
Chapter 1. Business Intelligence Workload

1 Business Intelligence Workload

The Business Intelligence (BI) workload is the SNB’s analytical (OLAP) workload. As such, it defines
complex read queries that touch a significant portion of the data (see Section 1.4). Additionally, it defines
daily batches of updates over a 33-day period (see Section 1.5 for inserts and Section 1.6 for deletes).

Related Publications

The BI workload was published in PVLDB 2022 [17].

Related Software Components

• Datagen (Spark-based): https://github.com/ldbc/ldbc_snb_datagen_spark
• Driver and reference implementations: https://github.com/ldbc/ldbc_snb_bi

1.1 Overview

Figure 1.1: Main software components and data artifacts of the benchmark and their connection to the
workflow executed by the BI benchmark driver.

An overview of the BI workload is shown in Figure 1.1. The rules for auditing workload implemen-
tations are given in ??.

1.2 Read Query Templates

SNB BI consists of 20 parameterized read query templates, referred to as queries. These search for
graph patterns (often implying join-heavy operations on many-to-many edges), traverse hierarchies, and
compute cheapest paths (a.k.a. weighted shortest paths). Additionally, they include filtering, grouping,
aggregation, and sorting operators. While all queries explore a large portion of the graph, they only
return the top-k (typically 20 or 100) results, keeping their result sizes compact to avoid emphasizing the
client-server network protocol’s role in the benchmark [13].
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Chapter 1. Business Intelligence Workload 1.2. Read Query Templates

1.2.1 Choke Point-Based Design Methodology

LDBC’s query design process relies on the use of choke points (??), i.e. challenging aspects of query
processing. SNB BI includes 38 choke points divided into 9 categories: aggregation performance, join
performance, data access locality, expression calculation, correlated subqueries, parallelism and concur-
rency, graph specifics, language features, and update operations. Their coverage is shown in ??. In the
following, we discuss two challenges that are particularly prevalent in graph workloads.

1.2.1.1 Explosive and redundant multi-joins

In recent years it has become clear that graph pattern matching, or equivalent multi-join queries over
many-to-many relationships, typically generate very large intermediate results when executed with tra-
ditional join algorithms. This is especially the case for cyclical join graphs (corresponding to cyclic
graph queries). It was proven in theory [11] and shown in practice [18, 9, 5] that “worst-case optimal”
multi-join algorithms can avoid these large intermediates and outperform traditional joins. Following
this, there has been increased attention on redundancy in join results (even when produced by worst-case
optimal joins), which can be eliminated using factorized query processing techniques [2, 12, 8]. Graph
pattern matching queries that contain large join patterns will trigger these phenomena.

1.2.1.2 Expressive path finding

SNB BI contains queries that require an efficient implementation of shortest path finding between many
pairs. Expressing such queries requires a query language which supports either path finding or recursion.
The underlying system implementation must then handle this with an optimized execution strategy, as
recursing to try all paths will not scale. As some of this path finding includes on-the-fly computed edges
(joins) between nodes, the queries can benefit from path expressions, as proposed in Oracle’s PGQL
language [15] and as part of the GQL and SQL/PGQ languages [3]. The path finding required by SNB
BI not only tests connectivity (as supported in SPARQL), but also requires returning the cheapest cost
along weighted paths (necessitating SPARQL extensions [10]).

1.2.2 Analysis of Selected Queries

In order to defeat trivializing complex query performance by query caching, benchmarks can use both
frequent updates (which require invalidating caches or maintaining cached intermediates) as well as pa-
rameterized query templates. The BI workload features update batches, so parametrized read query
templates are necessary to guard against this between the batches. In this section, we analyze four read
query templates.

Notation: We denote the query parameters with the $ symbol and discuss their generation in Sec-
tion 1.3.

1.2.2.1 Q11: Friend triangles

BI 11 imposes two key difficulties. First, systems should efficiently filter the knows edges based on the
location of their endpoint Persons (Country $country) and the date range. Second, given a large number
of knows edges even after filtering, efficient enumeration of personA–personB–personC triangles (a cyclic
subgraph query) requires worst-case optimal multi-joins.

1.2.2.2 Q14: International dialog

BI 14 imposes different challenges depending on whether Countries $country1 and $country2 are cor-
related or anti-correlated (Section 1.3.3.1). For the ranking, top-k pushdown can be exploited: once a
result for a City in $country1 is obtained, extra restrictions in a selection can be added based on the value
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of this element. As the score of two Persons does not depend on any query parameters, precomputing
and maintaining it as an attribute on the knows edge can be beneficial.

