
Chapter 1. Interactive v2 Workload

1 Interactive v2 Workload

This chapter is based on the TPCTC 2023 paper “The LDBC Social Network Benchmark
Interactive Workload v2: A Transactional Graph Query Benchmark with Deep Delete Op-
erations” [7], co-authored by several members of the SNB task force.

Work-in-Progress

The Interactive v2 workload is currently work-in-progress. As of January 2024, commissioning audits
for this workload is not yet possible.

Related Software Components

• Datagen (Spark-based): https://github.com/ldbc/ldbc_snb_datagen_spark
• Driver: https://github.com/ldbc/ldbc_snb_interactive_v2_driver
• Reference implementations: https://github.com/ldbc/ldbc_snb_interactive_v2_impls

1.1 Overview

Figure 1.1: Components and workflow of the Interactive v2 workload. The corresponding sections are
shown in green circles § . Legend: Software component Data artifact

1.2 Operations

The LDBC SNB Interactive v2 workload uses four types of operations. There are 14 complex and 7 short
read queries. Update operations include 8 inserts and, newly introduced in the Interactive v2 workload,
8 deletes. Theworkloadmix consists of approximately 8% complex read, 72% short read, 20% insert, and
0.2% delete operations. The complex reads and the short reads are identical to the ones in Interactive v1,
except for query 14, which was replaced to cover the Cheapest path-finding choke point.1

Cheapest path-finding While we strived to keep the changes to the queries minimal, we replaced Q14
due to two reasons. First, we found the original query in Interactive v1 to be ill-suited to the workload
as it required the enumeration of all shortest paths between two Persons, which can be prohibitively
expensive on large scale factors. Second, we introduced a new choke point, CP-7.6 Cheapest path-
finding, a key computational kernel and a language opportunity for GQL [2]. Therefore, we changed
Q14 to use cheapest paths instead of all shortest paths.

1The term shortest paths refers to the problem of finding unweighted shortest paths, which can be computed with BFS. The
term cheapest paths refers to the weighted shortest paths problem, which can be solved using e.g. Dijkstra’s algorithm.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 1 of 33

https://github.com/ldbc/ldbc_snb_datagen_spark
https://github.com/ldbc/ldbc_snb_interactive_v2_driver
https://github.com/ldbc/ldbc_snb_interactive_v2_impls

Chapter 1. Interactive v2 Workload 1.2. Operations

1.2.1 Complex Reads

Interactive / complex / 1
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 1
title Transitive friends with certain name

pattern

description

Given a start Person with ID $personId, find Persons with a given first name ($firstName) that the
start Person is connected to (excluding start Person) by at most 3 steps via the knows relationships.
Return Persons, including the distance (1..3), summaries of the Persons workplaces and places of
study.

params
1 $personId ID

2 $firstName String

result

1 otherPerson.id ID R

2 otherPerson.lastName String R

3 distanceFromPerson 32-bit Integer C

4 otherPerson.birthday Date R

5 otherPerson.creationDate DateTime R

6 otherPerson.gender String R

7 otherPerson.browserUsed String R

8 otherPerson.locationIP String R

9 otherPerson.email {Long String} R

10 otherPerson.speaks {String} R

11 locationCity.name String R

12 universities
{<String,
32-bit Integer,
String>}

A
{<university.name, studyAt.classYear,
universityCity.name>}

13 companies
{<String,
32-bit Integer,
String>}

A
{<company.name, workAt.workFrom,
companyCountry.name>}

sort

1 distanceFromPerson ↑
2 otherPerson.lastName ↑
3 otherPerson.id ↑

limit 20
CPs 2.1, 5.3, 8.2

relevance

This query is a representative of a simple navigational query. It is interesting for several aspects. (1) It requires for
a complex aggregation for returning the concatenation of universities, companies, languages and email information
of the Person. (2) It tests the ability of the optimizer to move the evaluation of sub-queries functionally dependant
on the Person, after the evaluation of the top-k. (3) Its performance is highly sensitive to properly estimating the
cardinalities in each transitive path, and paying attention not to explore already visited Persons.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 2 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 2
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 2
title Recent messages by your friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages from all of that Person’s
friends (friend nodes). Only consider Messages created before the given $maxDate (excluding that
day).

params
1 $personId ID

2 $maxDate Date

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 2.2, 2.3, 3.2, 8.5

relevance

This is a navigational query looking for paths of length two, starting from a given Person, going to their friends and
from them, moving to their published Posts and Comments. This query exercices both the optimizer and how data
is stored. It tests the ability to create execution plans taking advantage of the orderings induced by some operators to
avoid performing expensive sorts. This query requires selecting Posts and Comments based on their creation date,
whichmight be correlated with their identifier and therefore, having intermediate results with interesting orders. Also,
messages could be stored in an order correlated with their creation date to improve data access locality. Finally, as
many of the attributes required in the projection are not needed for the execution of the query, it is expected that the
query optimizer will move the projection to the end.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 3 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 3
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 3
title Friends and friends of friends that have been to given countries

pattern

description

Given a start Person with ID $personId, find Persons that are their friends and friends of friends
(excluding the start Person) that have made Posts / Comments in both of the given Countries (named
$countryXName and $countryYName), within [$startDate, $startDate + $durationDays) (closed-
open interval). Only Persons that are foreign to these Countries are considered, that is Persons
whose location Country is neither named $countryXName nor $countryYName.

