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Abstract

This document describes the design principles of the LDBC SNB Business Intelligence Workload. We base
the query workload definition on a set of technical challenges (choke points) that the workload addresses. The
second part of the document presents the technique to select parameters for benchmark queries that guarantees
a stable and understandable runtime behavior of complex queries.
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EXECUTIVE SUMMARY

The deliverable describes the Business Intelligence Workload of the LDBC Social Network Benchmark. The
queries in the workload were designed with the following choke points (technical challenges) in mind:

• aggregation choke points

• cardinality estimation choke points

• subquery unnesting choke points

• navigational choke points

• query processing choke points

The document details specific technical difficulties within every group, and presents a set of 21 queries that
cover the difficulties. It is expected that the query engine that solves all the presented challenges will excel at
performing a wide spectrum of analytical queries (including the LDBC BI workload)

The second part of the deliverable solves a general problem of selecting parameters for benchmark queries
such that the resulting runtime (and therefore the benchmark score) would be stable and predictable across
different benchmark runs. The state-of-the-art benchmarks do not encounter this problem in its general form,
since they are using synthetic data with very simple distributions (uniform or step-wise) and feature very little
correlations between data attributes. In this situation it is enough to pick value bindings for parameters uni-
formly at random from the value domain. We show that for the realistically looking datasets this strategy does
not work. We present our Parameter Curation solution, and demonstrate its efficiency and effectiveness on the
highly correlated LDBC Social Network Benchmark (SNB) dataset.
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1 INTRODUCTION

This deliverable addresses two questions. First, it presents a design rationale for the LDBC Social Network
Business Intelligence benchmark. Namely, we describe the technical challenges (coined choke points) that a
mature DBMS needs to solve in order to efficiently execute a workload of complex queries. These technical
challenges overlap with the choke points of the classical TPC-H benchmark, but also contain a number of
graph-specific difficulties, such as cardinality estimation in traversals and pattern matching queries.

The second issue that the deliverable aims to solve is selection of parameters for benchmark queries. Our
scope here is broader than just Business Intelligence queries of LDBC SNB. In fact, this task occurs in vari-
ous workloads, and it becomes non-trivial for real-world data or realistically looking synthetic datasets when
the queries go beyond simple lookups (i.e., when there is more than one operator in the query plan). We
demonstrate that parameter values picked uniformly at random from the parameter domain does not yield a
stable, repeatable and easy-to-interpret runtime behavior of queries, and thus it is not a satisfactory strategy
for parameter selection. We then formulate the problem of Parameter Curation as following: find the set of
parameter bindings that minimize the variance of the amount of intermediate results produced during a query
plan execution. Our solution to this problem is presented for several important classes of query parameters, e.g.
single parameter in a query, multiple correlated discrete parameters, a discrete and a continuous parameter etc.
The deliverable contains a description of experiments with curated parameters for LDBC SNB Workload that
demonstrate advantages of Parameter Curation over uniform parameter selection.

Outline. The deliverable is structured as follows. In Chapter 2 we describe the design of Business Intelli-
gence query workload; Section 2.2 gives a detailed discussion of related choke points, and Section 2.3 contains
query descriptions with choke points coverage. In Chapter 3 we formulate and solve the Parameter Curation
problem. Sections 3.1 and 3.2 motivate the need for a special parameter selection procedure with examples
from LDBC SNB Interactive workload. In Section 3.4 we give a formal definition of a problem, and then de-
scribe algorithms to solve it in Section 3.4. Section 3.5 contains the description of experiments performed on
the LDBC Interactive workload with curated parameters.
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2 DESIGN OF THE BUSINESS INTELLIGENCE BENCHMARK

This chapter describes a principle design of the BI workload for the LDBC Social Network Benchmark. We will
follow an approach based on the choke points (specific technical challenges). Namely, we will first outline the
set of choke points that a mature DBMS needs to address in order to efficiently run a graph analytical workload.
Then, we describe a set of queries that cover these choke points. Some of our choke points are common with
the ones described for the TPC-H benchmark (see [2]), while others are very graph-specific. We will formulate
the queries for the generated data of the Social Network Benchmark, and use its properties (correlations, data
skew); the data schema and properties are described in detail in the SNB Task Force Report1

2.1 Background

Business Intelligence (analytical) queries on social networks are common among users of graph/RDF technolo-
gies. As part of the Technical User Community meetings LDBC has hosted talks from a number of companies
and universities that cover multiple aspects of social media analytics. Among others, the following use cases
and talks influenced our BI queries design:

• Mediapro: Graph-based User Modelling through Social Streams 2

• Dshini: Neo4J in Dshini 2

• East China Normal University: Elastic and realistic social media generation3

• Shapespace Use Case 3

BI queries has of course been the traditional subject of benchmarking efforts. The list of most prominent
analytical benchmarks include

• TPC-H: a classical and influential analytical benchmark. Some of our choke points were directly taken
from the TPC-H analysis, see [2]

• TPC-DS: an analytical relational benchmark that is meant to replace TPC-H. Currently because of its
size (99 queries) there are no officially scored implementations.

• BSBM-BI, the analytical RDF benchmark which is still rather limited in scope: although it addresses
basic SPARQL 1.1 features in its queries (aggregation and subqueries), it is still primitive in comparison
with TPC-H and DS

2.2 Choke Points of Complex Query Processing

The technical difficulties that arise in complex query processing can be divided in three groups:

• choke points that test the algebraic power of the optimizer, i.e. the ability to consider the entire (or suf-
ficiently large) search space of various algebraically equivalent reformulations of the query and pick the
cheapest one. Examples of such choke points include subquery unnesting and non-inner join reordering.

• triggered by the problem of cardinality estimation. Cardinality of intermediate results influences various
choices of the optimizer, most notably join order selection and physical operator selection (index vs
hash). Presence of data skew and correlations in the LDBC SNB dataset makes this fundamental problem
extremely challenging.

1see http://www.ldbc.eu:8090/download/attachments/4325436/LDBC_SNB_Report_Nov2013.pdf
2http://ldbc.eu:8090/display/TUC/Second+TUC+meeting%2C+April+2013
3http://ldbc.eu:8090/display/TUC/Third+TUC+Meeting%2C+November+2013
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• choke points that address the evaluation power of the query processing system, such as arithmetical
computations, evaluation of conditional expressions. These choke points will force the DBMS (especially
the main-memory systems) to consider vectorization or query compilation in order to reduce overhead of
expression interpretation.

In the rest of the section we describe concrete choke points. Some of them are identical to the ones of TPC-
H workload; this is very natural, since we are designing an analytical workload. Other choke points, however,
are unique to graph workloads, they appear in Subsections 2.2.3 and 2.2.5.

2.2.1 Choke Points on Grouping

Grouping and aggregation operations are ubiquitous in analytical workloads. This group of choke points
stresses the ability of optimizer to speed up evaluation of group-by’s in commonly occurring situations such as
dependencies in the grouping keys or small domain size of the keys. Choke points of this group belong to the
first two classes of choke points in our classification (algebraic power and cardinality estimation).

CP-1.1: Dependencies in Group-By Keys Systems usually use hash-tables to store group-by keys. Multiple
grouping keys therefore result in a significant CPU and memory overhead (multiple comparisons and storing
large amounts of attributes). Frequently, however, there are (functional) dependencies among keys (such as
when grouping on person_id, person_name and person_email, where the latter two attributes functionally de-
pend on the first – primary key – attribute). In such cases, it is enough to group on the primary key only.
The optimizer should be able to detect such situations based on a declared schema (relational systems, prop-
erty graph databases) or detected foreign keys (using, for example, the characteristic sets approach in RDF
systems).

CP-1.2: Ordered Aggregation When all the equal group-by keys appear consecutively in the input tuple
stream consumed by the aggregation operator, the system should employ ordered aggregation instead of hash-
based one. This happens in several situations, such as when keys come from clustered indexes or from underly-
ing order-preserving joins. An example in LDBC SNB dataset would be a query grouping by post_id and liker:
once the aggregation operator has seen the post with a certain ID, it will never encounter it again.

CP-1.3: Group-By key domain size: small vs large If the grouping key domain is small (such as gender or
first name), a specialized version of the grouping operator should be applied: it can use an array rather than a
hash table, to keep the aggregate function values. Extremely large domain size (together with large input) may
lead to spilling aggregation. Detection of both cases naturally requires accurate cardinality estimation.

2.2.2 Subquery Choke Points

Efficiently handling subqueries implies the ability to rewrite the query in an equivalent way (most frequently,
by unnesting the subquery). This group of choke points emphasizes algebraic power of the optimizer.

CP-2.1: Subquery Rewriting Flattening the subqueries (i.e., rewriting them using an equi-, outer-, or anti-
join) is the key skill of a query optimizer for executing complex queries efficiently [6]. There is usually a
variety of ways of subquery decorrelation. In order to choose between different options, the optimizer needs to
correctly estimate the amount of intermediate results, which is a challenge in itself for SNB dataset that features
multiple correlations and data skew.

CP-2.2: Joining Derived Tables with aggregates . This is an important case of a more general Reusing
Computation which will be described later (see CP-6.1). When two derived tables contain aggregate on the
same attribute, and there is a join in the outer query between derived tables, the hash tables constructed for
aggregation should be reused for hash join execution. Another option is to push the join between two derived
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tables below the second group-by, although it is not always beneficial; detecting which situation applies is part
of the challenge.

CP-2.3: Moving Predicates Between Subqueries This choke point occurs when the subquery computes an
aggregate (average number of friends of users in China) which is used in a selection in outer query. In such
situations some additional constraints from the outer query can be transferred to subquery (if the outer query, for
example, restricts the age group of users). Identical choke point appears in multiple TPC-H queries (TPCH2,
TPCH17, TPCH20).