1.2.2.3 Q18: Friend recommendation

BI 18 is inspired by Twitter’s recommendation algorithm [7]. Implementations of this query can ex-
ploit factorization: systems can count the number of mutual friends without explicitly enumerating all
<person1, personM, person2> tuples.

1.2.2.4 Q20: Recruitment

BI 20 performs graph projection [1]. Instead of materializing this graph in the database, systems may
represent it using a compact in-memory structure such as CSR (Compressed Sparse Row) [16]. To per-
form the cheapest path computation, a single-source shortest path algorithm (starting from $person2),
such as Dijkstra’s algorithm, can be used. As the projected graph is independent of query parameters,
precomputing and maintaining it can be beneficial.

1.3 Parameter Curation for BI Queries

1.3.1 The Need for Parameter Curation

A disadvantage of executing the same read query template with different parameters is that the inter-
mediate results and runtimes can be severely influenced by the parameter values. This is particularly
the case in SNB BI with its explosive joins, skewed out-degrees, skewed value distributions, correlated
value distributions, and structural correlations. Moreover, the updates (including cascading deletes) can
significantly change the portion of the graph reached by the same query executed at different times. In or-
der to keep query performance understandable we need to actively curate parameters, such that different
parameters executed at different logical times still lead to stable and, therefore, understandable results.
We achieve this through parameter curation [6, 4], a data mining process of looking for parameter values
with suitably similar characteristics.

1.3.2 Parameter Generation Steps

Our parameter curation process is a two-step process: we first generate factors followed by the parameters
(Figure 1.1). These components are executed for each scale factor and are independent of the serialization
format/layout of the data set.

1.3.2.1 Factor Generator

The factor generator produces 21 factor tables containing summary statistics from the temporal graph,
e.g. the number of Persons per City or the number of Messages per day for each Tag.

1.3.2.2 Parameter Generation

To find suitable substitution parameters that (presumably) lead to the same amount of data access and
thus similar runtimes, we first identify the factor table containing the summary statistics of the query’s
parameters. For example, Q14’s template uses the parameters Country $country1 and Country $country2.
Therefore, we use the countryPairsNumFriends factor table which contains $country1, $country2 pairs and
the number of friendships on Person lives in $country1 and the other lives in $country2. Using this table,
we select the pth percentile from the distribution as the anchor, then rank the rest of the distribution
based on their absolute difference from the anchor and take the top-k values. We shuffle the values using
a hash function to avoid introducing artificial locality, where e.g. subsequent queries start in nodes from
the same ID range. Listing 1.1 shows the SQL query implementing the parameter generation for Q14a.
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1.3.3 Parameter Curation for Graph Queries

We discuss two parameter curation cases that are particularly important in graph data management.

1.3.3.1 Correlated vs. Anti-Correlated Parameters

Our parameter curation provides a straightforward way of selecting start entities which are affected by
(structural or attribute-level) correlation vs. anti-correlation: corresponding parameters can be found by
selecting a high vs. low percentile as the anchor in the parameter generation query. For example, for Q14
(Section 1.4), we selected variant a to p = 0.98 (correlated) and variant b to p = 0.03 (anti-correlated).

1.3.3.2 Path Queries

SNB BI queries Q15, Q19, Q20 include cheapest path finding queries computed between given (sets of)
Persons. These queries are particularly challenging for parameter curation: if there is no path between the
two endpoints, query runtimes are significantly higher as the search has to traverse an entire connected
component to ensure that no path exists. Moreover, the presence of a path between two nodes at a given
time does not guarantee that it will always exist during the benchmark execution as deletions can render
the endpoints of a path unreachable.

1.3.4 Query Variants

12 queries have a single variant, while 8 queries have two variants, yielding a total of 28 query variants.
As a rule of thumb, variants a are expected to produce a longer runtime while variants b are expected to
be simpler. Variants of Q2, Q8, Q16 are parametrized with a flashmob vs. a non-flashmob date. Variants
of Q14 and Q19 select correlated vs. non-correlated Countries/Cities. Q10’s variants differ in degree (a
start Personwith an average number of friends vs. only a few friends), while Q15’s variants have different
path lengths and time intervals (4 hops and one week vs. 2 hops and one month). Q20a selects endpoints
where it is guaranteed that no path exists, while Q20b selects ones where there is guaranteed that a path
exists.

1.3.5 Scalability and Reproducibility

1.3.5.1 Scalability

The factor generator is part of the SNB Datagen and runs after the temporal graph has been created. It
is implemented in Spark for distributed execution. While its computations use expensive, aggregration-
heavy queries, the derived factor tables are compact, e.g. SF10 000 has only 20 GiB of factors in com-
pressed Parquet format, the equivalent of approximately 100 GiB in CSV format, i.e. 1% of the total
data set size. The parameter generator queries are executed in DuckDB [14], which supports vertical
scalability and is capable of running the parameter generation for SF10 000 using less than 512 GiB
memory.