params

1 $personId ID

2 $countryXName String
In SNB Interactive v2, this query has two variants:
(a) Correlated Countries
(b) Anti-correlated Countries

3 $countryYName String

4 $startDate Date Beginning of requested period

5 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 xCount 32-bit Integer A
Number of Messages from Country named
$countryXName created by the Person within
the given time

5 yCount 32-bit Integer A
Number of Messages from Country named
$countryYName created by the Person within
the given time

6 count 32-bit Integer A count = xCount + yCount

sort
1 count ↓
2 otherPerson.id ↑

limit 20
CPs 2.1, 3.1, 5.1, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a Person, going to friends or friends of friends, and
then moving toMessages. This query tests the ability of the query optimizer to select the most efficient join ordering,
which will depend on the cardinalities of the intermediate results. Many friends of friends can be duplicate, then it
is expected to eliminate duplicates and those people prior to access the Post and Comments, as well as eliminate
those friends from Countries named $countryXName and $countryYName, as the size of the intermediate results can be
severely affected. A possible structural optimization could be to materialize the number of Posts and Comments
created by a Person, and progressively filter those people that could not even fall in the top 20 even having all their
posts in the Countries named $countryXName and $countryYName.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 4 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 4
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 4
title New topics

pattern

description

Given a start Personwith ID $personId, find Tags that are attached to Posts that were created by that
Person’s friends. Only include Tags that were attached to friends’ Posts created within a given time
interval [$startDate, $startDate + $durationDays) (closed-open) and that were never attached
to friends’ Posts created before this interval.

params

1 $personId ID

2 $startDate Date

3 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 tag.name Long String R

2 postCount 32-bit Integer A
Number of Posts made within the given time interval
that have tag

sort
1 postCount ↓
2 tag.name ↑

limit 10
CPs 2.3, 8.2, 8.5

relevance

This query looks for paths of length two, starting from a given Person, moving to Posts and then to Tags. It tests
the ability of the query optimizer to properly select the usage of hash joins or index based joins, depending on the
cardinality of the intermediate results. These cardinalities are clearly affected by the input Person, the number of
friends, the variety of Tags, the time interval and the number of Posts.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 5 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 5
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 5
title New groups

pattern

description

Given a start Person with ID $personId, denote their friends and friends of friends (excluding the
start Person) as otherPerson.
Find Forums that any Person otherPerson became a member of after a given date ($minDate). For
each of those Forums, count the number of Posts that were created by the Person otherPerson.

params
1 $personId ID

2 $minDate Date

result

1 forum.title Long String R

2 postCount 32-bit Integer A
Number of Posts made in forum that were created by
the Person otherPerson

sort
1 postCount ↓
2 forum.id ↑

limit 20
CPs 2.3, 3.3, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a given Person, moving to friends and friends
of friends, and then getting the Forums they are members of. Besides testing the ability of the query optimizer to
select the proper join operator, it rewards the usage of indices, but their accesses will be presumably scattered due to
the two/three-hop search space of the query, leading to unpredictable and scattered index accesses. Having efficient
implementations of such indices will be highly beneficial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 6 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 6
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 6
title Tag co-occurrence

pattern

description

Given a start Person with ID $personId and a Tag with name $tagName, find the other Tags that
occur together with this Tag on Posts that were created by start Person’s friends and friends of
friends (excluding start Person). Return top 10 Tags, and the count of Posts that were created by
these Persons, which contain both this Tag and the given Tag.

params
1 $personId ID

2 $tagName Long String

result

1 otherTag.name Long String R

2 postCount 32-bit Integer A
Number of Posts that were created by friends and
friends of friends, which have the Tag otherTag

sort
1 postCount ↓
2 otherTag.name ↑

limit 10
CPs 5.1, 8.2

relevance This query looks for paths of lengths three or four, starting from a given Person, moving to friends or friends of
friends, then to Posts and finally ending at a given Tag.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 7 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 7
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 7
title Recent likers

pattern

description

Given a start Person with ID $personId, find the most recent likes on any of start Person’s Mes-
sages. Find Persons that liked (likes edge) any of start Person’s Messages, the Messages they liked
most recently, the creation date of that like, and the latency in minutes (minutesLatency) between
creation of Messages and like. Additionally, for each Person found return a flag indicating (isNew)
whether the liker is a friend of start Person. In case that a Person liked multiple Messages at the
same time, return the Message with lowest identifier.
Validation rule: Depending on whether the system-under-test supports leap seconds or uses
UTC-SLS (UTC with Smoothed Leap Seconds), a difference of 1 minute can occur between the
minutesLatency results of two correct implementations when the time interval includes June 30,
2012, when there was a leap second. Therefore, the minutesLatency value is validated using a
tolerance of 1 minute.

params 1 $personId ID

result

1 friend.id ID R friend.id = personId is allowed
2 friend.firstName String R

3 friend.lastName String R

4 likes.creationDate DateTime R

5 message.id ID R

6

message.content or
message.imageFile (for
photos)

Text R

7 minutesLatency 32-bit Integer C
Duration between the creation of the
Message and the creation of the like, in
minutes.