2.2.3 Cardinality Estimation Choke Points

Cardinality estimation of intermediate query results is a fundamental problem of query optimization. Despite
years of academical and industrial attention, cardinality estimation in real-world datasets (i.e., datasets that have
non-uniform data distribution and correlations) is an extremely tough problem (and overall, an open research
question).

CP-3.1: Choosing Between Index and Hash Index vs Hash is a fundamental choice between physical join
operator implementations that the optimizer needs to make based on cardinality estimates: if the left input of
the join produces a very few tuples and there is an index on the right side, then the join can be efficiently
performed by looking up values from the left into the index on the right. Otherwise, the hash join is probably
the most efficient implementation.

CP-3.1a: Estimations in Trees This choke point applies in (sub)queries that contain hierarchy traversals,
e.g. find all posts and reply trees that are tagged with "Franz Kafka". Correct cardinality estimates are later
used by the optimizer to re-order traversal with other parts of the query. Additionally, estimates influence the
physical operator selection, such as: (i) from which side of the traversal should one start expansion? (ii) if a
hash join used to split the traversal evaluation, which end serves as a build side? Moreover, recognizing that a
traversal is performed on a tree structure (and not on a general graph) is itself a challenging problem.

CP-3.1b: Estimations in Graphs A generalization of the previous choke point. Requires (approximate)
counting of paths (and more complex structures) with restrictions on edges and nodes in a graph, which is a
very challenging problem in a general-shape graphs. In addition, the graph itself can be implicit (e.g., people
that frequently talk to each other).

CP-3.1c: Estimations in Full Text Search Cardinality estimation for full text search is only feasible when
there is a specialized index for text search. Again, the estimation influences the physical operator choice.
Consider, for example, (part of) the query: find popular posts that do not contain certain words (bag of words).
Depending on how selective the condition on the text is and how many popular posts are there, the optimizer
has basically two options: (i) lookup the given pattern in the text index, and then continue execution by joining
the results with the popular posts, (ii) find the popular posts and filter out those that do not contain given words,
ignoring the text index.

CP-3.2: Estimations on Foreign Key joins Most of the time joins involving two foreign keys are assumed to
be non-selective and expensive. An important example of the opposite situation is triangle matching in graphs:
matching a triangle pattern of a form A→ B → C → A involves two joins, first one on B and second one on
C, which is a very selective Foreign Key – Foreign Key join. Recognizing this is a very tricky challenge for
the optimizer. After that, specific tricks for sparse joins (Bloom filters) should be applied. Despite the "foreign
key" term, this choke point is not an RDBMS-specific: for graph and RDF systems it boils down to detecting
that the size of an intersection (join) of two neighborhoods A→ B → C and C → A is very small.
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2.2.4 Choke Points of Query Processing

CP-4.1: Arithmetic and Conditional Expressions Choke points that arise during evaluation of various
expressions are described in [2]. In short, interpretation overhead of a tuple-at-a-time evaluation leads system
to adoption of vectorization, Just-in-Time compilation, or GPU- and FPGA-based approaches.

CP-4.2: Full Text Search String manipulations are much more expensive then arithmetic computations. A
frequent corner case of prefix search can be re-written into a less expensive string range comparison. General
full text search is best done with a specialized index.

CP-4.3: Parallel Execution In the era of many-core architectures, the query parallelization is an extremely
important topic, both for query optimization and query execution. Further, some systems may focus on scaling
out; this usually involves partitioning over many nodes in a cluster.

2.2.5 Navigational Choke Points

CP-5.1: Materializing Results During Traversals While computing aggregate scores over a densely con-
nected graph, same edges are visited multiple times. A typical example is a PageRank-style discovery of most
liked (i.e.,most popular) person, where likes from other popular users weigh more. Here, the weighted graph
structure is implicit and a beneficial approach would be to materialize it into a hash table, thus improving access
locality and saving CPU time.

CP-5.2: Trees vs Graphs Telling tree-like structures (or DAGs) from graphs of general shape is important
for the following reasons: (i) cardinality estimations may be more accurate for trees, (ii) this, in turn, helps to
determine the start and end points of traversals, as well as physical operator details (hash vs index, how many
traversal steps to put on build side of the hash table).

CP-5.3: Transitivity on Small Dimensions When the query involves traversing small hierarchies (repre-
sented as dimension tables in the relational domain), the optimal strategy is to put the result of the entire
traversal on a build side of a hash join. For example, when looking for average number of replies of posts
written in Germany, the traversal on geographical hierarchy (written in Germany) yields a (relatively) small
number of locations; all of them should be put into a hash table, and then posts are probed on this hash table.
In addition to detecting a tree-like structure, the optimizer should correctly estimate the size of the tree.

2.2.6 Miscellaneous Choke Points

CP-6.1: Touching Multiple Attributes Following this principle, we will include multiple queries that cover
the same choke points, if they address different attributes of tables

CP-6.2: Non-Inner Join Ordering The join ordering problem is further complicated with operators that are
not freely reorderable, like non-inner joins or joins involving more than two tables. Optimizers that are able
to systematically (and efficiently) explore the entire search space for various types of operators will find the
optimal query plan for complex queries.

CP-6.3: Union of Views Similar to subqueries, views present multiple possibilities for query rewriting.
Given the join between several views (each view may contain unions), the optimizer should choose between
options like join of unions or union of joins.
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CP-6.4: Top-k Pruning Top-k clause usually accompanies the group-by of high cardinality, where the num-
ber of groups is too high to display. If ordering that is used for top-k is on the grouping column, the query
processor should generate exactly k groups, and then use values of the kth group to prune some of the further
computation (i.e., to prune values that certainly will not make it into top-k). Similarly, if there is an ordering by
some other metric (e.g. date), the Top-k can be pushed down to the selection as well.
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2.3 Query Set

In this section we give a set of 21 queries that cover choke points from Section 2.2. For every query we will
list the following description items: (i) a business question that the query solves, (ii) choke point(s) that are
relevant to the query, (iii) input parameters, (iv) a short commentary that outlines how a well-designed optimizer
should compile the query, or what choices an optimizer has while choosing a good execution plan. Full SQL
formulations of all queries are given in Appendix A and on Github (http://github.com/ldbc). Note that the given
query set is preliminary, i.e. some query definitions may be modified later, but the choke points coverage is
meant to stay the same. In particular, the precise definition of every query in English (as opposed to current
definitions in SQL only) is subject of future work. Our goal here is to describe the general choke-based design
of the query workload.

Query 1: top 100 popular topics in each country, age and gender group

Query: across all the posts published in the given period of time, find top 100 most popular tags (i.e. tags with
largest number of posts), grouped by age group, gender and the country of the post creator

Business Question: what are the popular topics depending on demographics (age, gender, country) of authors?
Parameter(s): Start date, duration. Usually user activity increases with time.
Choke Point(s): CP-1.3

Query 2: find new tags that appeared during last month

Query: for a given month, find the tags that were used in posts during that period, and the tags that were used
in the month before the given month. In both cases compute the count of posts that use the tags. Report
the tags that maximize the difference in post counts between the given month and the preceding month.

Business Question: what are the emerging popular topics?
Parameter(s): Time interval (the month in question)
Choke Point(s): CP-2.2
Comments: Popularity of tags is expressed as two derived tables with aggregation, which meant to be indepen-

dently executed and result in two hash tables on the same grouping key. These two tables are then joined,
thus effectively re-using the hash structures from aggregation.

Query 3: find most relevant forums on a given topic in a given country

Query: for a given class of topics (e.g., Musical instruments) and a given country, find the most popular forums
on this topic. The way we identify the topic of the forum is by tags of posts in this forum; the location of
the forum is identified by the location of the forum’s moderator (in SNB, forums are similar to Facebook’s
walls). The result is grouped by forum’s id, title, creation date and moderator, and ordered by the count
of messages with the given topic class.

Business Question: where should the product be advertised?
Parameter(s): Tag Class and Country
Choke Point(s): CP-1.1, CP-4.3
Comments: classical example of the group by attributes with functional dependencies. Additionally, this is a

large cardinality group by with possibilities for parallelization.

Query 4: top posters in 100 top forums in China

Query: Among the participants of the 100 most popular forums (i.e., forums with the largest number of posts)
in a given country, find the top 100 posters (users that created the largest amount of posts in one of these
forums). Order the result by number of created posts per returned user.

Business Question: who are the famous or influential users? (as in: users that post a lot in very popular forums
in a given country)

Parameter(s): Country
Choke Point(s): CP-2.1
Comments: Flattening of subqueries. Additionally, the query stresses the implementation of Top-K.
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Query 5: top posters on a given topic

Query: get top 100 users who post on a given subject (tag). Users are sorted by a score that includes count of
likes and replies to their posts with a given tags, aggregated with different weights. Return users, counts
of the posts, replies and likes and their aggregated score, ordered by the score.

Business Question: who is the expert on a given topic? Authority of the expert here is defined as amount of
likes and replies his posts receive.

Parameter(s): Tag name (topic)
Choke Point(s): CP-2.1, CP-3.1, CP-4.1
Comments: Multiple transformation of correlated subqueries, depending on the selectivity of the tag: by in-

dex (selective tag), by hash (hash table with likes and replies for an unselective tag; we could migrate
conditions on the build side), alternatively group-join.

Query 6: most authoritative user posting on a given topic

Query: Find 100 most authoritative users posting on a given topic. The authority is a number of likes received
to the users’s post on a given topic, such that likes from much liked posters weigh more.