SELECT country1, country2
FROM (
SELECT

country1,
country2,
abs(frequency - (
SELECT percentile_disc(0.98) WITHIN GROUP (ORDER BY frequency) AS anchor FROM countryPairsNumFriends

)) AS diff
FROM countryPairsNumFriends
ORDER BY diff, country1, country2

)
ORDER BY md5(concat(country1, country2))
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LIMIT 50

Listing 1.1: Parameter generation SQL query for Q14a.

1.3.5.2 Reproducibility

It is important to guarantee that the parameter curation process is reproducible. To this end, we leverage
that the Datagen and, consequently, the factor generator are reproducible. To ensure that the parameter
generation queries yield deterministic results we define a total ordering in each query. To provide de-
terministic shuffling we base the ordering on MD5 hashes (instead of the actual attribute values), see
Listing 1.1.
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1.4 Reads

BI / read / 1
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 1
title Posting summary

pattern

description

Given a $datetime, find all Messages created before that moment. Group them by a 3-level group-
ing:

1. by year of creation
2. for each year, group into Message types: is Comment or not
3. for each year-type group, split into four groups based on length of their content

• 0: 0 ≤ length < 40 (short)
• 1: 40 ≤ length < 80 (one liner)
• 2: 80 ≤ length < 160 (tweet)
• 3: 160 ≤ length (long)

params 1 $datetime DateTime

result

1 year 32-bit Integer R year(message.creationDate)

2 isComment Boolean M True for Comments, False for Posts

3 lengthCategory 32-bit Integer C
0 for short, 1 for one-liner, 2 for tweet, 3 for
long

4 messageCount 64-bit Integer A Total number of Messages in that group

5 averageMessageLength 32-bit Float A
Average length of the Message content in
that group

6 sumMessageLength 64-bit Integer A Sum of all Message content lengths

7 percentageOfMessages 32-bit Float A
Number of Messages in group as a
percentage of all messages created before
the given date

sort

1 year ↓
2 isComment ↑ False < True, i.e. Posts come first and Comments second
3 lengthCategory ↑

limit n/a
CPs 1.2, 3.2, 4.1, 4.2, 8.5
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BI / read / 2
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 2
title Tag evolution

pattern

description
Find the Tags under a given $tagClass that were used in Messages during in the 100-day time
window starting at $date and compare it with the 100-day time window that follows. For the
Tags and for both time windows, compute the count of Messages.

params

1 $date Date

Based on the creation day – TagClass – number of Messages
factor table:
(a) A flashmob date
(b) A non-flashmob date

2 $tagClass Long String
For both (a) and (b), TagClasses with a similar amount of
Messages are selected

result

1 tag.name Long String R

2 countWindow1 32-bit Integer A Occurrences of the tag during the first time window

3 countWindow2 32-bit Integer A
Occurrences of the tag during the second time
window

4 diff 32-bit Integer A
Absolute difference of countWindow1 and
countWindow2

sort
1 diff ↓
2 tag.name ↑

limit 100
CPs 2.4, 3.1, 3.2, 4.1, 4.2, 4.3, 5.3, 6.1, 8.2, 8.5
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BI / read / 3
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 3
title Popular topics in a country

pattern

description

Given a $tagClass and a $country, find all the Forums created in the given $country, containing at
least one Message with Tags belonging directly to the given $tagClass, and count the Messages by
the Forum which contains them.
The location of a Forum is identified by the location of the Forum’s moderator.

params
1 $tagClass Long String TagClasses with a similar amount of Messages are selected
2 $country Long String Big Countries are selected

result

1 forum.id ID R

2 forum.title Long String R

3 forum.creationDate DateTime R

4 person.id ID R

5 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 forum.id ↑

limit 20
CPs 1.1, 1.2, 1.3, 2.1, 2.2, 2.4, 3.3, 8.2
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BI / read / 4
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 4
title Top message creators by country

pattern

description

Find the most popular Forums by Country, where the popularity of a Forum is measured by the
number of members that Forum has from a given Country and the Forum was created after a given
$date.
Calculate the top 100 most popular Forums. If a Forum is popular in multiple countries, it should
only be calculated once with its largest membership. In case of a tie, the Forum with the smaller
id value should be selected.
For each member Person of the 100 most popular Forums, count the number of Messages
(messageCount) they made in any of those (most popular) Forums. Also include those member
Persons who have not posted any Messages (have a messageCount of 0).

params 1 $date Date Selected from the first 30 days of the network

result

1 person.id ID R

2 person.firstName String R

3 person.lastName String R

4 person.creationDate DateTime R

5 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 person.id ↑

limit 100
CPs 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 3.3, 5.3, 6.1, 8.2, 8.4
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BI / read / 5
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 5
title Most active posters of a given topic

pattern

description

Get each Person (person) who has created a Message (message) with a given $tag (direct relation,
not transitive). Considering only these Messages, for each Person node:

• Count its Messages (messageCount).
• Count likes (likeCount) to its Messages.
• Count Comments (replyCount) in reply to its Messages.