8 isNew Boolean C
False if person and friend know each
other, True otherwise

sort
1 likes.creationDate ↓
2 friend.id ↑

limit 20
CPs 2.2, 2.3, 3.3, 5.1, 8.1, 8.3

relevance

This query looks for paths of length two, starting from a given Person, moving to its published messages and then
to Persons who liked them. It tests several aspects related to join optimization, both at query optimization plan level
and execution engine level. On the one hand, many of the columns needed for the projection are only needed in
the last stages of the query, so the optimizer is expected to delay the projection until the end. This query implies
accessing two-hop data, and as a consequence, index accesses are expected to be scattered. We expect to observe
variate cardinalities, depending on the characteristics of the input parameter, so properly selecting the join operators
will be crucial. This query has a lot of correlated sub-queries, so it is testing the ability to flatten the query execution
plans.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 8 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 8
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 8
title Recent replies

pattern

description
Given a start Person with ID $personId, find the most recent Comments that are replies to Messages
of the start Person. Only consider direct (single-hop) replies, not the transitive (multi-hop) ones.
Return the reply Comments, and the Person that created each reply Comment.

params 1 $personId ID

result

1 commentAuthor.id ID R

2 commentAuthor.firstName String R

3 commentAuthor.lastName String R

4 comment.creationDate DateTime R

5 comment.id ID R

6 comment.content Text R

sort
1 comment.creationDate ↓
2 comment.id ↑

limit 20
CPs 2.4, 3.3, 5.3

relevance
This query looks for paths of length two, starting from a given Person, going through its created Messages and
finishing at their replies. In this query there is temporal locality between the replies being accessed. Thus the top-k
order by this can interact with the selection, i.e. do not consider older Posts than the 20th oldest seen so far.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 9 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 9
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 9
title Recent messages by friends or friends of friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages created by that Person’s
friends or friends of friends (excluding the start Person). Only consider Messages created before
the given $maxDate (excluding that day).

params
1 $personId ID

2 $maxDate Date

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 1.2, 2.2, 2.3, 3.2, 3.3, 8.5

relevance

This query looks for paths of length two or three, starting from a given Person, moving to its friends and friends of
friends, and ending at their created Messages. This is one of the most complex queries, as the list of choke points
indicates. This query is expected to touch variable amounts of data with entities of different characteristics, and
therefore, properly estimating cardinalities and selecting the proper operators will be crucial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 10 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 10
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 10
title Friend recommendation

pattern

description

Given a start Person with ID $personId, find that Person’s friends of friends (foaf) – excluding the
start Person and his/her immediate friends –, who were born on or after the 21st of a given $month
(in any year) and before the 22nd of the following month. Calculate the similarity between each
friend and the start person, where commonInterestScore is defined as follows:

• common = number of Posts created by friend, such that the Post has a Tag that the start person
is interested in

• uncommon = number of Posts created by friend, such that the Post has no Tag that the start
person is interested in

• commonInterestScore = common - uncommon

params

1 $personId ID

2 $month 32-bit Integer
Between 1 and 12. Implementations may also pass the next
month as an additional $nextMonth parameter

result

1 foaf.id ID R

2 foaf.firstName String R

3 foaf.lastName String R

4 commonInterestScore 32-bit Integer A

5 foaf.gender String R

6 city.name String R

sort
1 commonInterestScore ↓
2 foaf.id ↑

limit 10
CPs 2.3, 3.3, 4.1, 4.2, 5.1, 5.2, 6.1, 7.1, 8.6

relevance

This query looks for paths of length two, starting from a Person and ending at the friends of their friends. It does
widely scattered graph traversal, and one expects no locality of in friends of friends, as these have been acquired over
a long time and have widely scattered identifiers. The join order is simple but one must see that the anti-join for “not
in my friends” is better with hash. Also the last pattern in the scalar sub-queries joining or anti-joining the Tags of
the candidate’s Posts to interests of self should be by hash.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 11 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 11
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 11
title Job referral

pattern

description
Given a start Person with ID $personId, find that Person’s friends and friends of friends (excluding
start Person) who started working in some Company in a given Country with name $countryName,
before a given date ($workFromYear).

params

1 $personId ID

2 $countryName String

3 $workFromYear 32-bit Integer

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 company.name String R

5 workAt.workFrom 32-bit Integer R

sort

1 workAt.workFrom ↑
2 otherPerson.id ↑
3 company.name ↓

limit 10
CPs 1.3, 2.3, 2.4, 3.3, 4.2

relevance
This query looks for paths of length two or three, starting from a Person, moving to friends or friends of friends,
and ending at a Company. In this query, there are selective joins and a top-k order by that can be exploited for
optimizations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 12 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 12
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 12
title Expert search

pattern

description

Given a start Person with ID $personId, find the Comments that this Person’s friends made in reply
to Posts, considering only those Comments that are direct (single-hop) replies to Posts, not the
transitive (multi-hop) ones. Only consider Posts with a Tag in a given TagClass with name $tag-
ClassName or in a descendent of that TagClass. Count the number of these reply Comments, and
collect the Tags that were attached to the Posts they replied to, but only collect Tags with the given
TagClass or with a descendant of that TagClass. Return Persons with at least one reply, the reply
count, and the collection of Tags.