Business Question: who is the expert on a given topic? PageRank-style computation of authority of users
(unlike Query 5)

Parameter(s): Tag name (topic)
Choke Point(s): CP-2.1, CP-3.1, CP-5.1
Comments: A trick here is to avoid computing likes of the same people multiple times. Some materialization

of like count table is required.

Query 7: tags that are most frequently mentioned together with the given tag

Query: Find top 100 tag names that get mentioned in replies to posts with the given tag. Order by decreasing
number of such co-occurences.

Business Question: find top brand competitors: something that gets mentioned together with a tag, but is not
that tag.

Parameter(s): Tag name
Choke Point(s): CP-2.1
Comments: Rewriting EXIST and NOT EXIST subqueries. If the EXIST condition is selective, one can trans-

form it into derived table with distinct, and perform it first in the join order. Same thing can not be done
with NOT EXIST, though.

Query 8: anti-correlation between two tags’ occurrence

Query: Find the forums where that contain posts with either of two given tags t1 and t2. Order the forums by
the difference of count of posts with tags t1 and t2, respectively.

Business Question: where should we advertise the product? Where are competitor brands discussed but not
ours?

Parameter(s): Two tag names; will be picked to be anticorrelated, i.e. there are forums that have posts with
one tag, but not with another

Choke Point(s): CP-2.1, CP-3 (general cardinality estimation)
Comments: Unnesting subqueries in presence of several predicates on tags (which implies the need for accurate

cardinality estimation)
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Query 9: find the most central user for the given tag

Query: find the top 100 users that talk about a given tag, such that their friends also talk about the same tag.
Order users by score, which is in this case the amount of posts by the user and her friends on a given
topic.

Business Question: who is the expert on a given topic? Yet another way to define authority of a user on a given
subject: most of the friends talk about the same tag.

Parameter(s): Tag name (topic)
Choke Point(s): CP-2.1, CP-3.1
Comments: depending on the tag cardinality, the solution should start with either people or tags

Query 10: find people that successfully introduce a new topic

Query: finds users that talk about a new tag, their posts get liked and replied to, and replies do not contain
"garbage" (given as a bag of words). Order the users by the number of times they introduced a new tag.

Business Question: who are the thought leaders?
Parameter(s): Country (origin of the user)
Choke Point(s): CP-3.1c, CP-4.2
Comments: Among other issues, this is a full-text search query.

Query 11: most liked content of the network in the given period

Query: return 100 most recent posts (made after a certain date) that were liked more than a certain number of
times. Group by the post id, creator, date.

Business Question: find the current popular content of the social network
Parameter(s): Time interval
Choke Point(s): CP-1.2
Comments: Group by key is a post id, so it is an ordered aggregation: tuples come in as a stream, and once we

have seen a certain post, we will never see it again.

Query 12: top thread initiators

Query: Return top 100 users that started discussion threads (i.e., posts followed by reply trees). All replies and
posts should be created in a certain time interval.

Business Question: find the thread initiators
Parameter(s): Time interval
Choke Point(s): CP-3.1a, CP-5.2
Comments: Tree traversals and cardinality estimations in trees with conditions on nodes.

Query 13: top 100 people with the number of friends higher than average in China

Query: For a given country, find the users that have more than an average number of friends in that country.
Business Question: find better-than-average-connected users in a given country
Parameter(s): Country
Choke Point(s): CP-2.3
Comments: Correlated subquery with average, similar to TPCH17. We can transfer conditions between outer

query and subquery

Query 14: find people that are connected to each other and talk about one topic

Query: for a given country and topic, find all the people from that country that know each other (transitive
closure of the knows relationship) and talk about this topic

Business Question: find experts in some domain linked via contact chain, all working for Chinese companies
Parameter(s): Country, Topic
Choke Point(s): CP-3.1b
Comments: Transitive query in a general shape graph: both cardinality estimation and execution are hard

problems
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Query 15: triangle counting

Query: for a given country, count all the triangles formed by friendship relationship between users in that
country.

Business Question: count small communities of people in one country
Parameter(s): Country
Choke Point(s): CP-3.2
Comments: End points of edges in the graph are identifiers; for RDF implementation comparing URIs is very

hard, implementation-specific syntax should be allowed. As discussed in section 2.1, the Foreign Key –
Foreign Key join here is actually very selective (see CP-3.2 description)

Query 16: distribution of number of posts

Query: construct the distribution of number of posts created after a given timestamp, i.e. compute how many
people created certain number of posts. Users with 0 posts are also considered (with left outer join)

Parameter(s): Start time
Choke Point(s): CP-6.3
Comments: optimizer should be able to re-write the query with the right outer join (similar to TPCH 13)

Query 17: communication between strangers

Query: Find all the users that were born after a certain date (e.g., teenagers) that are frequently replying to
posts from strangers. These strangers should be members of two forums with specified tags. Order the
results by the amount of replies exchanged.

Business Question: detect unusual communication patterns in the network
Parameter(s): Start time
Choke Point(s): CP-4.1
Comments: evaluation of conditional expression (not exists)

Query 18: frequency of topics

Query: Find the frequency of the topics that are one level below the most general topic (root of the hierarchy)
Business Question: frequency of generic topics across all posts
Parameter(s): –
Choke Point(s): CP-5.2
Comments: query optimizer needs to figure if it is a graph or a tree? (in this case a tree)

Query 19: Zombies: People who are liked by people who produce nothing

Query: "Person who produces nothing"; somebody who has been on-line for more than 1 month, has less than
5 posts. "Zombie score" is calculated as number of likes of the content of the author divided by the likes
which come from people that produce nothing. The query finds all the zombies from a given country
with the score bigger than a threshold.

Business Question: find the "zombies": fake profiles that like each other’s activities.
Parameter(s): Country and time period
Choke Point(s): CP-5.1
Comments: likes have high cardinality. When one looks at posts of the person, the same likers are visited

multiple times. Good opportunity for materialization
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Query 20: correspondence between two countries

Query: We define relationship related as a union of: (i) two users reply to each others posts, (ii) two users
know each other, (iii) two users like each others posts; these three cases have different weights. Given
two countries (e.g., USA and Yemen), return people that are related to each other, ordered by relatedness
weight.

Business Question: "mole hunt"
Parameter(s): Two countries. These will be anti-correlated
Choke Point(s): CP-6.4
Comments: multiple possibilities to re-write the union from the related definition.

Query 21: tag timeline

Query: Return a histogram of post count for posts with a tag belonging to a general tagclass (e.g., Politician).
Group by month, year, continent (the latter can be NULL) of the post.

Parameter(s): Tag name
Choke Point(s): CP-5.3
Comments: Star transformation: the entire transitive dimension (hierarchy of tags) goes onto the build side of

hash.

2.4 Roadmap

The following open issues in workload design will be settled in the future:

• Updates: In case of TPC-H, the updates are just appends to two tables. In TPC-DS the updates are more
involved since the data is delivered in raw format with respect to values, and then first the dimension
tables need to be queried; this is more realistic for a data warehousing workload.

• Power vs Throughput experiments are the two possible options for running the workload. In Power ex-
periments, the queries are issued one after another, and the system has to explore intra-query parallelism.
In Throughput experiments, the system gets many queries in parallel.

• Metrics: Usually, the benchmark score is a function of power and throughput experiments. This function
can take either geometric mean or sum of the times of all queries. First option encourages system’s
architects to improve all queries, while the second one in fact stimulates improvement in the worst (the
longest) query.

In order to issue many different queries (i.e., queries with the same template but different parameter bind-
ings), and have comparable runtime for all these queries, we need to mine many parameter bindings for each
template from the corresponding value domains. The second part of the deliverable describes our work on this
question.
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3 PARAMETER CURATION

3.1 Motivation

A typical benchmark consists of two parts: (i) the dataset, which can be either real-world or synthetic, and
(ii) the workload generator that issues queries against the dataset based on the pre-defined query templates. A
query template is an expression in the query language (e.g., SQL or SPARQL) with substitution parameters
that have to be replaced with real bindings by the workload generator. For example, a template of a query that
asks for all the movie producing companies from the country %Country% that have released more that 20
movies, looks like:

Query 3.1: IMDB Query

SELECT cn.name, COUNT(t.id) cnt
FROM title t, movie_companies mc, company_name cn
WHERE t.id = mc.movie_id AND cn.id = mc.company_id

AND cn.country_code = ’%Country%’ AND t.kind_id = 1
GROUP BY mc.company_id, cn.name
HAVING COUNT(*) > 20
ORDER BY cnt DESC
LIMIT 20

In a query workload, the workload driver would execute this query template in one experiment potentially
multiple times (e.g., 10) with different bindings for the %Country parameter. It would report an aggregate
value of the observed runtime distribution per query (usually, the average runtime per query template). This
aggregated score serves two audiences: First, the users can evaluate how fit a specific system is for their use-
case (choosing, for example, between systems that are good in complex analytical processing and those that
have the highest throughput for lookup queries). Second, database architects can use the score to analyze their
systems’ handling of certain technical challenges (“ choke points” [2]), like handling multiple interesting orders
or sparse foreign key joins.

In “throughput” experiments, the benchmark driver may also execute the above experiment multiple times
in multiple concurrent query streams. For each stream, a different set of parameters is needed.

Desired Properties. In order for the aggregate runtime to be a useful measurement of the system’s performance,
the selection of parameters for a query template should guarantee the following properties of the resulting
queries:

P1: the query runtime has a bounded variance: the average runtime should correspond to the behavior of the
majority of the queries

P2: the runtime distribution is stable: different samples of (e.g., 10) parameter bindings used in different
query streams should result in an identical runtime distribution across streams

P3: the optimal logical plan (optimal operator order) of the queries is the same: this ensures that a spe-
cific query template tests the system’s behavior under the well-chosen technical difficulty (e.g., handling
voluminous joins or proper cardinality estimation for subqueries etc.)