The score is calculated according to the following formula: 1 × messageCount + 2 × replyCount +
10 × likeCount.

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q6 and
Q7.

result

1 person.id ID R

2 replyCount 32-bit Integer A

3 likeCount 32-bit Integer A

4 messageCount 32-bit Integer A

5 score 32-bit Integer A

sort
1 score ↓
2 person.id ↑

limit 100
CPs 1.2, 2.3, 2.6, 8.2
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BI / read / 6
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 6
title Most authoritative users on a given topic

pattern

description

Given a $tag, find all Persons (person1) that ever created a Message with the $tag. For each of these
Persons (person1) compute their “authority score” as follows:

• The “authority score” is the sum of “popularity scores” of the Persons (person2) that liked
any of that Person’s Messages with the given $tag (same criterion as for message1).

• A Person’s (person2) “popularity score” is defined as the total number of likes (by any Person
person3) on any of their Messages (message2).

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q5 and
Q7.

result
1 person1.id ID R

2 authorityScore 32-bit Integer A

sort
1 authorityScore ↓
2 person1.id ↑

limit 100
CPs 1.2, 2.3, 2.6, 3.3, 6.1, 8.2

relevance Computing the authority scores might involve computing the popularity score for the same Person multiple times.
Implementations are advised to avoid such redundant computations.
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BI / read / 7
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 7
title Related topics

pattern

description
Find all Messages that have a given $tag. Find the related Tags attached to (direct) reply Comments
of these Messages, but only of those reply Comments that do not have the given $tag.
Group the related Tags by name, and get the count of replies in each group.

params 1 $tag Long String
Tags with a similar amount of Messages are selected. To avoid
caching, different Tags should be used than the ones in Q5 and
Q6.

result
1 relatedTag.name Long String R

2 count 32-bit Integer A

sort
1 count ↓
2 relatedTag.name ↑

limit 100
CPs 1.4, 3.3, 5.2, 8.1
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BI / read / 8
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 8
title Central person for a tag

pattern

description

Given a $tag, find all Persons that are interested in the $tag and/or have written a Message (Post or
Comment) with a creationDate after a given $startDate and that has a given $tag. For each Person,
compute the score as the sum of the following two aspects:

• 100, if the Person has this $tag as their interest, or 0 otherwise
• number of Messages by this Person with the given $tag

Also, for each Person, compute the sum of the score of the Person’s friends (friendsScore).

params

1 $tag Long String Tags with a similar amount of Messages are selected

2 $startDate Date
(a): A range during which a flashmob event happened (it
should yield at least a 5× difference)
(b): A regular range (does not include a flashmob event)

3 $endDate Date

result

1 person.id ID R

2 score 32-bit Integer A

3 friendsScore 32-bit Integer A The sum of the score of the person’s friends

sort
1 score + friendsScore ↓
2 person.id ↑

limit 100
CPs 1.2, 2.1, 2.3, 3.2, 5.3, 8.2, 8.4, 8.5

relevance

Similarly to BI 16, there are two major ways to compute this query: (1) creating an induced subgraph of the interested
Persons and their friends and performing the scoring on this graph or (2) performing the scoring without creating
an induced subgraph and scoring the friends of a Person on-the-fly. The first approach is more efficient as it avoids
redundant computations, however, specifying it needs support for composable graph queries.
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BI / read / 9
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 9
title Top thread initiators

pattern

description

For each Person, count the number of Posts they created in the time interval [$startDate, $end-
Date] (equivalent to the number of threads they initiated) and the number of Messages in each
of their (transitive) reply trees, including the root Post of each tree. When calculating Message
counts only consider Messages created within the given time interval.
Return each Person, number of Posts they created, and the count of all Messages that appeared in
the reply trees (including the Post at the root of tree).

params
1 $startDate Date Selected around the same date
2 $endDate Date 80-100 days after the $startDate

result

1 person.id ID R

2 person.firstName String R

3 person.lastName String R

4 threadCount 32-bit Integer A
The number of Posts created by that Person (the
number of threads initiated)

