
Chapter 1. Interactive v1 Workload

1 Interactive v1 Workload

The Interactive v1 workload consists of a set of relatively complex read-only queries, that touch a sig-
nificant amount of data – often the two-step friendship neighbourhood and associated messages –, but
typically in close proximity to a single node. Hence, the query complexity is sublinear to the dataset size.

The LDBC SNB Interactive workload consists of three query classes:

• Complex read-only queries. See Section 1.1.
• Short read-only queries. See Section 1.2.
• Insert operations. See Section 1.3.

Related Publications

A detailed description of the workload (covering reads and inserts) is available in the paper published at
SIGMOD 2015 [1]. The ACID Test Suite was first published at TPCTC 2020 [2].

Related Software Components

• Datagen (Hadoop-based): https://github.com/ldbc/ldbc_snb_datagen_hadoop
• Driver: https://github.com/ldbc/ldbc_snb_interactive_v1_driver
• Reference implementations: https://github.com/ldbc/ldbc_snb_interactive_v1_impls

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 1 of 27

https://github.com/ldbc/ldbc_snb_datagen_hadoop
https://github.com/ldbc/ldbc_snb_interactive_v1_driver
https://github.com/ldbc/ldbc_snb_interactive_v1_impls

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

1.1 Complex Reads

Interactive / complex / 1
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 1
title Transitive friends with certain name

pattern

description

Given a start Person with ID $personId, find Persons with a given first name ($firstName) that the
start Person is connected to (excluding start Person) by at most 3 steps via the knows relationships.
Return Persons, including the distance (1..3), summaries of the Persons workplaces and places of
study.

params
1 $personId ID

2 $firstName String

result

1 otherPerson.id ID R

2 otherPerson.lastName String R

3 distanceFromPerson 32-bit Integer C

4 otherPerson.birthday Date R

5 otherPerson.creationDate DateTime R

6 otherPerson.gender String R

7 otherPerson.browserUsed String R

8 otherPerson.locationIP String R

9 otherPerson.email {Long String} R

10 otherPerson.speaks {String} R

11 locationCity.name String R

12 universities
{<String,
32-bit Integer,
String>}

A
{<university.name, studyAt.classYear,
universityCity.name>}

13 companies
{<String,
32-bit Integer,
String>}

A
{<company.name, workAt.workFrom,
companyCountry.name>}

sort

1 distanceFromPerson ↑
2 otherPerson.lastName ↑
3 otherPerson.id ↑

limit 20
CPs 2.1, 5.3, 8.2

relevance

This query is a representative of a simple navigational query. It is interesting for several aspects. (1) It requires for
a complex aggregation for returning the concatenation of universities, companies, languages and email information
of the Person. (2) It tests the ability of the optimizer to move the evaluation of sub-queries functionally dependant
on the Person, after the evaluation of the top-k. (3) Its performance is highly sensitive to properly estimating the
cardinalities in each transitive path, and paying attention not to explore already visited Persons.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 2 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 2
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 2
title Recent messages by your friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages from all of that Person’s
friends (friend nodes). Only consider Messages created before the given $maxDate (excluding that
day).

params
1 $personId ID

2 $maxDate Date

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 2.2, 2.3, 3.2, 8.5

relevance

This is a navigational query looking for paths of length two, starting from a given Person, going to their friends and
from them, moving to their published Posts and Comments. This query exercices both the optimizer and how data
is stored. It tests the ability to create execution plans taking advantage of the orderings induced by some operators to
avoid performing expensive sorts. This query requires selecting Posts and Comments based on their creation date,
whichmight be correlated with their identifier and therefore, having intermediate results with interesting orders. Also,
messages could be stored in an order correlated with their creation date to improve data access locality. Finally, as
many of the attributes required in the projection are not needed for the execution of the query, it is expected that the
query optimizer will move the projection to the end.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 3 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 3
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 3
title Friends and friends of friends that have been to given countries

pattern

description

Given a start Person with ID $personId, find Persons that are their friends and friends of friends
(excluding the start Person) that have made Posts / Comments in both of the given Countries (named
$countryXName and $countryYName), within [$startDate, $startDate + $durationDays) (closed-
open interval). Only Persons that are foreign to these Countries are considered, that is Persons
whose location Country is neither named $countryXName nor $countryYName.