The conventional way to get the parameter bindings for %Country is to sample the values (uniformly,
at random) from all the possible country names in the dataset (the “domain”). This is, for example, how the
TPC-H benchmark creates its workload. Since the TPC-H data is generated with simple uniform distribution of
values, the uniform sample of parameters trivially guarantees the properties P1-P3. The TPC-DS benchmark
moved away from uniform distributions and uses "step-shaped" frequency distributions instead [5, 7], where
there are large differences in frequency between steps, but each step in the frequency distribution contains
multiple values all having the same frequency. This allows TPC-DS to obtain parameter values with exactly the
same frequency, by choosing them all from the same step.
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However, these techniques do not work for benchmarks that use real-world datasets (IMDB in our example,
or DBPedia etc.), or generate datasets with skewed value distribution and close-to-realistic correlations between
values (LDBC Social Network Benchmark, which is based on S3G2 generator [3]). In our example above,
the behavior of the query changes significantly depending on the selection of the parameter. We present a
detailed analysis of its behavior in Section 3.2, but most notably, if %Country is ’[US]’, the query features a
voluminous join between movie_companies and movie, while for smaller countries (like ’[FI]’) the join
is very sparse. As we see, two very different scenarios are tested for these two parameter choices, and they
should ideally be reported separately. The country parameter bindings for these two scenarios would be drawn
from two buckets of countries, with large number of movies (’[US]’, ’[UK]’, ’[FR]’ etc) and with a few movies
(’[HK]’,’[DK]’ etc). The recently proposed LDBC Social Network benchmark is another example where one
would need to carefully select parameters in order to avoid large variability of plans and execution times.

We clarify that our intention is not to obviate the interesting query optimization problems related to the
real-world distributions and correlations in the dataset, but to make the results within one query template pre-
dictable by choosing the parameters that satisfy properties P1-P3, in order to guarantee that the behavior of the
System Under Test (SUT) and of the benchmark results is understandable. In case different parameters have
very different runtimes and optimal query plans (e.g. due to skew or correlations) this can still be tested in a
benchmark by having multiple query variants, e.g., one variant with countries where many movies are made,
another with countries where rarely movies are made. The different variants would behave very differently
and test whether the optimizer makes good decisions, but within the same query variant the behavior should be
stable and understandable regardless the substitution parameter.

Parameter Curation. In this chapter we present an approach to generate parameters that yield similar behavior
of the query template, which we coin “Parameter Curation”. We consider a setup with a fixed set of query
templates and a dataset (either real-world or synthetic) as input for the parameter generator. Our approach
consists of two parts:

• for each query template for all possible parameter bindings, we determine the size of intermediate results
in the intended query plan. Intermediate result size heavily influences the runtime of a query, so two
queries with the same operator tree and similar intermediate result sizes at every level of this operator
tree are expected to have similar runtimes. This analysis on result sizes versus parameter values is done
once for every query template (remember that we consider benchmarks with a fixed set of queries).

• we define a greedy algorithm that selects (“curates”) those parameters with similar intermediate result
counts from the dataset.

Note that Parameter Curation depends on data generation in a benchmark: we are mining the generated data for
suitable parameters to use in the workload. As such, Parameter Curation constitutes an new phase that follows
data generation in a typical database benchmarking process.

The astute reader may remark that %Country in the previous example has the limitation that the country
domain is rather limited. Thus, a need to select e.g., 100 parameter values would imply using a large part of the
domain, and in case of skewed frequency distribution would lead to unavoidable large variance. This does not
invalidate our approach to select parameters in an as stable manner as possible, and we note that benchmark
queries tend to have (or can be made to have) multiple parameters, so the amount of parameter combinations is
the product of the parameter domain sizes, thus grows explosively, so limited parameter choices should not be
an issue in general.

Our Parameter Curation algorithms are implemented as part of the LDBC Social Network data generator 1.
The generator outputs sets of curated parameter bindings for every query of SNB Interactive workload, and
the the workload generator uses these bindings to issue queries against the system under test. Extending the
generator to produce parameters for Business Intelligence workload is subject of future work.

Outline. The rest of the chapter is organized as follows. In Section 3.2 we demonstrate in examples that the
straightforward approach of generating parameter bindings uniformly at random fails to deliver predictable and

1See http://github.com/ldbc and http://ldbcouncil.org
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stable results. Section 3.3 formalizes the problem of curating parameters that would yield runtime distribu-
tion satisfying properties P1 - P3. In Section 3.4 we present our implementation of Parameter, used in the
LDBC Social Network Benchmark (SNB). Section 3.5 describes the set of experiments we conducted on SNB
Interactive queries.

3.2 Examples

We use the LDBC Social Network Benchmark [1] (Interactive Workload) and a query on IMDB dataset from
Query 3.1. For the LDBC SNB Interactive, we generated a social network with 50.000 users (ca. 5 GB of CSV
files). For both datasets we use Virtuoso 7 database (Column store) and run our experiments on a commodity
server with the following specifications: Dual Intel X5570 Quad-Core-CPU, 64 Gb RAM, 1 TB SAS-HD,
Redhat Enterprise Linux (2.5.37).

In the following examples (E1-E4), we illustrate our statement that uniform selection of parameters leads
to unpredictable behavior of queries, which makes interpretation of benchmark results difficult.

E1: Runtime distribution has high variance. When drawing parameters uniformly at random, we encounter a
very skewed runtime distribution for queries over real-world datasets. The runtime of the query from Query 3.1,
for example, has a variance of 17 · 104. This is caused by the fact that the majority of the movies is produced in
a single country, US; additionally, the top 10 countries produce 3 times more movies than all the other countries
together. This translates into highly variable amount of data that the query needs to touch depending on the
parameter, which in turn influences the runtime.

This issue is also important for the LDBC benchmark, where the data generator seeks to mimic some of
the properties of the real-world data: the generated data has correlations and skewed data distributions. In this
case, naturally, the randomly generated parameter bindings result in a very skewed runtime distribution.

E2: Different plans for different parameters. The uniformly generated parameter bindings can lead to
completely different plans for the same query template. This happens because the cardinalities of the subqueries
naturally depend on the parameter bindings, and sometimes on the combination of the parameters. For example,
two optimal plans for Query 3.1 (as found by the PostgreSQL database) are depicted in Figure 3.1a) and b),
where leaves are marked with table aliases from the query listing. Picking ’US’ as a parameter not only changes
the join order, as compared with the ’UK’ parameter, but also results in applying a different group-by method
(by sorting as opposed to hash-based grouping for the ’UK’ parameter).
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Figure 3.1: IMDB Query 3.1 plans and runtime distribution for different parameters

As another example, we consider LDBC SNB Interactive Query 3 that finds the friends and friends of
friends that have been to countries X and Y. The optimal plan for this query can start either with finding all the
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friends within two steps from the given person, or from extracting all the people that have been to countries
X and Y: if X and Y are Finland and Zimbabwe, there are supposedly very few people that have been to both,
but if X and Y are USA and Canada, this intersection is very large. In the LDBC benchmark, correlations that
might not even be detected by the optimizer aggravate the execution picture beyond plain frequency differences.
There is a correlation between the location of each user and her friends (they often live in the same country)
and travel destinations are correlated so that nearby travel is more frequent. Hence combinations of countries
far from home are extremely rare and combinations of neighboring countries frequent.

We note that the plan variability is not a bad property per se: indeed, this query forces the query optimizer
to accurately estimate the cardinalities of subqueries depending on input parameters. However, the generated
parameters should be sampled independently for two different variants (countries that are rarely and frequently
visited together), to allow a fair and complete comparison of different query optimization strategies.

E3: Average runtime is not representative. In addition to being far from uniform (E1), the query runtime
distribution can also be "clustered": depending on the parameter binding, the query runs either extremely fast
or surprisingly slow, and the average across the runtimes does not correspond to any actual query performance.
To illustrate this issue, we consider again the IMDB Query 3.1. Figure 3.1c shows the runtime distribution of
that query over the entire domain of %Country parameter bindings. We see that the average runtime (red line
on the plot) falls outside of the larger group of parameter bindings, so in fact very few actual queries have the
runtime close to the mean.

E4: Sampling is not stable. A single query in the benchmark is typically being executed several times with
different randomly chosen parameter bindings. It is therefore interesting to see how the reported average
time changes when we draw a different sample of parameters. In order to study this, we take Query 2 of
the LDBC SNB that finds the newest 20 posts of the given user’s friends. We sample 4 independent groups of
parameter bindings (100 user parameter bindings in each group), run the query with these parameters and report
the aggregated runtime numbers within individual groups (q10 and q90 are the 10th and the 90th percentiles,
respectively).

Time Group 1 Group 2 Group 3 Group 4
q10 0.14 s 0.07 s 0.08 s 0.09 s

Median 1.33 s 0.75 s 0.78 s 1.04 s
q90 4.18 s 3.41 s 3.63 s 3.07 s

Average 1.80 s 1.33 s 1.53 s 1.30 s

We see that uniform at random generation of query parameters in fact produces unstable results: if we
were to run 4 workloads of the same query with 100 different parameters in each workload, the deviation in
reported average runtime would be up to 40%, with even stronger deviation on the level of percentiles and
median runtime (up to 100%). When TPC benchmark record results are improved, this often only concerns
minor difference with the previous best (e.g. 5%). Hence, the desired stability between different parameter
runs of a benchmark should ideally have a variance below that ballpark.