5 messageCount 32-bit Integer A
The number of Messages created in all the
threads this Person initiated

sort
1 messageCount ↓
2 person.id ↑

limit 100
CPs 1.2, 2.2, 2.3, 2.6, 3.2, 7.2, 7.3, 7.4, 8.1, 8.5
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BI / read / 10
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 10
title Experts in social circle

pattern

description

Given a Person startPerson with ID $personID, find all other Persons (expertCandidatePerson) that
live in a given $country and are connected to the startPerson on a shortest path with length in
range [$minPathDistance, $maxPathDistance] through the knows relation.
For each of these expertCandidatePerson nodes, retrieve all of their Messages that contain at least
one Tag belonging to a given $tagClass (direct relation not transitive). For each Message, retrieve
all of its Tags.
Group the results by Persons and Tags, then count the Messages by a certain Person having a certain
Tag.

params

1 $personId ID

(a) Persons with an average degree of knows edges
are selected
(b) Persons who have only one friend and that Person
has two friends in total (including the original
Person)

2 $country String Select mid-sized Countries

3 $tagClass Long String
TagClasses with a similar degree of hasType edges
are selected

4 $minPathDistance 32-bit Integer 3
5 $maxPathDistance 32-bit Integer 4

result

1 expertCandidatePerson.id ID R

2 tag.name Long String R

3 messageCount 32-bit Integer A
Number of Messages created by that
Person containing that Tag

sort

1 messageCount ↓
2 tag.name ↑
3 expertCandidatePerson.id ↑

limit 100
CPs 1.2, 1.3, 2.3, 2.4, 2.6, 3.3, 5.3, 7.1, 7.2, 7.3, 8.1, 8.6
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BI / read / 11
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 11
title Friend triangles

pattern

description

For a given $country, count all the distinct triples of Persons such that:

• personA is friend of personB,
• personB is friend of personC,
• personC is friend of personA,

and these friendships were created in the range [$startDate, $endDate].
Distinct means that given a triple t1 in the result set R of all qualified triples, there is no triple
t2 in R such that t1 and t2 have the same set of elements.

params

1 $country Long String Selected from the largest Countries (India, China)

2 $startDate Date
Selected from a 30-day interval towards the end of the
simulation time

3 $endDate Date Selected to yield around a 100-day interval

result 1 count 64-bit Integer A

limit n/a
CPs 2.3, 2.5, 3.2
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BI / read / 12
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 12
title How many persons have a given number of messages

pattern

description

For each Person, count the number of Messages they made (messageCount). Only count Messages
with the following attributes:

• Its content is not empty (and consequently, the imageFile attribute is empty for Posts).
• Its creationDate is after $startDate (exclusive, equality is not allowed).
• Its length is below the $lengthThreshold (exclusive, equality is not allowed).
• It is written in any of the given $languages.

– The language of a Post is defined by its language attribute.
– The language of a Comment is that of the Post that initiates the thread where the Com-

ment replies to.

The Post and Comments in the reply tree’s path (from the Message to the Post) do not have to
satisfy the constraints for content, length, and creationDate.

For each messageCount value, count the number of Persons with exactly messageCount Messages
(with the required attributes).

params

1 $startDate Date Selected randomly from a 60-day interval.

2 $lengthThreshold 32-bit Integer

Balanced against startDate to filter around 30% of
the Messages within a language and keep the
variance low.
The selection of this parameter uses a factor table
of bucketed Message lengths and creation dates.

3 $languages {String} Only the most frequently used languages

result
1 messageCount 32-bit Integer A Number of Messages created
2 personCount 32-bit Integer A Number of Persons with messageCount Messages

sort
1 personCount ↓
2 messageCount ↓

limit n/a
CPs 1.1, 1.2, 1.4, 2.6, 3.2, 4.2, 4.3, 8.1, 8.2, 8.3, 8.4, 8.5

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 17 of 31



Chapter 1. Business Intelligence Workload 1.4. Reads

BI / read / 13
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 13
title Zombies in a country

pattern

description

Find zombies within the given $country, and return their zombie scores. A zombie is a Person
created before the given $endDate, which has created an average of [0, 1) Messages per month,
during the time range between profile’s creationDate and the given $endDate. The number of
months spans the time range from the creationDate of the profile to the $endDate with partial
months on both end counting as one month (e.g. a creationDate of Jan 31 and an $endDate of
Mar 1 result in 3 months).
For each zombie, calculate the following:

• zombieLikeCount: the number of likes received from other zombies.
• totalLikeCount: the total number of likes received.
• zombieScore: zombieLikeCount / totalLikeCount. If the value of totalLikeCount is 0, the
zombieScore of the zombie should be 0.0.