params

1 $personId ID

2 $countryXName String
In SNB Interactive v2, this query has two variants:
(a) Correlated Countries
(b) Anti-correlated Countries

3 $countryYName String

4 $startDate Date Beginning of requested period

5 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 xCount 32-bit Integer A
Number of Messages from Country named
$countryXName created by the Person within
the given time

5 yCount 32-bit Integer A
Number of Messages from Country named
$countryYName created by the Person within
the given time

6 count 32-bit Integer A count = xCount + yCount

sort
1 count ↓
2 otherPerson.id ↑

limit 20
CPs 2.1, 3.1, 5.1, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a Person, going to friends or friends of friends, and
then moving toMessages. This query tests the ability of the query optimizer to select the most efficient join ordering,
which will depend on the cardinalities of the intermediate results. Many friends of friends can be duplicate, then it
is expected to eliminate duplicates and those people prior to access the Post and Comments, as well as eliminate
those friends from Countries named $countryXName and $countryYName, as the size of the intermediate results can be
severely affected. A possible structural optimization could be to materialize the number of Posts and Comments
created by a Person, and progressively filter those people that could not even fall in the top 20 even having all their
posts in the Countries named $countryXName and $countryYName.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 4 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 4
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 4
title New topics

pattern

description

Given a start Personwith ID $personId, find Tags that are attached to Posts that were created by that
Person’s friends. Only include Tags that were attached to friends’ Posts created within a given time
interval [$startDate, $startDate + $durationDays) (closed-open) and that were never attached
to friends’ Posts created before this interval.

params

1 $personId ID

2 $startDate Date

3 $durationDays 32-bit Integer
Duration of requested period, in days. The interval
[$startDate, $startDate + $durationDays) is
closed-open

result

1 tag.name Long String R

2 postCount 32-bit Integer A
Number of Posts made within the given time interval
that have tag

sort
1 postCount ↓
2 tag.name ↑

limit 10
CPs 2.3, 8.2, 8.5

relevance

This query looks for paths of length two, starting from a given Person, moving to Posts and then to Tags. It tests
the ability of the query optimizer to properly select the usage of hash joins or index based joins, depending on the
cardinality of the intermediate results. These cardinalities are clearly affected by the input Person, the number of
friends, the variety of Tags, the time interval and the number of Posts.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 5 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 5
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 5
title New groups

pattern

description

Given a start Person with ID $personId, denote their friends and friends of friends (excluding the
start Person) as otherPerson.
Find Forums that any Person otherPerson became a member of after a given date ($minDate). For
each of those Forums, count the number of Posts that were created by the Person otherPerson.

params
1 $personId ID

2 $minDate Date

result

1 forum.title Long String R

2 postCount 32-bit Integer A
Number of Posts made in forum that were created by
the Person otherPerson

sort
1 postCount ↓
2 forum.id ↑

limit 20
CPs 2.3, 3.3, 8.2, 8.5

relevance

This query looks for paths of length two and three, starting from a given Person, moving to friends and friends
of friends, and then getting the Forums they are members of. Besides testing the ability of the query optimizer to
select the proper join operator, it rewards the usage of indices, but their accesses will be presumably scattered due to
the two/three-hop search space of the query, leading to unpredictable and scattered index accesses. Having efficient
implementations of such indices will be highly beneficial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 6 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 6
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 6
title Tag co-occurrence

pattern

description

Given a start Person with ID $personId and a Tag with name $tagName, find the other Tags that
occur together with this Tag on Posts that were created by start Person’s friends and friends of
friends (excluding start Person). Return top 10 Tags, and the count of Posts that were created by
these Persons, which contain both this Tag and the given Tag.