3.3 Problem Definition

Here we define the problem of generating the parameter binding for benchmark queries. In order to compare
two query plans formulated in logical relational algebra, we use the classical logical cost function that takes
into account the sum of intermediate results produced during the plan’s execution [4]:

Cout(T ) =

{
|Rx| if T is a scan of relation Rx

|T |+ Cout(T1) + Cout(T2) if T = T1 ./ T2

The above formula is incomplete and just here for argumentation; a more complete version of this logical
cost formula naturally should include all relational operators (hence also selection, grouping, sorting, etc). The
main idea is that for every relational operator Ty it holds the amount of tuples that pass through it.
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In our experiments, the cost function Cout, which is computed using the de-facto result sizes (not the
estimates!), strongly correlates with query running time (ca. 85% Pearson correlation coefficient). Therefore,
if two query plan instances have the same Cout, or even better if all operators in the query plan have the same
Cout, these plans are expected to have very similar running time.

In order to find k parameter bindings that yield identical runtime behavior of the queries, we could:

a: enumerate the set of all equivalent logical query plans LQ for a query template Q.

b: for each possible parameter p from domain P , and each subplan Tlq of LQ compute Cout(Tlq(p)).

c: find subset S ⊂ P , with size |S| = k, such that the sum of all variances∑
∀Tlq∈LQ

Variance∀p∈S Cout(Tlq(p)) is minimized.

Note that this generic problem of parameter curation is infeasibly hard to solve. The amount of possible
query plans is exponential in the amount of operators (e.g. 2|LQ|, just for leftdeep-only plans, and |LQ| being
the amount of operators in plan LQ), and all these plan costs would have to be calculated very many times: for
each possible set of parameter bindings (whose size is 2|P |, where |P | is the product of all parameter domain
sizes – a typically quite large number), and for all |LQ| subplans of LQ.

Instead, we simplify the problem by focusing on a single intended logical query plan. Since we are de-
signing a benchmark, which consists of a relatively small set of query templates (the intended benchmark
workload), and in this benchmark design we have certain intentions, this is feasible to do manually. We can,
therefore, formulate a more practical problem of Parameter Curation as follows:

PARAMETER CURATION: For the Intended Query Plan QI and the parameter domain P , select a subset
S ⊂ P of size k such that

∑
∀Tqi∈QI Variance∀p∈S Cout(Tqi(p)) is minimized.

Since the cost function correlates with runtime, queries with identical optimal plans w.r.t. Cout and similar
values of the cost function are likely to have close-to-normal distribution of runtimes with small variance.
Therefore, the properties P1-P3 from Section 3.1 hold within the set of parameters S and effects mentioned in
Section 3.2 are eliminated.

The Parameter Curation problem is still not trivial. A possible approach would be to use query cardinality
estimates that an EXPLAIN feature provides. For each query template Q we could fix the operator order to the
intended order QI , run the query optimizer for every parameter p and find out the estimated Cout(QI(p)), and
then group together parameters with similar values. However, it seems unsatisfactory for this problem, since
even the state-of-the-art query optimizers are often very wrong in their cardinality estimates. As opposed to
estimates we will therefore use the de-facto amounts of intermediate result cardinalities (which are otherwise
only known after the query is executed).

3.4 Implementation of Parameter Curation

In this section we demonstrate how the problem of Parameter Curation for a given query plan is solved in
several important cases, namely:

• a query with a single parameter

• a query with two (potentially correlated) parameters, one from discrete and another from continuous
domain. Such a combination of parameters could be: Person and Timestamp (of her posts, orders, etc).

• multiple (potentially correlated) parameters, such as Person, her Name and the Country of residence.

Note that our solution easily generalizes to the cases of multiple parameters (such as two Timestamp pa-
rameters etc); we consider the simplest cases merely for the purposes of presentation.

Our solution is divided into two stages. First, we perform data analysis that aims at computing the amount
of intermediate results produced by the given query execution plan across the entire domain of parameter(s).
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Figure 3.2: Preprocessing for the query plan with a single parameter

The output of the analysis is a set of parameter(s) values and the corresponding intermediate result sizes pro-
duced by every join of the query plan. Second, the output of the data analysis stage is processed by the greedy
algorithm that selects the subset of parameters resulting in the minimal variance across all intermediate result
sizes.

3.4.1 Single Parameter

Data Analysis The goal of this stage is to compute all the intermediate results in the query plan for each value
of the parameter. We will store this information as a Parameter-Count (PC) table, where rows correspond to
parameter values, and columns – to a specific join’s result sizes.

There are two ways of computing that table. First, given the query plan tree we can split it into a bottom-up
manner starting with the smallest subtree that contains the parameter. We will then remove the selection on
the parameter value from the query, and add a Group-By on the parameter name with a Count, thus effectively
aggregating the result size of that subtree across the parameter domain. In our experiments with LDBC Social
Network benchmark we were generating group-by queries based on the JSON representation of the query plan.

The second way of computing the Parameter-Count table is to compute the corresponding counts as part of
data generation. Indeed, in case of the LDBC SNB, for instance, all the group-by queries boil down to counting
the number of generated entities: number of friends per person, number of posts per user etc. These counts are
later used to generate parameters across multiple queries.

As an example, consider a simplified version of LDBC Interactive Query 2, given in Listing 3.2, which
extracts 20 posts of the given user’s friends ordered by their timestamps. The generated plans with Group-By’s
on top are depicted in Figure 3.2a and b. The first subquery plan counts the number of friends per person, the
second one aggregates the number of posts of all friends by user. The resulting Parameter-Count table is given
in Figure 3.2c, where columns named |Γ1| and |Γ2| correspond to the results of the first and second group-
by queries, respectively. In other words, when executed with %ParameterID = 1542, Query 2 will generate
60 + 99 = 159 intermediate result tuples.

Query 3.2: LDBC SNB Interactive Query 2

SELECT p_personid, ps_postid, ps_creationdate
FROM person, post, knows
WHERE

person.p_personid = post.ps_creatorid AND
knows.k_person1id = %Person% AND
knows.k_person2id = person.p_personid

ORDER BY ps_creationdate DESC
LIMIT 20
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Algorithm 1: PARAMETER CURATION (SINGLE PARAMETER)
FINDWINDOWS

Input: PC – Parameter-Count table, i – column, start, end – offsets in the table
1 begin
2 scan the PC table on the ith column from start to end rows
3 W ← generate Windows of size K
4 merge overlapping windows with the same variance
5 return w ∈W with the smallest variance of PC[i] values

6 PARAMETERCURATION

Input: PC – Parameter-Count table, n – number of count columns in PC
Result: W – window in PC table with the smallest variance of counts across all columns

7 begin
8 i← 1 . corresponds to the column number in the table, i.e. |Γi|
9 W← FINDWINDOWS(PC, 1, 0, |PC|) . find windows on the entire first column

10 while |W > 1| and i < n do
11 i← i+ 1
12 Wnew ← list()
13 for w ∈W do
14 w′ ← FINDWINDOWS(PC, i, w.start, w.end)
15 Wnew.add(w′)

16 sort Wnew by variance asc
17 W← all w ∈Wnew with the smallest variance

18 return W

Greedy Algorithm. Now, our goal is to find the part of the Parameter-Count table with the smallest variance
across all columns. Note that the order of the columns matters; in other words, variance in the first column
(result size of the bottom-most join of the query plan) is more crucial to the runtime behaviour than variance in
the last column (top-most join). Following this observation, we construct a simple greedy algorithm, depicted
in Algorithm 7. It uses an auxiliary function FindWindows that finds the windows (consecutive rows of the
table) of size at least k on a given column i with the smallest possible variance (lines 3-4). In our table in
Figure 3.2c such windows on the first column (|Γ1|) are highlighted with red and green colors (they consist of
parameter sets [1542, 1673, 7511] and [958, 1367], respectively). Both these sets have variance 0 in the column
|Γ1|.

The algorithm starts with finding the windows W with the smallest variance on the entire first column (line
9). Then, in every found window from W we look for smaller sub-windows (but of size at least than k, see line
3) that minimize variance on the second column (lines 12-16). The found windows with the smallest variance
become candidates for the next iteration, based on further columns (line 17). The process stops when we reach
the last column or the number of candidate windows reduces to 1.

In the example from Figure 3.2c, the first iteration brings the two windows mentioned above (red and
green). Then, in every window we look for windows of k rows, they are [99, 102], [102, 103] and [120, 101].
Out of these three candidates, [102, 103] has the smallest variance (highlighted in blue), so our solution consists
of two parameters, [1673, 7511].

3.4.2 Two correlated parameters

Here we consider the case when a query has two parameters, discrete and continuous, e.g. PersonID and
Timestamp. The continuous parameter is involved in a selection, e.g. specifying the time interval. We focus
on the situation when these two are correlated, otherwise the solution of the Parameter Curation problem is a
straightforward generalization of the previous case: one would follow the independence assumption and find
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Figure 3.3: Preprocessing for the query plan with two correlated parameters

the bindings for the discrete parameter using Parameter-Count table, and then select intervals of the same length
as bindings of the continuous parameter.

However, if parameters are correlated, the independence assumption may lead to a significant skew in the
Cout function values. We take the LDBC Interactive Query 2 as an example again, which in its full form also
includes the selection on the timestamp of the posts ps_creationdate < %Date0% (i.e., the query finds
the top 20 posts of friends of a user written before a certain date). In the LDBC dataset, the PersonID and
Timestamp of the user’s posts are naturally correlated, since users join the modeled social network at different
times; moreover, their posting activity changes over time. Therefore, if we choose the Timestamp parameter
in LDBC Interactive Query 2 independently from the PersonID, the amount of intermediate results may vary
significantly (even if ParameterIDs were curated such that the total number of posts is the same).