For both zombieLikeCount and totalLikeCount, only consider likes received from profiles that were
created before the given $endDate.

params
1 $country Long String Selected from the largest Countries (India, China)
2 $endDate Date Selected from the last days of the initial data set

result

1 zombie.id ID R

2 zombieLikeCount 32-bit Integer A

3 totalLikeCount 32-bit Integer A

4 zombieScore 32-bit Float A Determined as zombieLikeCount / totalLikeCount

sort
1 zombieScore ↓
2 zombie.id ↑

limit 100
CPs 1.2, 2.1, 2.3, 2.4, 2.6, 3.2, 3.3, 4.2, 5.1, 5.3, 8.2, 8.4, 8.5
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BI / read / 14
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 14
title International dialog

pattern

description

Consider all pairs of people (person1, person2) such that (1) they know each other, (2) one is
located in a City of $country1, and (3) the other is located in a City of $country2. For each City of
$country1, return the highest scoring pair. If there are multiple top-scoring pairs in a city, return
the pair with the lowest (person1.id, person2.id) using a lexicographical ordering.
The score of a pair is defined as the sum of the subscores awarded for the following kinds of
interaction. The initial value is score = 0.

1. person1 has created a reply Comment to at least one Message by person2: score += 4
2. person1 has created at least one Message that person2 has created a reply to: score += 1
3. person1 liked at least one Message by person2: score += 10
4. person1 has created at least one Message that was liked by person2: score += 1

Consequently, the maximum score a pair can obtain is: 4 + 1 + 10 + 1 = 16.

params
1 $country1 Long String

(a) Correlated with parameter country2, i.e. the Countries
are close and there are many Persons knowing each other
(b) Uncorrelated with parameter country2, i.e. the Countries
are afar and there are few Persons knowing each other

2 $country2 Long String

result

1 person1.id ID R

2 person2.id ID R

3 city1.name Long String R

4 score 32-bit Integer C

sort

1 score ↓
2 person1.id ↑
3 person2.id ↑

limit 100
CPs 1.3, 1.4, 2.1, 3.1, 3.3, 5.1, 5.2, 5.3, 8.3, 8.4
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BI / read / 15
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 15
title Trusted connection paths through forums created in a given timeframe

pattern

description

Given two Persons with IDs $person1Id and $person2Id, calculate the cost of the weighted shortest
path between these two Persons, in the subgraph induced by the knows relationship. The interaction
score of a knows edge is calculated based on the interactions of its Person endpoints:

• Every direct reply (by one of the Persons) to a Post (by the other Person) is 1.0 point.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) is 0.5 points.

Only consider Messages that were created in a Forum that was created within the timeframe (inter-
val) [$startDate, $endDate]. Note that for Comments, the containing Forum is that of the Post that
the comment (transitively) replies to. Also note that interactions are counted both ways.
The weight for the shortest path algorithm is determined as 1

interaction score+1 .
The result of the query is a single number, the cost of the weighted shortest path. If no such path
exists, the query should return −1.0.

params

1 $person1Id ID
(a) $person1Id – $person2Id pair with a distance of 4 hops
(b) $person1Id – $person2Id pair with a distance of 2 hops

2 $person2Id ID

3 $startDate Date
(a) Small interval (approx. one week)
(b) Big interval (approx. one month)

4 $endDate Date

result 1 weight 32-bit Float C

limit n/a
CPs 1.2, 2.1, 2.2, 2.4, 3.3, 5.1, 5.3, 7.2, 7.3, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 20 of 31



Chapter 1. Business Intelligence Workload 1.4. Reads

BI / read / 16
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 16
title Fake news detection

pattern

description

Given two Tag/date pairs ($tagA/$dateA and $tagB/$dateB), for each pair $tagX/$dateX:

• Create an induced subgraph between Personswhere for each pair of Persons person1/person2,
both have created a Message on the day of $dateX with Tag $tagX.

• In the induced subgraph, only keep pairs of Persons who have at most maxKnowsLimit friends
(in the induced subgraph).

• For these Persons, count the number of Messages created on $dateX with Tag $tagX.

Return Persons who had at least one Messages for both $tagA/$dateA and $tagB/$dateB ranked by
their total number of Messages (descending).

params

1 $tagA Long String

(a) $tagA/$dateA, $tagB/$dateB are both selected to be
a flashmob Tag/date combination
(b) $tagA/$dateA, $tagB/$dateB are both selected to be
a non-flashmob Tag/date combination