params
1 $personId ID

2 $tagName Long String

result

1 otherTag.name Long String R

2 postCount 32-bit Integer A
Number of Posts that were created by friends and
friends of friends, which have the Tag otherTag

sort
1 postCount ↓
2 otherTag.name ↑

limit 10
CPs 5.1, 8.2

relevance This query looks for paths of lengths three or four, starting from a given Person, moving to friends or friends of
friends, then to Posts and finally ending at a given Tag.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 7 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 7
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 7
title Recent likers

pattern

description

Given a start Person with ID $personId, find the most recent likes on any of start Person’s Mes-
sages. Find Persons that liked (likes edge) any of start Person’s Messages, the Messages they liked
most recently, the creation date of that like, and the latency in minutes (minutesLatency) between
creation of Messages and like. Additionally, for each Person found return a flag indicating (isNew)
whether the liker is a friend of start Person. In case that a Person liked multiple Messages at the
same time, return the Message with lowest identifier.
Validation rule: Depending on whether the system-under-test supports leap seconds or uses
UTC-SLS (UTC with Smoothed Leap Seconds), a difference of 1 minute can occur between the
minutesLatency results of two correct implementations when the time interval includes June 30,
2012, when there was a leap second. Therefore, the minutesLatency value is validated using a
tolerance of 1 minute.

params 1 $personId ID

result

1 friend.id ID R friend.id = personId is allowed
2 friend.firstName String R

3 friend.lastName String R

4 likes.creationDate DateTime R

5 message.id ID R

6

message.content or
message.imageFile (for
photos)

Text R

7 minutesLatency 32-bit Integer C
Duration between the creation of the
Message and the creation of the like, in
minutes.

8 isNew Boolean C
False if person and friend know each
other, True otherwise

sort
1 likes.creationDate ↓
2 friend.id ↑

limit 20
CPs 2.2, 2.3, 3.3, 5.1, 8.1, 8.3

relevance

This query looks for paths of length two, starting from a given Person, moving to its published messages and then
to Persons who liked them. It tests several aspects related to join optimization, both at query optimization plan level
and execution engine level. On the one hand, many of the columns needed for the projection are only needed in
the last stages of the query, so the optimizer is expected to delay the projection until the end. This query implies
accessing two-hop data, and as a consequence, index accesses are expected to be scattered. We expect to observe
variate cardinalities, depending on the characteristics of the input parameter, so properly selecting the join operators
will be crucial. This query has a lot of correlated sub-queries, so it is testing the ability to flatten the query execution
plans.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 8 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 8
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 8
title Recent replies

pattern

description
Given a start Person with ID $personId, find the most recent Comments that are replies to Messages
of the start Person. Only consider direct (single-hop) replies, not the transitive (multi-hop) ones.
Return the reply Comments, and the Person that created each reply Comment.

params 1 $personId ID

result

1 commentAuthor.id ID R

2 commentAuthor.firstName String R

3 commentAuthor.lastName String R

4 comment.creationDate DateTime R

5 comment.id ID R

6 comment.content Text R

sort
1 comment.creationDate ↓
2 comment.id ↑

limit 20
CPs 2.4, 3.3, 5.3

relevance
This query looks for paths of length two, starting from a given Person, going through its created Messages and
finishing at their replies. In this query there is temporal locality between the replies being accessed. Thus the top-k
order by this can interact with the selection, i.e. do not consider older Posts than the 20th oldest seen so far.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 9 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 9
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 9
title Recent messages by friends or friends of friends

pattern

description
Given a start Person with ID $personId, find the most recent Messages created by that Person’s
friends or friends of friends (excluding the start Person). Only consider Messages created before
the given $maxDate (excluding that day).

params
1 $personId ID

2 $maxDate Date

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 message.id ID R

5

message.content or
message.imageFile (for
photos)