Data analysis. In order to capture the correlation between two parameters, we need to include the second one
(Timestamp in our example) in the grouping key during the Parameter-Count table construction. Grouping by
the continuous parameter may lead to a very large and sparse table, so we "bucketize" it (e.g., by months and
years for Timestamp). We then store the results of the aggregation as a Parameter-Count table, along with the
bucket boundaries.

Our example from Figure 3.2 is extended with the Timestamp parameter in Figure 3.3. The partial join trees
are complemented with additional Group-By on Month and Year of the timestamp as soon as the corresponding
table containing the Timestamp (in our case Posts) is added to the plan (in this example, at Step 2 when we
consider the second join). Assuming that our dataset spans 4 months of 2014, the resulting table may look like
Figure 3.3b.

Greedy algorithm. The first stage of the Parameter Curation for two parameters ignores the continuous
parameter (e.g. Timestamp). As a result, we get the bindings for the first (discrete) parameter that have similar
intermediate result sizes across the entire domain of the continuous parameter. Now for these curated parameter
bindings we find the corresponding continuous parameters such that the Cout function values are similar across
all the curated parameters.

For the purpose of presentation we consider the solution for the %Date0 parameter that appears in the selec-
tion of a form timestamp < %Date0. In our example from the previous section, we have found two PersonID
parameters that have the smallest variance in Cout. Let PCTime[i, j] denote the count in the Parameter-Count
table for the parameter i in bucket j, andN be the number of buckets for continuous parameter. For example, in
Figure 3.3b PCTime[1673,Mar′14] = 30 is the number of posts made by friends of the user 1673 in March
2014, and N = 4.

• We compute the partial sums of the monthly counts Sum[i] =
∑

j=1..N−M
PCTime[i, j] for all the dis-

crete parameter bindings i for all the months except the last M (where M is typically 1..3). In the table
in Figure 3.3b for M = 1 these partial sums are 60 and 80 for PersonIDs 1673 and 7511, respectively.
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• We determine the average A across these sums Sum[i] (70 in our example)

• For every discrete parameter i we pick the bucket J such that
∑

j=1..J

PCTime[i, j] is as close as possible

to the global average A. More precisely, we pick the first bucket such that the sum exceeds the global
average. In our example, for i = 1673, J is the fourth bucket (Apr’14)

• Finally, since our buckets represent continuous variable (time), we can split the bucket J so that the sum
of counts is exactly A. For i = 1673 we need to get 10 posts in April 2014 (60 are covered by previous
months, and we need to reach the global average of 70). We pick April 42·10

30 = 14 as Date0.

In order to perform the last step in the above computation, we have assumed that within one bucket the
count is uniformly distributed (e.g., every day within one month has the same number of posts). Even when
this assumption does not hold precisely, the effects are usually negligible.

The timestamp conditions of a different form, e.g. Timestamp > Date0, or Timestamp ∈
[Date0, Date1] are handled in the same manner. For example, the Timestamp ∈ [Date0, Date1] condi-
tion leads to finding for every PersonID the median of its post-per-time distribution, that is the median of the
PCTable[i, j] for every row i. Then, the median of those medians is identified across all PersonIDs, and finally
every individual PersonID’s median is made as close as possible to the global median by extending/reducing
the corresponding bucket.

3.4.3 Multiple correlated parameters

Parameter Curation for multiple (more than two) parameters follows the scheme of two parameters: one is
selected as a primary (PersonID), the other ones are "bucketized". This way we get sets of bindings, each of
those results in identical query plan and similar runtime behavior.

In case of correlated parameters, however, it may be interesting to find several sets of parameter bindings
that would yield different query plans (but consistent within one set of bindings). Consider the simplified
version of LDBC Interactive Query 3 that is finding the friends of a user that have been to countries %C1 and
%C2 and logged in from that countries (i.e., made posts), given in Query 3.3 and its query plan in Figure 3.4a.

Query 3.3: LDBC SNB Interactive Query 3

SELECT k.k_person2id, ps_postid, ps_creationdate
FROM person p, knows k, post p1, post p2
WHERE p.person_id = k.k_person1id

AND k.k_person2id = p1.p_personid
AND k.k_person2id = p2.p_personid
AND p1.place = ’%C1%’
AND p2.place = ’%C2%’

ORDER BY ps_creationdate DESC
LIMIT 20

Since in the generated LDBC SNB dataset the country of the person is correlated with the country of his
friends, and users tend to travel to (i.e. post from) neighboring countries, there are essentially two groups of
countries for every user: first, the country of his residence and neighboring countries; second, any other country.
For parameters from first group the join denoted 12 in Figure 3.4a becomes very unselective, since almost all
friends of the user are likely to post from that the country. For the second group, both 12 and 13 are very
selective. In the intermediate case when parameters are taken from the two different groups, it additionally
influences the order of 12 and 13.

Both these groups of parameters are based on counts of posts made by friends of a user, i.e. based on the
counts collected in the Parameter-Count table (with additional group-by on country of the post). Instead of
keeping the buckets of all countries, we group them into two larger buckets based on their count, Frequent and
Non-Frequent as shown in Figure 3.4b.
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13

12

11

Person Friends

Posts (Country = %C1%)

Posts (Country = %C2%)

(a) Query Plan

PersonID
... ... ...

1673
7511
... ... ...

Freq Non-Freq

CH, JP, IN ES, FR, SE
DE, FR, IT CA, BR, AU

Countries

(b) Parameter-Count table

Figure 3.4: Case of multiple correlated parameters

Query 1 2 3 4 5 6 7
Curated 13 31 243 0.6 1300 6931 33
Random 773 2165 444174 184 · 106 52 · 106 278173 362

Query 8 9 10 11 12 13 14
Curated 0.18 99269 4073 1 95 2977 5107
Random 403 880287 102852 39 1535 26777 155032

Table 3.1: Variance of runtimes: Uniformly sampled parameters vs Curated parameters for the LDBC Bench-
mark queries

Now we can essentially split the LDBC Interactive Query 3 into three different (related) query variants (a),
b) and c)), based on the combination of the two %Country parameters: a) %C1 and %C2 from the Frequent
group, b) both from Non-Frequent group, c) combination of the two above.

3.5 Experiments

In this section we describe our experiments with curated parameters in the LDBC benchmark. First, we compare
the runtimes of query templates with curated parameters as opposed to randomly selected ones (Section 3.5.1).
Then we proceede with an experiment on curating parameters for different intended plans of the same query
template in Section. All experiments are run with Virtuoso 7 Column Store as a relational engine on a com-
modity server.

3.5.1 Curated vs Uniformly Sampled Parameters

First experiment aims at comparing the runtime variance of the LDBC queries with curated parameters with
the randomly sampled parameters. For all 14 queries we curated 500 parameters and sampled randomly the
same amount of parameters for every query. We run every query template with each parameter binding for 10
times and record the mean runtime. Then, the compute the runtime variance per query for curated and random
parameters. The results, given in Table 3.1, indicate that Parameter Curation reduces the variance of runtime
by a factor of at least 10 (and up to several orders of magnitude). We note that some queries are more prone to
runtime variability (such as Query 4 and 5), that is why the variance reduction is different accross the query set.
For Query 4 we additionally report the runtime distribution of query runs with curated and random parameters
in Figure 3.5.

3.5.2 Groups of Parameters for One Query

So far we have considered the scenario when the intended query plan needs to be supplied with parameters
that provide the smallest variance to its runtime. For some queries, however, there could be multiple intended
plan variants, especially when the query contains a group of correlated parameters. As an example, take LDBC
Query 11 that finds all the friends of friends of a given person P that work in country X. The data generator
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Figure 3.5: LDBC Query 4 Runtime Distribution: Curated vs Random parameters

guarantees that the location of friends is correlated with the location of a user. Naturally, when the country X
is the user’s country of residence, the amount of intermediate results is much higher than for any other country.
Moreover, if X is a non-populous country, the reasonable plan would be to start from finding all the people that
work at organizations in X and then figure out which of them are friends of friends of the user P.

As described in Section 3.4.3, our algorithm provides three sets of parameters for the three intended query
plans that arise in the following situations: (i) P resides in the country X , (ii) country X is different than
the residence country of P , (iii) X is a non-populous country that is not a residence country for P . As a
specific example, we consider a set of Chinese users with countries (i) China, (ii) Canada, (iii) Zimbabwe. The
corresponding average runtimes and standard deviations are depicted in Figure 3.6. We see that the three groups
indeed have distinct runtime behavior, and the runtime within the group is very similar. For comparison, we
also provide the runtime distribution for a randomly chosen country parameter, which is far from the normal
distribution.
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Figure 3.6: LDBC Query 11 with four different groups of parameters (for countries China, Canada, Zimbabwe,
Random)
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Scale Parameter Extraction Time % of Total Generation Time Data Size, Gb
10K 17 s 7 % 1
50K 125 s 11 % 5.5
1Mln 4329 s 12 % 227

Table 3.2: Time to extract parameters in the LDBC datasets of different scales

3.5.3 Parameter Curation time

Finally, we report the runtime of the parameter curation procedure for the LDBC Benchmark. Note that we
have incorporated the data analysis stage in our case is implemented as part of data generation, e.g. we keep the
number of posts per person generated, number of replies to the user’s posts etc. This is done with a negligible
runtime overhead. In Table 3.2 we report the runtime of the greedy parameter extraction procedure for the
LDBC dataset of different scales (as number of persons in the generated social network). We additionally show
the size of the generated data; this is essentially an indicator of the amount of data that the extraction procedure
needs to deal with. We see that Parameter Curation takes approximately 7% to 12% of the total data generation
time, which looks like a reasonable overhead.
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4 CONCLUSION

This deliverable presented a choke-point-based design of the Business Intelligence workload for the LDBC
Social Network Benchmark. We discussed the technical challenges that a DBMS needs to address in order to
efficiently run complex queries, and sketched a set of 21 queries that contain these challenges.