params
1 $personId ID

2 $tagClassName Long String

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 tagNames {Long String} A

5 replyCount 32-bit Integer A

sort
1 replyCount ↓
2 friend.id ↑

limit 20
CPs 3.3, 7.2, 7.3, 8.2

relevance

This query starts at a Person, moves to its friends, and the to their Comments and their root Posts. Then, it gets
the Tag of each Post and checks whether it (directly or transitively) belongs to the specified TagClass. This can be
thought of a bidirectional search between the Person and the TagClass. The difficulty of this query is determining
the optimal direction of this traversal.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 13 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 13
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 13
title Single shortest path

pattern

description

Given two Persons with IDs $person1Id and $person2Id, find the shortest path between these two
Persons in the subgraph induced by the knows edges. Return the length of this path:

• −1: no path found
• 0: start person = end person
• > 0: path found (start person ≠ end person)

params
1 $person1Id ID

In SNB Interactive v2, this query has two variants:
(b) Guaranteed that there is no path between the two
Persons
(b) Guaranteed that there is a 4-hop path between the two
Persons

2 $person2Id ID

result 1 shortestPathLength 32-bit Integer C

CPs 3.3, 7.2, 7.3, 7.5, 7.8, 8.1, 8.6

relevance
This query looks for a variable length path, starting at a given Person and finishing at an another given Person.
Proper cardinality estimation and search space pruning, will be crucial. This query also allows for possible parallel
implementations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 14 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / complex / 14v2
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 14v2
title Trusted connection paths (v2)

pattern

description

This query is used in SNB Interactive v2.
Find a cheapest path between two given Persons with IDs $person1Id and $person2Id in the in-
teraction subgraph. If there are multiple cheapest paths, any of them can be returned. Do not
return any rows if there is no path between the Persons. The interaction subgraph is based on a
projection of the Person-knows-Person graph. In this projection, only those knows edges are kept
whose endpoint Persons have at least one interaction between them. An interaction is defined as
a direct reply Comment (by one of the Persons) to a Message (by the other Person). The weights are
defined as: max(round(40 −√numInteractions),1)
Note: Interactions are counted both ways, e.g. if Alice knows Bob, Alice writes 2 reply Comments
to Bob’s Messages and Bob writes 3 reply Comments to Alice’s Messages, their total number of
interactions is 5 and the weight of the knows edge is 38.
Remark: Determinism is ensured by using square root followed by rounding. For all integers
between 1 and 100000, the square root’s fractional part is more than 10e-5 from 0.5, where the
rounding could be non-deterministic based on floating point inaccuracies. As 10e-5 is signifi-
cantly larger than the machine epsilon of IEEE 754 floats (both 32- and 64-bit), the floating point
inaccuracies have no chance to affect the derived integer edge weights.

params
1 $person1Id ID

(b) There are no paths between the two Persons
(b) There is a 4-hop path between the two Persons

2 $person2Id ID

result
1 personIdsInPath [ID] C

Identifiers representing an ordered sequence of
the Persons in the path

2 pathWeight 64-bit Integer C

CPs 3.3, 5.3, 7.6, 7.7, 7.8, 8.1, 8.2, 8.3, 8.6
relevance This query tests the performance of cheapest path (weighted shortest path) computation.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 15 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

1.2.2 Short Reads

Interactive / short / 1
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 1
title Profile of a person

pattern

description
Given a start Person with ID $personId, retrieve their first name, last name, birthday, IP address,
browser, and city of residence.

params 1 $personId ID

result

1 person.firstName String R

2 person.lastName String R

3 person.birthday Date R

4 person.locationIP String R

5 person.browserUsed String R

6 city.id ID R

7 person.gender String R

8 person.creationDate DateTime R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 16 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / short / 2
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 2
title Recent messages of a person

pattern

description

Given a start Person with ID $personId, retrieve the last 10 Messages created by that user. For each
Message, return that Message, the original Post in its conversation (post), and the author of that Post
(originalPoster). If any of the Messages is a Post, then the original Post (post) will be the same
Message, i.e. that Message will appear twice in that result.

params 1 $personId ID

result

1 message.id ID R

2

message.content or
message.imageFile (for
photos)

Text R

3 message.creationDate DateTime R

4 post.id ID R

5 originalPoster.id ID R

6 originalPoster.firstName String R

7 originalPoster.lastName String R

sort
1 message.creationDate ↓
2 message.id ↓

limit 10

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 17 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / short / 3
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 3
title Friends of a person

pattern

description
Given a start Person with ID $personId, retrieve all of their friends, and the date at which they
became friends.

params 1 $personId ID

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 knows.creationDate DateTime R

sort
1 knows.creationDate ↓
2 friend.id ↑

Interactive / short / 4
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 4
title Content of a message

pattern

description Given a Message with ID $messageId, retrieve its content and creation date.

params 1 $messageId ID

result

1 message.creationDate DateTime R messageCreationDate

2

message.content or
message.imageFile (for
photos)

Text R messageContent

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 18 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / short / 5
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 5
title Creator of a message

pattern

description Given a Message with ID $messageId, retrieve its author.

params 1 $messageId ID

result

1 person.id ID R

2 person.firstName String R

3 person.lastName String R

Interactive / short / 6
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 6
title Forum of a message

pattern

description
Given a Message with ID $messageId, retrieve the Forum that contains it and the Person that mod-
erates that Forum. Since Comments are not directly contained in Forums, for Comments, return the
Forum containing the original Post in the thread which the Comment is replying to.

