define the transformations described in previous sections
is to define appropriate SQL queries that generate materialized SQL views. On top of these SQL views and
the existing SQL tables of both the ChEMBL and ChEBI databases, the Linked Data Views of Virtuoso
are built. The SQL Views that we defined for this purpose are shown in Table 6.16.

6.4 Experiments for ETL process

For both D2R and Triplify we measured the time it took ETL process to finish. Also we got some statistics
about CPU and I/O utilization of the process.

6.4.1 D2R

In D2R, the entire process of Extract, Transform and Load took about one hour as shown in Figure 6.1.
Regarding the stages of Extract and Transform, D2R has the benefit that all the mapping components of
its mapping language are discrete defined in the level of class maps and property bridges as described
in Section 6.1.1. So, the mappings can be divided in separate files in order to parallelize this process. By
following this approach, we divided the mappings of ChEBI and ChEMBL datasets in 16 files, and we run
in parallel 16 processes, one for each file. By doing this, the extraction along with the transformation process
took about 14 minutes in which 281.348.982 triples were produced. In addition, as shown in Figure 6.1 the
parallelization of the process led to almost full CPU and I/O usage. Loading the above triples in Virtuoso
took 41 minutes.

6.4.2 Triplify

In Triplify, the entire process of Extract, Transform and Load took about one and a half hour as shown in
Figure 6.2. Contrary to D2R where mappings are fine grained (i.e, can be specified per table and column),

Page 63 of (69)

LDBC Deliverable D4.4.1

1 -- docs table transformed
2 CREATE VIEW DB.DBA.CHEMBL_docs_transformed AS
3 SELECT doc_id,
4 CONCAT(journal, ‘, ’,
5 year, ‘, ’,
6 volume, ‘(’,
7 issue, ‘) ’,
8 first_page, ‘-’,
9 last_page) AS docs_important_info,

10 pubmed_id,
11 doi,
12 title,
13 doc_type,
14 chembl_id
15 FROM DB.DBA.CHEMBL_docs;
16

17 -- molecule_synonyms table transformed
18 CREATE VIEW DB.DBA.CHEMBL_molecule_synonyms_transformed AS
19 SELECT molregno,
20 GROUP_CONCAT(CONCAT(synonyms,‘ (’,syn_type, ‘)’),‘,’)
21 AS molecule_synonyms_synonyms_and_type,
22 research_stem
23 FROM DB.DBA.CHEMBL_molecule_synonyms
24 GROUP BY molregno;

Table 6.16: SQL views for Virtuoso

0

20

40

60

80

100

0 10 20 30 40 50 60

P
e

rc
e

n
ta

ge

Time (min)

D2R - ETL Process

% I/O utilization % CPU utilization

Extract &
Transform Loading to Virtuoso

Figure 6.1: ETL process for D2R

Triplify enforces restrictions on the SQL query structure. Hence, the mapping queries cannot be specified in
different files in order to parallelize the extraction process. This can only be done at table level (i.e., specify
one mapping query per table). So, we divided the mapping SQL queries in 8 files, taking into consideration
the size of each table. By doing this, the extraction of RDF triples, along with the transformation process,
took about 50 minutes in which 267.960.975 triples triples were produced.

One can observe that the time Triplify needed to perform the extract-transform sequence is larger than

Page 64 of (69)

Deliverable D4.4.1 LDBC

the respective time for D2R (13 min.). Note that we were able to parallelize this task for D2R in 16
different jobs, whereas this was not the case for Triplify (8 different jobs running in parallel - one job per
set of tables). In addition, in our datasets we have two large tables that produced 65% of the resulting triples;
to extract those triples we were able to run 2 jobs in parallel (one for each such table). Note also that there is
a difference in the resulting triples for the two systems. The reason is that Triplify does not produce triples
for properties with zero values for the attributes (not the case for D2R). For instance, assuming the sample
row of relational table ASSAY2TARGET of ChEMBL dataset shown in Table 6.17, the triples for columns
ASSAY2TARGET.complex and ASSAY2TARGET.multi will not be generated.

Loading the generated triples in Virtuoso took 33 minutes (expected since the size of the resulting
triples is smaller).