Text R

6 message.creationDate DateTime R

sort
1 message.creationDate ↓
2 message.id ↑

limit 20
CPs 1.1, 1.2, 2.2, 2.3, 3.2, 3.3, 8.5

relevance

This query looks for paths of length two or three, starting from a given Person, moving to its friends and friends of
friends, and ending at their created Messages. This is one of the most complex queries, as the list of choke points
indicates. This query is expected to touch variable amounts of data with entities of different characteristics, and
therefore, properly estimating cardinalities and selecting the proper operators will be crucial.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 10 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 10
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 10
title Friend recommendation

pattern

description

Given a start Person with ID $personId, find that Person’s friends of friends (foaf) – excluding the
start Person and his/her immediate friends –, who were born on or after the 21st of a given $month
(in any year) and before the 22nd of the following month. Calculate the similarity between each
friend and the start person, where commonInterestScore is defined as follows:

• common = number of Posts created by friend, such that the Post has a Tag that the start person
is interested in

• uncommon = number of Posts created by friend, such that the Post has no Tag that the start
person is interested in

• commonInterestScore = common - uncommon

params

1 $personId ID

2 $month 32-bit Integer
Between 1 and 12. Implementations may also pass the next
month as an additional $nextMonth parameter

result

1 foaf.id ID R

2 foaf.firstName String R

3 foaf.lastName String R

4 commonInterestScore 32-bit Integer A

5 foaf.gender String R

6 city.name String R

sort
1 commonInterestScore ↓
2 foaf.id ↑

limit 10
CPs 2.3, 3.3, 4.1, 4.2, 5.1, 5.2, 6.1, 7.1, 8.6

relevance

This query looks for paths of length two, starting from a Person and ending at the friends of their friends. It does
widely scattered graph traversal, and one expects no locality of in friends of friends, as these have been acquired over
a long time and have widely scattered identifiers. The join order is simple but one must see that the anti-join for “not
in my friends” is better with hash. Also the last pattern in the scalar sub-queries joining or anti-joining the Tags of
the candidate’s Posts to interests of self should be by hash.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 11 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 11
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 11
title Job referral

pattern

description
Given a start Person with ID $personId, find that Person’s friends and friends of friends (excluding
start Person) who started working in some Company in a given Country with name $countryName,
before a given date ($workFromYear).

params

1 $personId ID

2 $countryName String

3 $workFromYear 32-bit Integer

result

1 otherPerson.id ID R

2 otherPerson.firstName String R

3 otherPerson.lastName String R

4 company.name String R

5 workAt.workFrom 32-bit Integer R

sort

1 workAt.workFrom ↑
2 otherPerson.id ↑
3 company.name ↓

limit 10
CPs 1.3, 2.3, 2.4, 3.3, 4.2

relevance
This query looks for paths of length two or three, starting from a Person, moving to friends or friends of friends,
and ending at a Company. In this query, there are selective joins and a top-k order by that can be exploited for
optimizations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 12 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 12
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 12
title Expert search

pattern

description

Given a start Person with ID $personId, find the Comments that this Person’s friends made in reply
to Posts, considering only those Comments that are direct (single-hop) replies to Posts, not the
transitive (multi-hop) ones. Only consider Posts with a Tag in a given TagClass with name $tag-
ClassName or in a descendent of that TagClass. Count the number of these reply Comments, and
collect the Tags that were attached to the Posts they replied to, but only collect Tags with the given
TagClass or with a descendant of that TagClass. Return Persons with at least one reply, the reply
count, and the collection of Tags.