2 $dateA Date

3 $tagB Long String

4 $dateB Date

5 $maxKnowsLimit 32-bit Integer Selected between 3 and 6

result

1 person.id ID R

2 messageCountA 32-bit Integer A Message count for $tagA/$dateA
3 messageCountB 32-bit Integer A Message count for $tagB/$dateB

sort
1

messageCountA +
messageCountB

↓
2 person.id ↑

limit 20
CPs 5.3, 8.4, 8.5

relevance

There are two major ways to compute this query: (1) create the induced subgraph as suggested by the specification
(either as a view or in materialized form), or (2) skip creating the induced subgraph and perform on-the-fly check
for the number of friends (who also posted at least one Message with the given Tag on the given date). The latter
approach is easier to express in systems which do not provide graph views but might result in redundant computations
(the query engine might repeatedly check whether a Person has at least one Message that satifies the conditions).
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BI / read / 17
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 17
title Information propagation analysis

pattern

description

This query aims to identify instances of “information propagation” when a Person (person1) sub-
mits a Message (message1) with a given $tag to a Forum (forum1). This is read by other members
of forum1, Persons person2 and person3 (who must be different Persons). Some time later (speci-
fied by the $delta parameter), these persons have a discussion with the same $tag in a different
Forum (forum2) where person1 is not a member. The discussion consists of a Message (message2)
by person2 and a direct reply Comment (comment) by person3.
Return IDs of person1 with the number of interactions their Messages (might have) caused.

params
1 $tag Long String Tags with a similar amount of Messages are selected
2 $delta 32-bit Integer Measured in hours, selected to be between 8 and 16 hours.

result
1 person1.id ID R

2 messageCount 32-bit Integer A

sort
1 messageCount ↓
2 person1.id ↑

limit 10
CPs 2.1, 2.3, 2.5, 2.6, 8.1
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BI / read / 18
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 18
title Friend recommendation

pattern

description

For a given $tag, for each person1 interested in $tag, recommend new friends (person2) who

• do not yet know person1
• have at least one mutual friend with person1
• are also interested in $tag.

Rank Persons person2 based on the number of mutual friends with person1.

params 1 $tag Long String Tags with a similar amount of Persons are selected

result

1 person1.id ID R

2 person2.id ID R

3 mutualFriendCount 32-bit Integer A

sort

1 mutualFriendCount ↓
2 person1.id ↑
3 person2.id ↑

limit 20
CPs 2.5, 2.6, 8.1

The LDBC Social Network Benchmark – version 2.2.4-SNAPSHOT, commit eedc995 Page 23 of 31



Chapter 1. Business Intelligence Workload 1.4. Reads

BI / read / 19
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 19
title Interaction path between cities

pattern

description

Given two Cities with IDs $city1Id, $city2Id, find Persons person1, person2 living in these Cities
(respectively) with the cheapest interaction path between them.
The cheapest path is equivalent to the weighted shortest path. It is computed on a subgraph of
the Person-knows-Person graph with the edge weights based on the number of interactions. An
interaction is a direct reply Comments from one Person to Messages by the other Person. Only knows
edges with at least one interaction between their endpoint Persons are considered. For these, the
weight of a knows edge is defined as: max(round(40 −√numInteractions),1)
If there are multiple pairs of people with cheapest paths that have the same total weight, return
all of them.
Note: Interactions are counted both ways, e.g. if Alice knows Bob, Alice writes 2 reply Comments
to Bob’s Messages and Bob writes 3 reply Comments to Alice’s Messages, their total number of
interactions is 5 and the weight of the knows edge is 38.
Remark: Determinism is ensured by using square root followed by rounding. For all integers
between 1 and 100000, the square root’s fractional part is more than 10e-5 from 0.5, where the
rounding could be non-determinstic based on floating point inaccuracies. As 10e-5 is signif-
icantly larger than the machine epsilon of IEEE 754 floats (both 32- and 64-bit), the floating
point inaccuracies have no chance to affect the derived integer edge weights.

params
1 $city1Id ID

(a) Small Cities within the same Country
(b) Larger Cities from different Countries

2 $city2Id ID

result

1 person1.id ID R

2 person2.id ID R

3 totalWeight 32-bit Integer C

sort
1 person1.id ↑
2 person2.id ↑

limit n/a
CPs 3.3, 7.6, 7.7, 8.4, 8.6

relevance To find the weighted shortest paths efficiently, the system can use e.g. a bidirectional Dijkstra algorithm. As the edge
weights do not depend on any parameter, systems can pre-compute them (if they do not interleave reads and writes).
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BI / read / 20
BI 1
BI 2
BI 3
BI 4
BI 5
BI 6
BI 7
BI 8
BI 9
BI 10
BI 11
BI 12
BI 13
BI 14
BI 15
BI 16
BI 17
BI 18
BI 19
BI 20

query BI / read / 20
title Recruitment

pattern

description

Consider knows edges where the endpoint Persons attended the same University and set the weight
of the edge to the absolute difference between the year of enrolment plus 1. If the Persons attended
multiple universities, we select the smallest (min) value. Formally:

w = min
studyAtA,studyAtB

∣studyAtA.classYear − studyAtB.classYear∣ + 1

Given a $company and a Person person2with ID $person2Id (who is not working and has not worked
at $company), find a different Person (person1) who works or at some point worked in $company
and is reachable from person2 through people who have studied together through the shortest
weighted path.
If there are multiple Person person1 nodes with the same shortest path length, return all of them.