In the second part of the deliverable we motivated and introduced Parameter Curation: a data mining-like
process that follows data generation in a database benchmarking process. Parameter Curation finds substitution
parameters for query templates that produces query invocations with very small variation in the size of the
intermediate query results, and consequently, similar running times and query plans. This technique is needed
when designing understandable benchmark query workloads for datasets with skewed and correlated data,
such as found in real-world datasets. Parameter Curation was developed and is in fact used as part of the
LDBC Social Network Benchmark (SNB) 1, whose data generator produces a social network with a highly
skewed power-law distributions and small diameter network structure, that has as additional characteristic that
both the attribute values and the network structure are highly correlated. Our results show that Parameter
Curation in these skewed and correlated datasets transforms chaotic performance behavior for the same query
template with randomly chosen substitution parameters into highly stable behavior for curated parameters.
Parameter Curation retains the possibility for benchmark designers to test the ability of query optimizers to
identify different query plans in case of skew and correlation, by grouping parameters with the same behavior
into a limited number of classes which among them have very different behavior; hence creating multiple
variants of the same query template.

1See http://github.com/ldbc and http://ldbcouncil.org
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A SET OF SQL QUERIES

Common view definitions

CREATE VIEW country AS SELECT city.pl_placeid AS ctry_city,
ctry.pl_name AS ctry_name
FROM place city, place ctry
WHERE city.pl_containerplaceid = ctry.pl_placeid
AND ctry.pl_type = ’country’;

Query 1: top 100 popular topics in each country, age and gender group

CREATE procedure p_age_group (IN bday DATE) returns INT
{
return floor (datediff (’year’, bday, CAST (’2014-1-1’ AS DATE)) / 5);

}

SELECT top 100 ctry_name, MONTH (ps_creationdate) AS mm, p_gender,
p_age_group (p_birthday) AS age, t_name, COUNT (*) AS cnt

FROM person, post, post_tag, tag, country
WHERE ps_creatorid = p_personid

AND p_placeid = ctry_city AND
pst_postid = ps_postid AND t_tagid = pst_tagid
AND ps_creationdate BETWEEN CAST (’2012-1-1’ AS DATE)

AND dateadd (’year’, 1, CAST (’2012-1-1’AS DATE))
GROUP BY ctry_name, mm, p_gender, age, t_name
HAVING cnt > 1000
ORDER BY ctry_name, mm, t_name, age, p_gender;

Query 2: find new tags that appeared during last month

SELECT top 100 m1.t_name, cnt1, cnt2, cnt2 - cnt1 AS diff
FROM

(SELECT t_name, COUNT (*) AS cnt1
FROM post, post_tag, tag
WHERE t_tagid = pst_tagid AND pst_postid = ps_postid
AND ps_creationdate BETWEEN CAST (’2012-6-1’ AS DATE)

AND dateadd (’month’, 1, CAST (’2012-6-1’ AS DATE))
GROUP BY t_name) m1,

(SELECT t_name, COUNT (*) AS cnt2
FROM post, post_tag, tag
WHERE t_tagid = pst_tagid AND pst_postid = ps_postid
AND ps_creationdate BETWEEN dateadd (’month’, 1,

CAST (’2012-6-1’ AS DATE))
AND dateadd (’month’, 2, CAST (’2012-6-1’ AS DATE))

GROUP BY t_name) m2
WHERE m1.t_name = m2.t_name
ORDER BY diff DESC;

Query 3: find most relevant forums on a given topic in a given country
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SELECT top 20 f_forumid, f_title, f_creationdate,
f_moderatorid, COUNT (*) AS cnt

FROM forum, post, post_tag,
tag_tagclass, tagclass, person, country

WHERE tc_name = ’Musical_Artist’
AND ttc_tagclassid = tc_tagclassid
AND ttc_tagid = pst_tagid AND pst_postid = ps_postid
AND ps_forumid = f_forumid AND f_moderatorid = p_personid
AND p_placeid = ctry_city AND ctry_name = ’India’

GROUP BY f_forumid, f_title, f_creationdate, f_moderatorid
ORDER BY cnt DESC;

Query 4: top posters in 100 top forums in China

SELECT top 100 p_personid, p_firstname,
p_lastname, p_creationdate, COUNT (*)

FROM person, post, forum f, forum_person,
(SELECT top 100 f_forumid, COUNT (*) AS cnt

FROM forum, forum_person, person, country
WHERE f_forumid = fp_forumid
AND p_personid = fp_personid
AND p_placeid = ctry_city AND ctry_name = ’China’
GROUP BY f_forumid ORDER BY cnt DESC) tf

WHERE ps_creatorid = p_personid
AND ps_forumid = f.f_forumid
AND f.f_forumid = tf.f_forumid
AND p_personid = ps_creatorid

GROUP BY p_personid
ORDER BY cnt DESC;

Query 5: top posters on a given topic

SELECT top 100 p_personid, n_posts, n_replies,
n_likes, n_posts + 2 * n_replies + 10 * n_likes AS sc

FROM (
SELECT p_personid, COUNT (*) AS n_posts,

SUM (n_lks) AS n_likes, SUM (n_reps) AS n_replies
FROM (

SELECT p_personid, ps_postid,
(SELECT COUNT (*) FROM likes

WHERE l_postid = ps_postid) AS n_lks,
(SELECT COUNT (*) FROM post p2

WHERE p2.ps_replyof = p1.ps_postid) AS n_reps
FROM person, post p1, post_tag, tag
WHERE ps_creatorid = p_personid
AND pst_postid = ps_postid
AND t_tagid = pst_tagid
AND t_name = ’Winston_Churchill’
) psts

GROUP BY p_personid) sums
ORDER BY sc DESC;

Query 6: most authoritative user posting on a given topic

SELECT top 100 ps_creatorid, SUM (likeauth.auth) AS sc
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FROM post, tag, post_tag, likes l,
(SELECT ps_creatorid AS liker, COUNT (*) AS auth
FROM post, likes
WHERE ps_postid = l_postid
GROUP BY ps_creatorid) likeauth

WHERE liker = l_personid AND l_postid = ps_postid
AND pst_postid = ps_postid
AND pst_tagid = t_tagid AND t_name = ’Augustine_of_Hippo’

GROUP BY ps_creatorid
ORDER BY sc DESC;

Query 7: tags that are most frequently mentioned together with the given tag

SELECT top 100 t_name, COUNT (*) AS cnt
FROM post ps, post rep, post_tag, tag
WHERE rep.ps_replyof = ps.ps_postid

AND EXISTS (SELECT 1 FROM post_tag, tag
WHERE pst_postid = ps.ps_postid

AND pst_tagid = t_tagid
AND t_name = ’Augustine_of_Hippo’)

AND NOT EXISTS (SELECT 1 FROM post_tag, tag
WHERE pst_postid = rep.ps_postid

AND pst_tagid = t_tagid
AND t_name = ’Augustine_of_Hippo’)

AND pst_postid = rep.ps_postid AND t_tagid = pst_tagid
GROUP BY t_name
ORDER BY cnt DESC;

Query 8: anticorrelation between two tags’ occurance

SELECT top 200 f_forumid, SUM (competing) AS comp, SUM (ours) AS ours2
FROM (SELECT f_forumid,
(SELECT COUNT (*)

FROM post
WHERE ps_forumid = f_forumid
AND EXISTS (SELECT 1 FROM post_tag WHERE pst_postid = ps_postid

AND pst_tagid IN (SELECT ttc_tagid FROM tagclass, tag_tagclass
WHERE ttc_tagclassid = tc_tagclassid

AND tc_name = ’MusicalArtist’))) AS competing,
(SELECT COUNT (*)
FROM post

WHERE ps_forumid = f_forumid
AND EXISTS (SELECT 1 FROM post_tag WHERE pst_postid = ps_postid

AND pst_tagid IN (SELECT ttc_tagid FROM tagclass, tag_tagclass
WHERE ttc_tagclassid = tc_tagclassid
AND tc_name = ’Writer’))) AS ours

FROM forum
WHERE (SELECT COUNT (*) FROM forum_person WHERE fp_forumid = f_forumid) > 200)
mindshare
WHERE competing > 0 AND ours > 0
GROUP BY f_forumid ORDER BY comp - ours2 DESC;

Query 9: find the most central user for the given tag

CREATE VIEW person_tag_rel AS
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SELECT tr_personid, tr_tag, SUM (sc) AS tr_score
FROM (
SELECT pt_personid AS tr_personid, t_name AS tr_tag, 100 AS sc
FROM person_tag, tag
WHERE t_tagid = pt_tagid
UNION ALL SELECT ps_creatorid, t_name, 1 AS sc
FROM post, post_tag, tag
WHERE pst_postid = ps_postid AND pst_tagid = t_tagid) ff

GROUP BY tr_personid, tr_tag
;

SELECT top 100 p1.p_personid, SUM (tr1.tr_score + tr2.tr_score) AS sc
FROM person p1, knows, person p2,
person_tag_rel tr1, person_tag_rel tr2