params 1 $messageId ID

result

1 forum.id ID R

2 forum.title Long String R

3 moderator.id ID R

4 moderator.firstName String R

5 moderator.lastName String R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 19 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Interactive / short / 7
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 7
title Replies of a message

pattern

description

Given a Message with ID $messageId, retrieve the (1-hop) Comments that reply to it.
In addition, return a boolean flag knows indicating if the author of the reply (replyAuthor) knows
the author of the original message (messageAuthor). If author is same as original author, return
False for knows flag.

params 1 $messageId ID

result

1 comment.id ID R

2 comment.content Text R

3 comment.creationDate DateTime R

4 replyAuthor.id ID R

5 replyAuthor.firstName String R

6 replyAuthor.lastName String R

7 knows Boolean C

True if the knows edge exists between the
replyAuthor and the messageAuthor nodes,
False otherwise (including the case when
the two nodes are the same)

sort
1 comment.creationDate ↓
2 replyAuthor.id ↑

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 20 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

1.2.3 Insert Operations

Updates / insert / 1
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 1
title Add person

pattern

description Add a Person node, connected to the network by 4 possible edge types.

params

1 $personId ID

2 $personFirstName String

3 $personLastName String

4 $gender String

5 $birthday Date

6 $creationDate DateTime

7 $locationIP String

8 $browserUsed String

9 $cityId ID

10 $languages {String}

11 $emails {Long String}

12 $tagIds {ID}

13 $studyAt {<ID, 32-bit
Integer>} {<universityId, classYear>}

14 $workAt {<ID, 32-bit
Integer>} {<companyId, workFrom>}

CPs 9.1, 9.2

Updates / insert / 2
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 2
title Add like to post

pattern

description Add a likes edge to a Post.

params

1 $personId ID

2 $postId ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 21 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Updates / insert / 3
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 3
title Add like to comment

pattern

description Add a likes edge to a Comment.

params

1 $personId ID

2 $commentId ID

3 $creationDate DateTime

CPs 9.2

Updates / insert / 4
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 4
title Add forum

pattern

description Add a Forum node, connected to the network by 2 possible edge types.

params

1 $forumId ID

2 $forumTitle Long String

3 $creationDate DateTime

4 $moderatorId ID

5 $tagIds {ID}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 22 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Updates / insert / 5
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 5
title Add forum membership

pattern

description Add a Forum membership edge (hasMember) to a Person.

params

1 $personId ID

2 $forumId ID

3 $creationDate DateTime

CPs 9.1, 9.2

Updates / insert / 6
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 6
title Add post

pattern

description
Add a Post node connected to the network by 4 possible edge types (hasCreator, containerOf, isLo-
catedIn, hasTag).

params

1 $postId ID

2 $imageFile String

3 $creationDate DateTime

4 $locationIP String

5 $browserUsed String

6 $language String

7 $content Text

8 $length 32-bit Integer

9 $authorPersonId ID

10 $forumId ID

11 $countryId ID

12 $tagIds {ID}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 23 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Updates / insert / 7
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 7
title Add comment

pattern

description
Add a Comment node replying to a Post/Comment, connected to the network by 4 possible edge
types (replyOf, hasCreator, isLocatedIn, hasTag).

params

1 $commentId ID

2 $creationDate DateTime

3 $locationIP String

4 $browserUsed String

5 $content Text

6 $length 32-bit Integer

7 $authorPersonId ID

8 $countryId ID

9 $replyToPostId ID
old version: −1 if the Comment is a reply of a
Comment; new version: null if the Comment is a
reply of a Post

10 $replyToCommentId ID
old version: −1 if the Comment is a reply of a Post;
new version: null if the Comment is a reply of a
Post

11 $tagIds {ID}

CPs 9.1, 9.2

Updates / insert / 8
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 8
title Add friendship

pattern

description Add a friendship edge (knows) between two Persons.

params

1 $person1Id ID

2 $person2Id ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 24 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

1.2.4 Delete Operations

Updates / delete / 1
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 1
title Remove person and its personal forums and message (sub)threads

pattern

description

Remove a Person with ID $personId and its edges (isLocatedIn, studyAt, workAt, hasInterest, likes,
knows, hasMember, hasModerator, hasCreator). Additionally, remove the Album and Wall Forums
whose moderator is the Person and remove all Messages the Person has created in the rest of the
Forums (Groups).

params 1 $personId ID

CPs 9.3, 9.4, 9.5

relevance

• Removal of a Person removes Forums of type “Walls” and “Albums” but not “Groups”, which can continue
if even the founder has left the network. For Groups, the hasModerator edge is deleted. We have discussed
various approaches to appoint a new moderator, e.g.

1. choose member at random from the set of existing group members or
2. the member with the oldest group join date becomes the moderator. However, to keep the generator

and the workload simple, currently no moderator is selected, leaving the group without a moderator.

• Removal of a Person removes all Posts/Comments they are creator of this could result in the removal of a
Comment in the middle of a thread.

Updates / delete / 2
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 2
title Remove post like

pattern

description Given a Person with ID $personId and a Post with ID $postId, remove the likes edge between them.

params
1 $personId ID

2 $postId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Post, this can be reflected by the relative
frequency of the operation.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 25 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Updates / delete / 3
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 3
title Remove comment like

pattern

description
Given a Personwith ID $personId and a Commentwith ID $commentId, remove the likes edge between
them.

params
1 $personId ID

2 $commentId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Comment, this can be reflected by the relative
frequency of the operation.