params
1 $personId ID

2 $tagClassName Long String

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 tagNames {Long String} A

5 replyCount 32-bit Integer A

sort
1 replyCount ↓
2 friend.id ↑

limit 20
CPs 3.3, 7.2, 7.3, 8.2

relevance

This query starts at a Person, moves to its friends, and the to their Comments and their root Posts. Then, it gets
the Tag of each Post and checks whether it (directly or transitively) belongs to the specified TagClass. This can be
thought of a bidirectional search between the Person and the TagClass. The difficulty of this query is determining
the optimal direction of this traversal.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 13 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 13
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 13
title Single shortest path

pattern

description

Given two Persons with IDs $person1Id and $person2Id, find the shortest path between these two
Persons in the subgraph induced by the knows edges. Return the length of this path:

• −1: no path found
• 0: start person = end person
• > 0: path found (start person ≠ end person)

params
1 $person1Id ID

In SNB Interactive v2, this query has two variants:
(b) Guaranteed that there is no path between the two
Persons
(b) Guaranteed that there is a 4-hop path between the two
Persons

2 $person2Id ID

result 1 shortestPathLength 32-bit Integer C

CPs 3.3, 7.2, 7.3, 7.5, 7.8, 8.1, 8.6

relevance
This query looks for a variable length path, starting at a given Person and finishing at an another given Person.
Proper cardinality estimation and search space pruning, will be crucial. This query also allows for possible parallel
implementations.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 14 of 27

Chapter 1. Interactive v1 Workload 1.1. Complex Reads

Interactive / complex / 14v1
IC 1
IC 2
IC 3
IC 4
IC 5
IC 6
IC 7
IC 8
IC 9
IC 10
IC 11
IC 12
IC 13

IC 14v1
IC 14v2

query Interactive / complex / 14v1
title Trusted connection paths (v1)

pattern

description

This query is used in SNB Interactive v1.
Given two Persons with IDs $person1Id and $person2Id, find all (unweighted) shortest paths be-
tween these two Persons, in the subgraph induced by the knows relationship.
Then, for each path calculate a weight. The nodes in the path are Persons, and the weight of a
path is the sum of weights between every pair of consecutive Person nodes in the path.
The weight for a pair of Persons is calculated based on their interactions:

• Every direct reply (by one of the Persons) to a Post (by the other Person) is 1.0.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) is 0.5.

Note that interactions are counted both ways (e.g. if Alice writes 2 Post replies and 1 Comment
reply to Bob, while Bob writes 3 Post replies and 4 Comment replies to Alice, their interaction
score is 2 × 1.0 + 1 × 0.5 + 3 × 1.0 + 4 × 0.5 = 7.5).
Return all the paths with shortest length and their weights. Do not return any rows if there is no
path between the two Persons.

params
1 $person1Id ID

2 $person2Id ID

result
1 personIdsInPath [ID] C

Identifiers representing an ordered sequence of
the Persons in the path

2 pathWeight 64-bit Float C

sort 1 pathWeight ↓ The order of paths with the same weight is unspecified

CPs 3.3, 5.3, 7.2, 7.3, 7.5, 7.7, 8.1, 8.2, 8.3, 8.6

relevance

This query looks for a variable length path, starting at a given Person and finishing at an another given Person. This
is a more complex query as it not only requires computing the path length, but returning it and computing a weight.
To compute this weight one must look for smaller sub-queries with paths of length three, formed by the two Persons
at each step, a Post and a Comment.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 15 of 27

Chapter 1. Interactive v1 Workload 1.2. Short Reads

1.2 Short Reads

Interactive / short / 1
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 1
title Profile of a person

pattern

description
Given a start Person with ID $personId, retrieve their first name, last name, birthday, IP address,
browser, and city of residence.

params 1 $personId ID

result

1 person.firstName String R

2 person.lastName String R

3 person.birthday Date R

4 person.locationIP String R

5 person.browserUsed String R

6 city.id ID R

7 person.gender String R

8 person.creationDate DateTime R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 16 of 27

Chapter 1. Interactive v1 Workload 1.2. Short Reads

Interactive / short / 2
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 2
title Recent messages of a person

pattern

description

Given a start Person with ID $personId, retrieve the last 10 Messages created by that user. For each
Message, return that Message, the original Post in its conversation (post), and the author of that Post
(originalPoster). If any of the Messages is a Post, then the original Post (post) will be the same
Message, i.e. that Message will appear twice in that result.