WHERE tr1.tr_tag = ’Franz_Kafka’
AND tr2.tr_tag = ’Franz_Kafka’
AND tr1.tr_personid = p1.p_personid
AND tr2.tr_personid = p2.p_personid
AND p1.p_personid = k_person1id AND p2.p_personid = k_person2id

GROUP BY p1.p_personid
ORDER BY sc DESC;

Query 10: find people that successfully introduce a new topic

SELECT p_personid, t_name, COUNT (*) AS cnt
FROM person, post org, post rep, post_tag rtag, tag, country
WHERE rep.ps_replyof = org.ps_postid

AND rtag.pst_tagid = rep.ps_postid
AND NOT EXISTS (SELECT 1

FROM post_tag orgtag
WHERE orgtag.pst_postid = org.ps_postid

AND rtag.pst_tagid = orgtag.pst_tagid)
AND EXISTS (SELECT 1 FROM likes

WHERE l_postid = rep.ps_postid)
AND rep.ps_creatorid = p_personid
AND p_placeid = ctry_city AND ctry_name = ’Mexico’
AND rtag.pst_tagid = t_tagid

GROUP BY p_personid, t_name
ORDER BY cnt DESC;

Query 11: most liked content of the network in the given period

SELECT top 100 ps_postid, p_firstname, p_lastname, ps_creationdate, COUNT (*)
FROM post, person, likes
WHERE ps_postid IN

(SELECT l_postid, COUNT (*)
FROM likes
GROUP BY l_postid
HAVING COUNT (*) > 100)

AND p_personid = ps_creatorid
AND l_postid = ps_postid
AND ps_creationdate > CAST (’2010-3-1’ AS DATE)

GROUP BY ps_postid, p_firstname, p_lastname, ps_creationdate

Page 33 of (38)



LDBC Deliverable D2.2.4

ORDER BY ps_creationdate DESC;

Query 12: top thread initiators

SELECT top 100 p_personid, p_firstname, p_lastname,
COUNT (*) AS cnt, COUNT (DISTINCT org.ps_postid) AS n_threads

FROM person, post org,
(SELECT transitive t_in (1) t_out (2) r.ps_replyof, r.ps_postid

FROM post r
WHERE r.ps_creationdate BETWEEN CAST (’2011-10-1’ AS DATE)

AND dateadd (’month’, 3, CAST (’2011-10-1’ AS DATE) )) reps
WHERE reps.ps_replyof = org.ps_postid AND org.ps_replyof is NULL

AND org.ps_creatorid = p_personid
AND org.ps_creationdate BETWEEN CAST (’2011-10-1’ AS DATE)

AND dateadd (’month’, 3, CAST (’2011-10-1’ AS DATE) )
GROUP BY p_personid
ORDER BY cnt DESC, p_personid;

Query 13: top 100 people with the number of friends higher than average in China

SELECT top 100 p_personid, COUNT (*) AS cnt
FROM person, knows, country
WHERE ctry_name = ’China’

AND p_placeid = ctry_city AND k_person1id = p_personid
GROUP BY p_personid
HAVING cnt = floor ((

SELECT AVG (fcnt)
FROM (SELECT p_personid, COUNT (*) AS fcnt

FROM person, knows, country
WHERE p_placeid = ctry_city AND ctry_name = ’China’
AND k_person1id = p_personid
GROUP BY p_personid) ctavg))

ORDER BY p_personid;

Query 14: find people that are connected to each other and talk about one topic

SELECT top 100 kn.k_person2id, t_name, COUNT (*) AS cnt
FROM (SELECT transitive t_distinct t_in (1) t_out (2) k_person1id, k_person2id

FROM knows
WHERE k_person2id IN (

SELECT p_personid
FROM person, country

WHERE p_placeid = ctry_city AND ctry_name = ’China’)) kn,
post, post_tag, tag, tag_tagclass, tagclass
WHERE ps_postid = pst_postid

AND t_tagid = pst_tagid
AND ttc_tagid = pst_tagid
AND ttc_tagclassid = tc_tagclassid
AND tc_name = ’MusicalArtist’
AND ps_creatorid = kn.k_person2id AND kn.k_person1id = 1030

GROUP BY t_name, kn.k_person2id
ORDER BY cnt DESC, t_name;

Query 15: triangle counting

SELECT COUNT (*)
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FROM knows k1, knows k2, knows k3
WHERE k1.k_person1id = k3.k_person2id
AND k1.k_person2id = k2.k_person1id
AND k2.k_person2id = k3.k_person1id
AND k1.k_person1id < k1.k_person2id AND k2.k_person1id < k2.k_person2id
AND k1.k_person1id IN (

SELECT p_personid
FROM person, place city, place ctry
WHERE p_placeid = city.pl_placeid

AND city.pl_containerplaceid = ctry.pl_placeid
AND ctry.pl_name = ’India’ AND ctry.pl_type = ’country’)

AND k2.k_person1id IN (
SELECT p_personid
FROM person, place city, place ctry
WHERE p_placeid = city.pl_placeid

AND city.pl_containerplaceid = ctry.pl_placeid
AND ctry.pl_name = ’India’ AND ctry.pl_type = ’country’)

AND k3.k_person1id IN (
SELECT p_personid
FROM person, place city, place ctry
WHERE p_placeid = city.pl_placeid

AND city.pl_containerplaceid = ctry.pl_placeid
AND ctry.pl_name = ’India’ AND ctry.pl_type = ’country’)

;

Query 16: distribution of number of posts

SELECT cnt, COUNT (*) AS n
FROM (SELECT p_personid, COUNT (ps_postid) AS cnt

FROM person LEFT JOIN post ON ps_creatorid = p_personid
AND ps_creationdate > CAST (’2012-1-1’ AS DATE)

GROUP BY p_personid) post_cnt
GROUP BY cnt
ORDER BY cnt DESC, n;

Query 17: communication between strangers

SELECT top 10 p_personid, COUNT (*) AS cnt,
SUM (CASE WHEN EXISTS (SELECT 1 FROM knows

WHERE k_person1id = teen.p_personid
AND k_person2id = org.ps_creatorid)

THEN 0 ELSE 1 END) AS strangercnt
FROM person teen, post org, post rep
WHERE p_birthday > CAST (’2000-1-1’ AS DATE)
AND rep.ps_creatorid = teen.p_personid
AND org.ps_postid = rep.ps_replyof

GROUP BY teen.p_personid
ORDER BY cnt DESC;

Query 18: frequency of topics

SELECT tc_name, COUNT (*) AS cnt
FROM tagclass, tag_tagclass, tag, post_tag
WHERE tc_tagclassid = ttc_tagclassid AND ttc_tagid = t_tagid

AND pst_tagid = ttc_tagid
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GROUP BY tc_name ORDER BY cnt DESC;

Query 19: Zombies: People who are liked by people who produce nothing

SELECT top 100 liked, COUNT (*) AS n_likers, SUM (likerposts) AS liker_posts
FROM (

SELECT liked.p_personid AS liked,
(SELECT COUNT (*)
FROM post lrpost
WHERE lrpost.ps_creatorid = liker.p_personid) AS likerposts

FROM person liked, post, likes, person liker, country
WHERE ps_creationdate BETWEEN

CAST (’2012-4-1’ AS DATE)
AND dateadd (’month’, 3, CAST (’2012-4-1’ AS DATE))

AND ps_creatorid = liked.p_personid
AND liked.p_placeid = ctry_city AND ctry_name = ’India’
AND l_postid = ps_postid AND l_personid = liker.p_personid) lks

GROUP BY liked
ORDER BY CAST (n_likers AS real) / liker_posts DESC;

Query 20: correspondence between two countries

CREATE VIEW related AS
SELECT rep.ps_creatorid AS p1,
org.ps_creatorid AS p2, 4 AS score
FROM post org, post rep
WHERE rep.ps_replyof = org.ps_postid

UNION ALL
SELECT org.ps_creatorid AS p1,
rep.ps_creatorid AS p2, 1 AS score
FROM post org, post rep
WHERE rep.ps_replyof = org.ps_postid

UNION ALL
SELECT k_person1id, k_person2id, 15 AS score
FROM knows

UNION ALL
SELECT l_personid, ps_creatorid, 10
FROM likes, post
WHERE l_postid = ps_postid

UNION ALL
SELECT ps_creatorid, l_personid, 1
FROM likes, post
WHERE l_postid = ps_postid;

SELECT contact.p_personid, contact.p_firstname, contact.p_lastname, SUM (score)
FROM person contact, related,

person contacted, country target, country source
WHERE contact.p_personid = p1 AND contacted.p_personid = p2

AND contacted.p_placeid = target.ctry_city
AND target.ctry_name = ’Yemen’
AND contact.p_placeid = source.ctry_city
AND source.ctry_name = ’United_States’

GROUP BY contact.p_personid, contact.p_firstname, contact.p_lastname
ORDER BY score DESC;
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Query 21: tag timeline

SELECT YEAR (ps_creationdate) AS yy,
MONTH (ps_creationdate) AS mm, continent, COUNT (*) AS n_posts,
SUM ((SELECT COUNT (*) FROM likes WHERE l_postid = ps_postid)) AS n_likes

FROM post JOIN post_tag ON pst_postid = ps_postid
LEFT JOIN (SELECT cont.pl_name AS continent, ctry.pl_placeid AS pl

FROM place cont, place ctry
WHERE cont.pl_placeid = ctry.pl_containerplaceid) ppl

ON pl = ps_locationid
WHERE pst_tagid IN (
SELECT ttc_tagid
FROM tag_tagclass, tagclass
WHERE tc_name = ’Politician’
AND ttc_tagclassid = tc_tagclassid)

GROUP BY yy, mm, continent
ORDER BY yy, mm, continent
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