Updates / delete / 4
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 4
title Remove forum and its content

pattern

description
Remove a Forum with ID $forumId and its edges (hasModerator, hasMember, hasTag) and all Posts in
the Forum (connected by containerOf edges) and their direct and transitive Comments.

params 1 $forumId ID

CPs 9.3, 9.4, 9.5
relevance n/a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 26 of 33

Chapter 1. Interactive v2 Workload 1.2. Operations

Updates / delete / 5
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 5
title Remove forum membership

pattern

description
Given a Forum with ID $forumId and a Person with ID $personId, remove the hasMember edge
between them.

params
1 $forumId ID

2 $personId ID

CPs 9.4
relevance n/a

Updates / delete / 6
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 6
title Remove post thread

pattern

description
Remove a Post node with ID $postId and its edges (isLocatedIn, likes, hasCreator, hasTag, containerOf).
Remove all replies to the Post and the connecting replyOf edges. In addition, remove all transitive
reply Comments to the Post and their edges.

params 1 $postId ID

CPs 9.3, 9.4, 9.5
relevance n/a

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 27 of 33

Chapter 1. Interactive v2 Workload 1.3. Parameter Curation

Updates / delete / 7
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 7
title Remove comment subthread

pattern

description
Remove a Comment node with ID $commentId and its edges (isLocatedIn, likes, hasCreator, hasTag).
In addition, remove all replies to the Comment connected by replyOf and their edges.

params 1 $commentId ID

CPs 9.3, 9.4, 9.5
relevance n/a

Updates / delete / 8
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 8
title Remove friendship

pattern

description
Given two Person nodes with IDs $person1Id and $person2Id, remove the knows edge between
them.

params
1 $person1Id ID

2 $person2Id ID

CPs 9.4
relevance n/a

1.3 Parameter Curation

To prevent caching query results, the SNB Interactive v2 driver instantiates the parameterized complex
read (IC) query templates with different substitution parameters (a.k.a. parameter bindings). However,
the naïve approach (using a uniform random sampling of parameters and ignoring updates) leads to
unstable runtimes, which compromise both the benchmark’s understandability and reproducibility. To
ensure stable runtimes, LDBC invented parameter curation techniques, which select parameters that
produce query runtimes with a unimodal (preferably Gaussian) distribution [5, 10].

1.3.1 Building Blocks for Parameter Curation

Temporal bucketing To ensure that operations are always executable, i.e. they avoid targeting nodes
that are yet to be inserted or ones that are already deleted, the parameter curation process in Interactive v2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 28 of 33

Chapter 1. Interactive v2 Workload 1.3. Parameter Curation

employs temporal bucketing. Namely, we create a parameter bucket for each day in the simulation time
of the update streams, i.e. each day in the simulation time has its own distinct set of parameters. This
is a novel feature in Interactive v2 – previous SNB benchmarks lacked this feature and only selected
parameters from the initial snapshot.

Factor tables As shown in Figure 1.1, the parameter generation is a two-step process. The factor
generator produces factor tables, which contain data cube-like summary statistics [4] of the temporal
graph such as the number of Messages for friends. The factor generator is executed in a distributed setup
using Spark as this computation includes expensive joins over large tables, e.g. knows(person, friend) &
hasCreator(person, comment).

1.3.2 Parameter Curation for Relational Queries

For relational queries (without path-finding), we based our parameter generation on two techniques.

(1) Selecting windows To select the parameters that are expected to yield similar runtimes, we look
for windows with the smallest variance for a given value using SQL window functions. The parameters
are first sorted and grouped together based on their difference in frequency. Groups that are smaller
than a given minimum threshold are discarded to select a group of parameters large enough to generate a
sufficient amount of parameters. From the latter, we select the group with the smallest standard deviation.

(2) Selecting distributions For queries where we want to select parameters that are correlated or anti-
correlated, we use factor tables encoding possible combinations (e.g. countryPairsNumFriends for IC 3):
we select values near a high percentile for the correlated and a low percentile for the anti-correlated case.

Generating the parameters The parameter candidates discovered by the previous approaches are
stored in temporary tables. The parameter generation step uses these tables to select parameters for
each day in the update stream.

1.3.3 Parameter Curation for Path-Finding Queries

The effect of deletes A key distinguishing feature of graph data management systems is their first-
class support for path queries [1]. We demonstrate why ensuring stable query runtimes for path queries
is particularly challenging through the example of Figure 1.2a, where we query for the (unweighted)
shortest path between Ada and Bob over a dynamic graph. Initially, at t = 1, the length of the shortest
path is 4 hops. Then, the edge between Carl and Dan is deleted, making Ada and Bob unreachable from
each other at t = 2. Finally, a new edge is inserted between Carl and Bob, yielding a shortest path of
length 3 at t = 3. This illustrates how a given input parameter (a pair of Persons) can oscillate between
being reachable and being in disjoint connected components over a short period. To ensure stable query
runtimes for path queries in the presence of inserts and deletes, Interactive v2 introduces a novel path
curation algorithm, which produces pairs of Person nodes whose shortest path length from each other is
guaranteed to be exactly k hops at any point during a given day.