params

1 $company Long String
Companies with a similar number of employees (former or
current) are selected

2 $person2Id ID

(a) There is guaranteed to be no path between any
person1 working at company and person2
(b) There is guaranteed to be a 2-hop path between at
least one person1 working at company and person

result
1 person1.id ID R

2 totalWeight 32-bit Integer C

sort
1 totalWeight ↑
2 person1.id ↑

limit 20
CPs 3.3, 7.6, 7.7, 7.8, 8.4, 8.6

relevance To find the weighted shortest paths efficiently, the system can use e.g. a bidirectional Dijkstra algorithm. As the edge
weights do not depend on any parameter, systems can pre-compute them (if they do not interleave reads and writes).
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1.5 Insert Operations

Insert operations consist of individual inserts for each entity type. Implementations typically use the
same format as the one for loading the initial snapshot of the data set.

1.6 Delete Operations

Updates / delete / 1
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 1
title Remove person and its personal forums and message (sub)threads

pattern

description

Remove a Person with ID $personId and its edges (isLocatedIn, studyAt, workAt, hasInterest, likes,
knows, hasMember, hasModerator, hasCreator). Additionally, remove the Album and Wall Forums
whose moderator is the Person and remove all Messages the Person has created in the rest of the
Forums (Groups).

params 1 $personId ID

CPs 9.3, 9.4, 9.5

relevance

• Removal of a Person removes Forums of type “Walls” and “Albums” but not “Groups”, which can continue
if even the founder has left the network. For Groups, the hasModerator edge is deleted. We have discussed
various approaches to appoint a new moderator, e.g.

1. choose member at random from the set of existing group members or
2. the member with the oldest group join date becomes the moderator. However, to keep the generator

and the workload simple, currently no moderator is selected, leaving the group without a moderator.

• Removal of a Person removes all Posts/Comments they are creator of this could result in the removal of a
Comment in the middle of a thread.
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Updates / delete / 2
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 2
title Remove post like

pattern

description Given a Person with ID $personId and a Post with ID $postId, remove the likes edge between them.

params
1 $personId ID

2 $postId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Post, this can be reflected by the relative
frequency of the operation.

Updates / delete / 3
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 3
title Remove comment like

pattern

description
Given a Personwith ID $personId and a Commentwith ID $commentId, remove the likes edge between
them.

params
1 $personId ID

2 $commentId ID

CPs 9.4

relevance Removal of a likes edge is a rare event, e.g. people accidently liking a Comment, this can be reflected by the relative
frequency of the operation.
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Updates / delete / 4
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 4
title Remove forum and its content

pattern

description
Remove a Forum with ID $forumId and its edges (hasModerator, hasMember, hasTag) and all Posts in
the Forum (connected by containerOf edges) and their direct and transitive Comments.

params 1 $forumId ID

CPs 9.3, 9.4, 9.5
relevance n/a

Updates / delete / 5
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 5
title Remove forum membership

pattern

description
Given a Forum with ID $forumId and a Person with ID $personId, remove the hasMember edge
between them.

params
1 $forumId ID

2 $personId ID

CPs 9.4
relevance n/a
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Updates / delete / 6
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 6
title Remove post thread

pattern

description
Remove a Post node with ID $postId and its edges (isLocatedIn, likes, hasCreator, hasTag, containerOf).
Remove all replies to the Post and the connecting replyOf edges. In addition, remove all transitive
reply Comments to the Post and their edges.

params 1 $postId ID

CPs 9.3, 9.4, 9.5
relevance n/a

Updates / delete / 7
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 7
title Remove comment subthread

pattern

description
Remove a Comment node with ID $commentId and its edges (isLocatedIn, likes, hasCreator, hasTag).
In addition, remove all replies to the Comment connected by replyOf and their edges.

params 1 $commentId ID

CPs 9.3, 9.4, 9.5
relevance n/a
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Updates / delete / 8
DEL 1
DEL 2
DEL 3
DEL 4
DEL 5
DEL 6
DEL 7
DEL 8

query Updates / delete / 8
title Remove friendship

pattern

description
Given two Person nodes with IDs $person1Id and $person2Id, remove the knows edge between
them.

params
1 $person1Id ID

2 $person2Id ID

CPs 9.4
relevance n/a
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