params 1 $personId ID

result

1 message.id ID R

2

message.content or
message.imageFile (for
photos)

Text R

3 message.creationDate DateTime R

4 post.id ID R

5 originalPoster.id ID R

6 originalPoster.firstName String R

7 originalPoster.lastName String R

sort
1 message.creationDate ↓
2 message.id ↓

limit 10

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 17 of 27

Chapter 1. Interactive v1 Workload 1.2. Short Reads

Interactive / short / 3
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 3
title Friends of a person

pattern

description
Given a start Person with ID $personId, retrieve all of their friends, and the date at which they
became friends.

params 1 $personId ID

result

1 friend.id ID R

2 friend.firstName String R

3 friend.lastName String R

4 knows.creationDate DateTime R

sort
1 knows.creationDate ↓
2 friend.id ↑

Interactive / short / 4
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 4
title Content of a message

pattern

description Given a Message with ID $messageId, retrieve its content and creation date.

params 1 $messageId ID

result

1 message.creationDate DateTime R messageCreationDate

2

message.content or
message.imageFile (for
photos)

Text R messageContent

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 18 of 27

Chapter 1. Interactive v1 Workload 1.2. Short Reads

Interactive / short / 5
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 5
title Creator of a message

pattern

description Given a Message with ID $messageId, retrieve its author.

params 1 $messageId ID

result

1 person.id ID R

2 person.firstName String R

3 person.lastName String R

Interactive / short / 6
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 6
title Forum of a message

pattern

description
Given a Message with ID $messageId, retrieve the Forum that contains it and the Person that mod-
erates that Forum. Since Comments are not directly contained in Forums, for Comments, return the
Forum containing the original Post in the thread which the Comment is replying to.

params 1 $messageId ID

result

1 forum.id ID R

2 forum.title Long String R

3 moderator.id ID R

4 moderator.firstName String R

5 moderator.lastName String R

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 19 of 27

Chapter 1. Interactive v1 Workload 1.3. Insert Operations

Interactive / short / 7
IS 1
IS 2
IS 3
IS 4
IS 5
IS 6
IS 7

query Interactive / short / 7
title Replies of a message

pattern

description

Given a Message with ID $messageId, retrieve the (1-hop) Comments that reply to it.
In addition, return a boolean flag knows indicating if the author of the reply (replyAuthor) knows
the author of the original message (messageAuthor). If author is same as original author, return
False for knows flag.

params 1 $messageId ID

result

1 comment.id ID R

2 comment.content Text R

3 comment.creationDate DateTime R

4 replyAuthor.id ID R

5 replyAuthor.firstName String R

6 replyAuthor.lastName String R

7 knows Boolean C

True if the knows edge exists between the
replyAuthor and the messageAuthor nodes,
False otherwise (including the case when
the two nodes are the same)

sort
1 comment.creationDate ↓
2 replyAuthor.id ↑

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 20 of 27

Chapter 1. Interactive v1 Workload 1.3. Insert Operations

1.3 Insert Operations

Updates / insert / 1
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 1
title Add person

pattern

description Add a Person node, connected to the network by 4 possible edge types.

params

1 $personId ID

2 $personFirstName String

3 $personLastName String

4 $gender String

5 $birthday Date

6 $creationDate DateTime

7 $locationIP String

8 $browserUsed String

9 $cityId ID

10 $languages {String}

11 $emails {Long String}

12 $tagIds {ID}

13 $studyAt {<ID, 32-bit
Integer>} {<universityId, classYear>}

14 $workAt {<ID, 32-bit
Integer>} {<companyId, workFrom>}

CPs 9.1, 9.2

Updates / insert / 2
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 2
title Add like to post

pattern

description Add a likes edge to a Post.