ASSAY2TARGET
assay_id tid relationship_type complex multi confidence_score curated_by
1 12052 H 0 0 8 Autocuration

Table 6.17: Sample rows for CHEMBL.ASSAY2TARGET relation table

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

P
e

rc
e

n
ta

ge

Time (min)

Triplify - ETL Process

% I/O utilization % CPU utilization

Extract & Transform Loading to Virtuoso

Figure 6.2: ETL process for Triplify

Page 65 of (69)

LDBC Deliverable D4.4.1

7 Conclusion

This deliverable focused on identifying the main challenges (choke points) related to three semantical tasks,
namely reasoning, instance matching and ETL processing. To identify these choke points, we tested existing
state-of-the-art systems in their respective tasks, using datasets from the Semantic Publishing Domain (as
provided by the respective Task Force) and the Life Sciences domain, appropriately modified in order to
enhance the challenges associated with each respective task.

The identification of a choke point involves understanding the most important challenges that current
systems face in their respective tasks, in order to be included as (hidden) challenges in the benchmarks that
we will design; the ultimate goal is to encourage systems to address these challenges, thus stimulating and
encouraging technological progress.

As far as reasoning is concerned, we focused on conformance choke points to test whether the RDF
engines were able to implement the semantics of owl 2 rl fragment of the Ontology Web Language (OWL).
As expected, our experiments show that OWLIM supports more reasoning constructs than Virtuoso.
Some preliminary performance results (not reported in this deliverable) showed that OWLIM outperforms
Virtuoso for reasoning intensive queries. Recall that OWLIM implements forward reasoning, that is it
materializes the closure of the dataset; reasoning intensive queries are then evaluated against this dataset. On
the other hand, Virtuoso computes at query time the inferred triples needed by a reasoning intensive query,
hence adding an overhead during query processing.

Our analysis of the instance matching choke points targeted on identifying cases where the tested systems
perform poorly in the matching task (with respect to the golden standards) under a set of well defined
evaluation criteria (performance, precision, recall, F-measure etc.), for different parameterizations of the
tested systems. Our experiments show that existing systems do not handle well very large datasets, and do
not take into account any schema or vocabulary information during the matching process.

The ETL choke point analysis identified transformations that stressed the tested systems. We measured
the performance of the various tools, as well as the richness of possible transformations that can be defined
in each tool. The main conclusions from our work on ETL choke points were that some transformations are
not supported by all systems, and that the additional extraction and loading overhead imposed by the ETL
process for D2R and Triplify is large, causing a disadvantage compared to Virtuoso Views that avoids
it.

This deliverable is intended as a prelude to the upcoming full benchmark specifications for the above tasks
(reasoning, instance matching, ETL processing) which are planned to be reported in M24 of this project, as
part of Deliverables D4.4.2, D4.4.3 and D4.4.4 respectively; the choke points identified here will be used as
the building blocks of said benchmarks.

Page 66 of (69)

Deliverable D4.4.1 LDBC

References

[1] I. Bhattacharya and L. Getoor. Entity resolution in graphs. Mining Graph Data. Wiley and Sons, 2006.

[2] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. www.w3.org/
TR/2004/REC-rdf-schema-20040210, 2004.

[3] D2R Server: Accessing databases with SPARQL and as Linked Data. http://d2rq.org/d2r-server.

[4] Frederick J. Damerau. Markov Models and Linguistic Theory: : An Experimental Study of a Model for
English (Janua Linguarum Series Minor No 95). Mouton, 1971.

[5] E. Daskalaki and D. Plexousakis. OtO Matching System: A Multi-strategy Approach to Instance
Matching. AISE, 2012.

[6] P. De Matos, R. Alcántara, A. Dekker, M Ennis, J. Hastings, K. Haug, I. Spiteri, S. Turner, and
C. Steinbeck. Chemical entities of biological interest: an update. Nucleic acids research, 38(suppl 1),
2010.

[7] A. K. Elmagarmid, P. G. Ipeirotis, and V.S. Verykios. Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge and Data Engineering, 19(1), 2007.

[8] I. Fundulaki. D1.1.1: Overview and Analysis of Existing Benchmark Frameworks. LDBC Deliverable
D1.1.1, 2013.