Graph construction The parameter curation algorithm builds two variants of the Person–knows–
Person subgraph for each day based on the temporal graph: graph G1 has the inserts applied until the
beginning of the day and the deletes applied until the end of the day, while G2 has the deletes applied
until the beginning of the day and the inserts applied until the end of the day. For a given pair of Per-
son nodes, their shortest path length in G1 is an upper bound kupper on their shortest path length at any
point in the day – when the inserts during the day are gradually applied, the shortest path length can only
become shorter. Conversely, G2 gives a lower bound klower for the shortest path – the deletes can only
make the shortest path length become longer.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 29 of 33

Chapter 1. Interactive v2 Workload 1.4. Workload Scheduling and Benchmark Driver

Parameter selection The bounds provided by G1 and G2 guarantee for the shortest path length k that
klower ≤ k ≤ kupper will hold at any point during the day. We can ensure that k will stay constant during
the day by selecting Person pairs where klower = kupper holds. To this end, we select pairs who are exactly
4 hops apart in bothG1 andG2, hence they will be always 4 hops apart during the given day. Unreachable
pairs of nodes can be generated by calculating the connected components ofG2 and selecting nodes from
disjoint components. The path curation for both the reachable and the unreachable cases is implemented
using the NetworKit graph algorithm library [9].

(a) Shortest path (denoted with thick lines)
between Ada and Bob in the presence of up-
dates.

100 101 102 103

Country Pair Index

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
rie

nd
sh

ip
s

Frequency of friendships between country pairs
High correlation
Low correlation

(b) Pairs of Countries in the countryPairsNumFriends factor table
representing the number of friendships between both Countries.

Figure 1.2: Example graph and distribution for path curation.

1.3.4 Query Variants

The new workload introduces variants for three queries: IC 3 , IC 13 , IC 14v2 .

Complex read 3: Correlated vs. anti-correlated Countries For IC 3 , variant IC 3(a) starts from
Countries that have a high correlation in the friendship network, while variant IC 3(b) starts from Coun-
tries that have a low correlation of friendships between. To generate these inputs, we use the country-
PairsNumFriends factor table visualized in Figure 1.2b and select values at percentile 1.00 for variant (a)
and percentile 0.01 for variant (b).

Complex reads 13 and 14: Reachable vs. unreachable Persons Path queries are expected to have
different runtimes if there is a path vs. when there is no path. While the performance characteristics vary
highly between systems, in principle, the “no path” case should be simpler in the SNB graph, where one
of the nodes is always in a small connected component. To distinguish between these cases, we have two
variants for the two path queries IC 13 and IC 14v2 . For variants (a) we select Person pairs which
do not have a path, and for variants (b) we select pairs which have a path of length 4.

1.3.5 Parameter Generator Implementation

The parameter generator is implemented in Python using NetworKit [9] and SQL queries executed by
DuckDB [8]. Based on our experiments in [6, Figure 4.3], the new parameter generator is scalable.
Even with the significant extra work performed for temporal bucketing, it outperforms the old parameter
generator by more than 100× on SF1 000, and finishes in less than 1.5 hours on SF10 000.

1.4 Workload Scheduling and Benchmark Driver

In this section, we explain how operations are scheduled in the SNB Interactive workload, how the driver
operates, and how the final throughput metric is determined. In all cases, we assume that the system-

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 30 of 33

Chapter 1. Interactive v2 Workload 1.4. Workload Scheduling and Benchmark Driver

under-test has been populated with the initial snapshot using a bulk loader before the driver runs the
operations.

1.4.1 Scheduling Operations

TCR (total compression ratio) The scheduling follows the simulation time of the temporal social
network graph. The user-provided total compression ratio (TCR) value controls the speed at which the
simulation is replayed. For example, a TCR value of 0.02 means that the simulation is replayed 50×
faster, i.e. for every 20 milliseconds in wall clock time, 1 second passes in the simulation time.

Update operations The driver replays the update operations starting from the cutoff date, Nov 29,
2012. The operations are scheduled according to the distance of their start time from this date, adjusted
by the TCR. They are then used to set the cadence of the schedule for the complex reads and, in turn, the
short read queries, as we will explain momentarily.

Complex read queries The complex read queries differ significantly in their expected runtimes as they
touch on different amounts of data. As each query instance contributes equally to the output metric,2 we
balance them such that each query type is expected to take the same amount of time to execute. For
example, IC 14 (new) is expected to be more difficult than IC 13, therefore it is scheduled less frequently.
Frequencies vary based on the SF as the relative difficulties of queries change with the data size (e.g.
three-hop neighbourhood queries grow faster on larger SFs than one-hop ones).

Short read queries Short read queries are triggered by complex read queries and other short read
queries, and use their output as their input. For example, both IC 3 and IC 14 trigger IS 2, which also
triggers itself. This mimics the real-life scenario of a user retrieving more information about Person
profiles based on the result of the earlier queries. To see which short read queries are potentially triggered
after given short read and complex read queries, see ??.

1.4.2 Driver

(a) Validation workflow running on a single thread.

(b) Benchmark workflow using multiple threads.

Figure 1.3: Workflow of driver modes in SNB Interactive v2.