params

1 $personId ID

2 $postId ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 21 of 27

Chapter 1. Interactive v1 Workload 1.3. Insert Operations

Updates / insert / 3
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 3
title Add like to comment

pattern

description Add a likes edge to a Comment.

params

1 $personId ID

2 $commentId ID

3 $creationDate DateTime

CPs 9.2

Updates / insert / 4
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 4
title Add forum

pattern

description Add a Forum node, connected to the network by 2 possible edge types.

params

1 $forumId ID

2 $forumTitle Long String

3 $creationDate DateTime

4 $moderatorId ID

5 $tagIds {ID}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 22 of 27

Chapter 1. Interactive v1 Workload 1.3. Insert Operations

Updates / insert / 5
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 5
title Add forum membership

pattern

description Add a Forum membership edge (hasMember) to a Person.

params

1 $personId ID

2 $forumId ID

3 $creationDate DateTime

CPs 9.1, 9.2

Updates / insert / 6
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 6
title Add post

pattern

description
Add a Post node connected to the network by 4 possible edge types (hasCreator, containerOf, isLo-
catedIn, hasTag).

params

1 $postId ID

2 $imageFile String

3 $creationDate DateTime

4 $locationIP String

5 $browserUsed String

6 $language String

7 $content Text

8 $length 32-bit Integer

9 $authorPersonId ID

10 $forumId ID

11 $countryId ID

12 $tagIds {ID}

CPs 9.1, 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 23 of 27

Chapter 1. Interactive v1 Workload 1.3. Insert Operations

Updates / insert / 7
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 7
title Add comment

pattern

description
Add a Comment node replying to a Post/Comment, connected to the network by 4 possible edge
types (replyOf, hasCreator, isLocatedIn, hasTag).

params

1 $commentId ID

2 $creationDate DateTime

3 $locationIP String

4 $browserUsed String

5 $content Text

6 $length 32-bit Integer

7 $authorPersonId ID

8 $countryId ID

9 $replyToPostId ID
old version: −1 if the Comment is a reply of a
Comment; new version: null if the Comment is a
reply of a Post

10 $replyToCommentId ID
old version: −1 if the Comment is a reply of a Post;
new version: null if the Comment is a reply of a
Post

11 $tagIds {ID}

CPs 9.1, 9.2

Updates / insert / 8
INS 1
INS 2
INS 3
INS 4
INS 5
INS 6
INS 7
INS 8

query Updates / insert / 8
title Add friendship

pattern

description Add a friendship edge (knows) between two Persons.

params

1 $person1Id ID

2 $person2Id ID

3 $creationDate DateTime

CPs 9.2

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 24 of 27

Chapter 1. Interactive v1 Workload 1.4. Workload Definition

1.4 Workload Definition

The Test Driver is in charge of the execution of the Interactive Workload. At the beginning of the exe-
cution, the Test Driver creates a query mix by assigning to each query instance, a query issue time and a
set of parameters taken from the generated substitution parameter set described above.

Query issue times have to be carefully assigned. Although substitution parameters are chosen in
such a way that queries of the same type take similar time, not all query types have the same complexity
and touch the same amount of data, which causes them to scale differently for the different scale factors.
Therefore, if all query instances, regardless of their type, are issued at the same rate, those more complex
queries will dominate the execution’s result, making faster query types purposeless. To avoid this situa-
tion, each query type is executed at a different rate. The way the execution rate is decided, also depends
on the nature of the query: complex read, short read or update.

Update queries’ issue times are taken from the update streams generated by the data generator. These
are the times where the actual event happened during the simulation of the social network. Complex
reads’ times are expressed in terms of update operations. For each complex read query type, a frequency
value is assigned which specifies the relation between the number of updates performed per complex
read. Table 1.1 shows the frequencies for each complex query and SF used in the Interactive v1 workload
(Chapter 1).