[9] I. Fundulaki. D2.2.2: Data Generator. LDBC Deliverable D2.2.2, 2013.

[10] A. Gubichev and T. Neumann. D2.2.1: Analysis and Classification of Choke Points. LDBC Deliverable
D2.2.1, 2013.

[11] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational biology.
Cambridge University Press, 1997.

[12] L. Harland. Open PHACTS: A Semantic Knowledge Infrastructure for Public and Commercial Drug
Discovery Research. Knowledge Engineering and Knowledge Management Lecture Notes in Computer
Science, 7603, 2012.

[13] P. Hayes. RDF semantics. http://www.w3.org/TR/rdf-mt/, 2004. W3C Recommendation, 10
February 2004.

[14] R. Isele, A. Jentzsch, and C. Bizer. Silk Server - Adding missing Links while consuming Linked Data.
In COLD, 2010.

[15] A. Jentzsch, R. Isele, and C. Bizer. Silk: Generating RDF Links while publishing or consuming Linked
Data. In ISWC, 2010. Poster.

[16] C. Li, L. Jin, and S. Mehrotra. Supporting efficient record linkage for large data sets using mapping
techniques. In WWW, 2006.

[17] F. Manola, E. Miller, and B. McBride. RDF Primer. www.w3.org/TR/rdf-primer, February 2004.

[18] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language. http://www.w3.org/TR/
owl-features/, 2004.

[19] A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System Reference. http://www.
w3.org/TR/skos-reference/. W3C Recommendation.

Page 67 of (69)

LDBC Deliverable D4.4.1

[20] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology
Language Profiles (Second Edition). http://www.w3.org/TR/owl2-profiles/. W3C Recommendation 11
December 2012.

[21] A.-C. Ngonga Ngomo and Soren Auer. LIMES - A Time-Efficient Approach for Large-Scale Link
Discovery on the Web of Data. IJCAI, 2011.

[22] J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging Terminological Structure for
Object Reconciliation. In ESWC, 2010.

[23] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.w3.org/TR/
rdf-sparql-query, January 2008.

[24] Y. Raimond, T. Scott, S. Oliver, P. Sinclair, and M. Smethurst. Use of Semantic Web technologies on
the BBC Web Sites. http://3roundstones.com/led_book/led-raimond-et-al.html.

[25] N. Redaschi and UniProt Consortium. UniProt in RDF: Tackling Data Integration and Distributed
Annotation with the Semantic Web. In Biocuration Conference, 2009.

[26] A. Singhal. Modern Information Retrieval: A Brief Overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 2001.

[27] BBC Ontologies. http://www.bbc.co.uk/ontologies/.

[28] CheMBL DB. https://www.ebi.ac.uk/chembldb/.

[29] ChemSpider. http://www.chemspider.com/.

[30] ConceptWiki. http://ops.conceptwiki.org/.

[31] DrugBank. http://www.drugbank.ca.

[32] Gene ontology (GO). http://www.geneontology.org/.

[33] MeSH. http://www.nlm.nih.gov/mesh/.

[34] OpenLink. http://www.openlinksw.com/.

[35] Open Pharmacological Space (Open PHACTS). http://www.openphacts.org.

[36] OWLIM. http://www.ontotext.com/owlim.

[37] Protein Data Bank - PDB. http://www.rcsb.org/pdb/home/home.do.

[38] Triplify. http://triplify.org/Overview.

[39] UniProt. http://www.uniprot.org/.

[40] Virtuoso. http://virtuoso.openlinksw.com/.

[41] Wordnet. http://wordnet.princeton.edu/.

[42] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. ISBN 0-321-32136-7, 2005.

[43] Mapping Relational Data to RDF with Virtuoso’s RDF Views.
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html.

[44] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and Maintaining Links on the Web of
Data. In ISWC, 2009.

Page 68 of (69)

Deliverable D4.4.1 LDBC

[45] W3C OWL Working Group. OWL 2 Web Ontology Language. http://www.w3.org/TR/
owl2-overview/, 2012.

[46] Antony J. Williams and et al. Open PHACTS: semantic interoperability for drug discovery. Drug
Discovery Today, 17, 2012.

Page 69 of (69)