Driver modes The SNB driver has two key modes of operation. In cross-validation mode (Fig-
ure 1.3a)m the driver tests an implementation against the output of another implementation. To ensure
deterministic results, operations in this mode are executed sequentially with no overlap between queries
and updates. In benchmark mode (Figure 1.3b), the driver performs a benchmark run where queries and
updates are issued concurrently from multiple threads. The run starts with a 30-minute warm-up period,
followed by a 2-hour measurement window. This mode does not perform validation as query results may
differ (slightly) due to concurrent updates.

2Unlike in TPC-H [11] and SNB BI [10], which use geometric mean in their metrics.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 31 of 33

Chapter 1. Interactive v2 Workload 1.4. Workload Scheduling and Benchmark Driver

Dependency tracking To ensure that updates are executable, concurrent threads must be synchronized
so that an operation is only executed when its dependencies exist in the network (e.g. twoPersons can only
become friends if both of them already exist). This is achieved via maintaining a global clock in the driver
and performing dependency tracking for the updates [3]: each update operation has a timestamp denoting
the creation time of the last operation it depends on. The data generator calculates these timestamp
during generation and ensures that there is a minimum time separation, Tsafe, between dependent entities
to reduce synchronization overhead in the driver when executing operations. The driver then only needs
to check every Tsafe time whether a given update operation can be executed. By default, Tsafe is set to 10
seconds in the simulation time.

Latency requirements The workload simulates a highly transactional scenario where operations are
subject to (soft) latency requirements. To incorporate this in the workload, it prescribes the 95% on-time
requirement: for a benchmark run to be successful, 95% of the operations must start on-time, i.e. within
1 second of their scheduled start time. Benchmark runs where the system-under-test falls behind too
much from the schedule are considered invalid.

Throughput The throughput of a run is the total number of operations (IC , IS , INS, DEL) executed per
second. A lower TCR value implies a higher throughput.

Individual execution times To facilitate deeper analyis, the benchmark driver also collects all individ-
ual query execution times. Based on these, the benchmark reports must include statics for each operation
type (min, max, mean, P50, P90, P95, and P99 of the execution times).

Driver implementation in v2 The Interactive v2 is implemented in Java 17. It consists of 26 500 lines
of code for the core project and an additional 18 000 lines of test code. The new version contains several
patches including bug fixes, usability improvements, and performance optimizations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 32 of 33

Bibliography Bibliography

Bibliography

[1] Renzo Angles et al. “Foundations of Modern Query Languages for Graph Databases”. In: ACM
Comput. Surv. 50.5 (2017), 68:1–68:40. doi: 10.1145/3104031.

[2] Alin Deutsch et al. “Graph Pattern Matching in GQL and SQL/PGQ”. In: SIGMOD. ACM, 2022,
pp. 2246–2258. doi: 10.1145/3514221.3526057.

[3] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Workload”. In: SIGMOD.
2015, pp. 619–630. doi: 10.1145/2723372.2742786.

[4] Jim Gray et al. “Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-
Tab, and Sub Totals”. In: Data Min. Knowl. Discov. 1.1 (1997), pp. 29–53. doi: 10 . 1023 / A :
1009726021843.

[5] Andrey Gubichev and Peter A. Boncz. “Parameter Curation for Benchmark Queries”. In: TPCTC.
Vol. 8904. Lecture Notes in Computer Science. Springer, 2014, pp. 113–129.

[6] David Püroja. “LDBC Social Network Benchmark Interactive v2”. https://ldbcouncil.org/docs/
papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf. Master’s thesis. Universiteit van
Amsterdam, 2023.

[7] David Püroja et al. “The LDBC Social Network Benchmark Interactive workload v2: A transac-
tional graph query benchmark with deep delete operations”. In: CoRR abs/2307.04820 (2023).
doi: 10.48550/arXiv.2307.04820.

[8] Mark Raasveldt and Hannes Mühleisen. “DuckDB: An Embeddable Analytical Database”. In:
SIGMOD. ACM, 2019, pp. 1981–1984. doi: 10.1145/3299869.3320212.

[9] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. “NetworKit: A tool suite for
large-scale complex network analysis”. In: Netw. Sci. 4.4 (2016), pp. 508–530. doi: 10.1017/nws.
2016.20.

[10] Gábor Szárnyas et al. “The LDBC Social Network Benchmark: Business Intelligence Workload”.
In: Proc. VLDB Endow. 16.4 (2022), pp. 877–890. url: https://ldbcouncil.org/docs/papers/
ldbc-snb-bi-vldb-2022.pdf.

[11] TPC (Transaction Processing Performance Council). “TPC Benchmark H, revision 2.18.0”. In:
(2017), pp. 1–138. url: http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.
pdf.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 33 of 33

https://doi.org/10.1145/3104031
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1023/A:1009726021843
https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf
https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf
https://doi.org/10.48550/arXiv.2307.04820
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20
https://ldbcouncil.org/docs/papers/ldbc-snb-bi-vldb-2022.pdf
https://ldbcouncil.org/docs/papers/ldbc-snb-bi-vldb-2022.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

	Interactive v2 Workload
	Overview
	Operations
	Complex Reads
	Short Reads
	Insert Operations
	Delete Operations

	Parameter Curation
	Building Blocks for Parameter Curation
	Parameter Curation for Relational Queries
	Parameter Curation for Path-Finding Queries
	Query Variants
	Parameter Generator Implementation

	Workload Scheduling and Benchmark Driver
	Scheduling Operations
	Driver