Query SF1 SF3 SF10 SF30 SF100 SF300 SF1 000
1 26 26 26 26 26 26 26
2 37 37 37 37 37 37 37
3 69 79 92 106 123 142 165
4 36 36 36 36 36 36 36
5 57 61 66 72 78 84 91
6 129 172 236 316 434 580 796
7 87 72 54 48 38 32 25
8 45 27 15 9 5 3 1
9 157 209 287 384 527 705 967
10 30 32 35 37 40 44 47
11 16 17 19 20 22 24 26
12 44 44 44 44 44 44 44
13 19 19 19 19 19 19 19
14 49 49 49 49 49 49 49

Table 1.1: Frequencies for each Interactive complex query and SF.

Finally, short reads are inserted in order to balance the ratio between reads and writes, and to simulate
the behavior of a real user of the social network. For each complex read instance, a sequence of short reads
is planned. There are two types of short read sequences: Person centric and Message centric. Depending
on the type of the complex read, one of them is chosen. Each sequence consists of a set of short reads
which are issued in a row. The issue time assigned to each short read in the sequence is determined at run
time, and is based on the completion time of the complex read it depends on. The substitution parameters
for short reads are taken from the results of previously executed queries, including both complex and short
reads:

• Complex reads: IC 1 IC 2 IC 3 IC 7 IC 8 IC 9 IC 10 IC 11 IC 12 IC 14v1
IC 14v2

• Short reads: IS 2 IS 3 IS 5 IS 6 IS 7

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 25 of 27

Chapter 1. Interactive v1 Workload 1.4. Workload Definition

To see which short and complex queries can potentially trigger additional short query queries, see
Table 1.2.

Once a short read sequence is issued (and provided that sufficient substitution parameters exist),
there is a probability that another short read sequence is issued. This probability decreases for each new
sequence issued.1 Since the same random number generator seed is used across executions, the workload
is deterministic.

IS 1 IS 2 IS 3 IS 4 IS 5 IS 6 IS 7

IC 1 ⊗ ⊗ ⊗
IC 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 3 ⊗ ⊗ ⊗
IC 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 8 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 10 ⊗ ⊗ ⊗
IC 11 ⊗ ⊗ ⊗
IC 12 ⊗ ⊗ ⊗
IC 14 ⊗ ⊗ ⊗
IS 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IS 3 ⊗ ⊗ ⊗
IS 5 ⊗ ⊗ ⊗
IS 6 ⊗ ⊗ ⊗
IS 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Table 1.2: Short read queries (columns) potentially triggered after given complex/short read queries
(rows).

The specified frequencies, implicitly define the query ratios between queries of different types, as
well as a default target throughput. However, the Test Sponsor may specify a different target throughput
to test, by “squeezing” together or “stretching” apart the queries of the workload. This is achieved by
means of the “Time Compression Ratio” that is multiplied by the frequencies (see Table 1.1). Therefore,
different throughputs can be tested while maintaining the relative ratios between the different query types.

Warning. Note that in the current implementation of SNB Interactive v1, short queries are only
produced if updates are enabled. In the absence of updates, no short queries will be executed.

1The probability can be adjusted using the ldbc.snb.interactive.short_read_dissipation configuration option.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 26 of 27

Bibliography Bibliography

Bibliography

[1] Orri Erling et al. “The LDBC Social Network Benchmark: Interactive Workload”. In: SIGMOD.
2015, pp. 619–630. doi: 10.1145/2723372.2742786.

[2] JackWaudby et al. “Towards Testing ACID Compliance in the LDBC Social Network Benchmark”.
In: TPCTC. Ed. by Raghunath Nambiar and Meikel Poess. Vol. 12752. Lecture Notes in Computer
Science. Springer, 2020, pp. 1–17. doi: 10.1007/978-3-030-84924-5_1.

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 27 of 27

https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1007/978-3-030-84924-5_1

	Interactive v1 Workload
	Complex Reads
	Short Reads
	Insert Operations
	Workload Definition

